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Solution to Problems in Chapter 2, Section 2.10 

2.1. Q = v • ndA∫ =
3
2
x +

6
2
y⎛

⎝⎜
⎞
⎠⎟
dxdy =

3
2 2

x2 +
6
2 2

yx⎛
⎝⎜

⎞
⎠⎟

x=0

2

dy
y=0

3

∫x=0

2

∫y=0

3

∫  

Q =
6
2
+
12
2
y⎛

⎝⎜
⎞
⎠⎟
dy

y=0

3

∫ =
6
2
y +

6
2
y2⎛

⎝⎜
⎞
⎠⎟

y=0

3

=
72
2

 

Q = 50.91 cm3s-1 

 
2.2.  

� 

n = 1= a2 + a2 + a2 = 3a  
Rearranging, 

� 

a = 1/ 3  
 

2.3.
∇ • ρvv( ) = ex

∂
∂x

+ ey
∂
∂y

+ ez
∂
∂z

⎛
⎝⎜

⎞
⎠⎟
• ρvv( ) = ex

∂
∂x

+ ey
∂
∂y

+ ez
∂
∂z

⎛
⎝⎜

⎞
⎠⎟
• ρexvxv + ρeyvyv + ρezvzv( )

              = ∂
∂x

ρvxv( ) + ∂
∂y

ρvyv( ) + ∂
∂z

ρvzv( )
 

Differentiating term by term, 

� 

∇ • ρvv( ) = v ∂
∂x

ρvx( ) + ∂
∂y

ρvy( ) + ∂
∂z

ρvz( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ρvx

∂
∂x
v( ) + ρvy

∂
∂y
v( ) + ρvz

∂
∂z
v( ) 

� 

∇ • ρvv( ) = v∇ • ρv( ) + ρv•∇v 
 
2.4.  (a) For a two-dimensional steady  flow, the acceleration is: 

   

� 

a = vx
∂v
∂x

+ vy
∂v
∂y

 

For v = Uo(x2 – y2 +x)ex - Uo(2xy +y)ey, 
 

 

� 

∂v
∂x

=Uo 2x + 1( )ex -  Uo2yey            ∂v
∂y

=Uo −2y( )ex -  Uo 2x +1( )ey   

 
 a = Uo

2 x2 − y2 + x( ) 2x +1( )ex - 2yey( ) − Uo
2 2xy + y( ) −2yex - 2x+1( )ey( )   

 
Collecting terms: 
a = Uo

2 x2 − y2 + x( ) 2x +1( ) + 2xy + y( )2y⎡⎣ ⎤⎦ex −  Uo
2 x2 − y2 + x( )2y − 2xy + y( ) 2x +1( )⎡⎣ ⎤⎦ey  

a = Uo
2 2x3 + 3x2 − 2xy2 − y2 + x + 4xy2 + 2y2⎡⎣ ⎤⎦ex −  Uo

2 2yx2 − 2y3 + 2xy − 4x2y + 2xy + 2xy + y⎡⎣ ⎤⎦ey

a = Uo
2 2x3 + 3x2 + x + 2xy2 + y2⎡⎣ ⎤⎦ex −  Uo

2 −2yx2 − 2y3 + 6xy + y⎡⎣ ⎤⎦ey  

a = Uo
2 2x2 + 2y2 + 3x +1( )x + y2⎡⎣ ⎤⎦ex +  Uo

2 2x2 + 2y2 − 6x −1( )yey  
 

At y = 1 and x  = 0 a = 2( )2 ex + ey( ) = 4ex + 4ey        
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At y = 1 and x  = 2  
a = 2( )2 8 + 2 + 6 +1( )2 +1⎡⎣ ⎤⎦ex + 2( )2 8 + 2 −12 −1( )ey = 140ex −12ey   
 
(b)  From equation 2.2.6 
   

� 

Q = v•ndA∫ = vx∫ dydz        
since n = ex. 
 

Q = Uo
z=0

3

∫
y=0

5

∫ x2 − y2 + x( )
x=5
dydz = 3Uo 30 − y2( )dy

y=0

5

∫ = 3Uo 30y − y3

3
⎛
⎝⎜

⎞
⎠⎟
= 6 150 −

125
3

⎛
⎝⎜

⎞
⎠⎟
= 650 m3s-1  

 

2.5. (a) ax = exa = vx
∂vx
∂x

=U0 1−
x
L

⎛
⎝⎜

⎞
⎠⎟
−2 ∂
∂x

U0 1−
x
L

⎛
⎝⎜

⎞
⎠⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

 
∂
∂x

1− x
L

⎛
⎝⎜

⎞
⎠⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
2
L
1− x

L
⎛
⎝⎜

⎞
⎠⎟
−3

   

ax = exa = vx
∂vx
∂x

=U0
2 1− x

L
⎛
⎝⎜

⎞
⎠⎟
−2 ∂
∂x

1− x
L

⎛
⎝⎜

⎞
⎠⎟
−2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=
2U0

2

L
1− x

L
⎛
⎝⎜

⎞
⎠⎟
−5

 

For values given: 

ax =
50 m2 /s2

2 m
1− 0.5( )−5 = 25 m/s2( ) / 1 / 32( ) = 800 m/s2    

 
(b)   (1) The “no slip” boundary condition is not satisfied.  

      (2)  At x = L, the acceleration is undefined! 
 
2.6. (a) Using the definition of the volumetric flow rate, Q 

  
 

Q = vindA∫ = vzrdrdθ
0

Ri

∫
0

2π

∫    

The cross-sectional area element in cylindrical coordinates is rdrdθ.  Since the velocity does not vary 
with angular position, substitution for vz and integration in the angular direction yields: 

 Q = vmax 1−
r2

R2
⎛
⎝⎜

⎞
⎠⎟
rdrdθ

0

Ri

∫
0

2π

∫ = 2πvmax 1− r2

Ri
2

⎛
⎝⎜

⎞
⎠⎟
rdr

0

Ri

∫   

 
Ri is used to denote the local radius within the stenosis. Integrating in the radial direction yields: 

Q = 2πvmax 1− r2

Ri
2

⎛
⎝⎜

⎞
⎠⎟
rdr

0

Ri

∫ = 2πvmax
r2

2
−

r4

4Ri
2

⎛
⎝⎜

⎞
⎠⎟ r=0

R

=
πRi

2

2
vmax    
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Solving for vmax: vmax =
2Q
πRi

2 =
2Q

πR0
2 1− 0.5 1− 4 z

L
⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2  

Outside the stenosis, Ri = R0 and: 
 

   vmax =
2Q
πR0

2    

(b)  At z = 0, the velocity in the stensosis is 

vmax =
2Q
πRi

2 =
2Q

πR0
2 0.5[ ]2

=
8Q
πR0

2   

Ri = R0 1− 0.5 1− 4
z
L

⎛
⎝⎜

⎞
⎠⎟
2⎛

⎝⎜
⎞

⎠⎟

1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0.5R0  

The shear stress in the stenosis is: 
 

τ rz stenosis
= µ ∂vr

∂z
= µ

∂
∂r

vmax 1−
r2

Ri z = 0( )2
⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥r=Ri

= −
2µRi z = 0( )vmax

Ri z = 0( )2
= −

32µQ
πR0

3   

 
Outside the stenosis the shear stress is: 
 

τ rz = µ
∂
∂r

vmax 1−
r2

R0
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
r=R0

= −
2µvmax
R0

= −
4µQ
πR0

3     

 
 
2.7. Evaluating Equation (2.7.30) for y = -h/2 yields: 

� 

τw = τ yx ( y = −h / 2) = Δp
L
h
2

   (S2.7.1) 

From Equations (2.7.23) and (2.7.26), 

    

� 

Δp
L

= 8µvmax

h2
 =  12µQ

wh3
   (S2.7.2) 

Replacing Δp/L in Equation (S2.7.1) with the expression in Equation (S2.7.2) yields  

� 

τw = 6µQ
wh2

    

Solving for h: h =
6µQ
wτw

  

Inserting the values provided for Q, w, µ and τw yields h = 0.051 cm. 
  
2.8.  (a) Δp = ρgh = (1 g cm-3)(980 cm s-2)(2.5 x 10-4 cm) = 0.245 dyne cm-2  

 
(b) Rearranging equation (2.4.16) we have 
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     Tc =  Δp

2 1
Rp

− 1
Rc

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

 

Tc  = 1.838 x 10-5 dyne cm-1 

 
2.9.  (a) To find the radius use Equation (2.4.16) and treat the pipet radius as the capillary radius Rc 
= Rcap. 

  
Δp = 2Tc

1
Rcap

−
1
Rc

⎛

⎝
⎜

⎞

⎠
⎟   

 
For Rc = 6.5 µm 
Tc = 0.06 mN/m= 6 x 10-5 N/m(1 x 10-6 m/µm) = 6 x 10-11  N/µm 
 
Δp = 0.2 mm Hg  
Since 1.0133 × 105 N m−2 = 760 mm Hg  
0.2 mm Hg = 26.7 N m-2(1 m/106 µm)2 = 2.67 x 10-11 N µm-2 
 
Solving for Rcap 
 

  

1
Rpcap

=
1
Rc

+
Δp
2Tc

 

 

  

Rcap =
1

1
Rc

+ Δp
2Tc

   

 

  

Rcap =
1

1
Rc

+ Δp
2Tc

=
1

1
6.5

+ 2.67
2 6( )

= 2.66 µm   

 
While this result satisfies the law of Laplace, we need to assess whether the surface area is no greater 
than the maximum surface area of the cell, 1.4 times the surface area of a spherical cell, or 743.3 
µm2.  The factor of 1.4 accounts for the excess surface area.  Ideally, a larger cell entering a smaller 
capillary with look like a cylinder with hemispheres on each end.  The cylinder will have length l 
and radius equal to the capillary.  The hemispheres will have a radius equal to the capillary radius.  
The volume must remain constant, so 
 

V =
4
3
πRc

3 + πRc
2L  

Solving for the length, 
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 L =
V − 4

3
πRc

3

πRc
2 =

4
3
π R3 − Rc

3( )
πRc

2 =
4
3

6.53 − 2.663( )
2.662 = 48.2 µm  

 
The resulting surface area is  SA = 4πRc

2 + 2πRcL = π 4 * 2.662 + 2 * 48.2 * 2.66( ) = 894.6 µm2  
This is larger than the surface area 530.9 µm2 or 1.4 times the surface area 743.3 µm2.   
 
To find the radius and length, one could iteratively solve for L and surface area of use the fzero 
function in MATLAB.  After several iterations, the result approaches a radius of 3.3 µm and L =  
29.2 µm. 
 
If the cell had no excess area, then the cell would have no capacity to enter a capillary smaller than 
itself! 
 
(b)  Whether or not excess area is not considered, a cell with a radius of 3.0 µm can enter the 
capillary. 
 
2.10. A momentum balance is applied on a differential volume element, 2πrΔrΔy, as shown in the 
figure below. 

 
  

� 

p r 2πrΔy − p r+Δr 2π r + Δr( )Δy + τ yr y+Δy
2πrΔr − τ yr y 2πrΔr = 0  (S2.10.1) 

Divide each term by 2πrΔrΔy and take the limit as Δr and Δy go to zero results in the following 
expression: 

   

� 

1
r
d rp( )
dr

=
dτ yr
dy

      (S2.10.2) 

Note that if the gap distance h is much smaller than the radial distance, then curvature is not 
significant.  Each side is equal to a constant C1.  Solving for the shear stress, τyr = C1y + C2.  
Substituting Newton’s law of viscosity and integrating yields: 

   

� 

vr = C1y
2

2µ
+ C2

µ
y + C3      (S2.10.3) 

Applying the boundary conditions that vr = 0 at y=±h/2, 

    

� 

0 = C1h
2

8µ
+ C2

µ
h
2

+ C3       (S2.10.4a) 

    

� 

0 = C1h
2

8
− C2

µ
h
2

+ C3       (S2.10.4b) 

Adding Equations (S2.10.4a) and (S2.10.4b) and solving for C3, 
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� 

C3 = −C1h
2

8
       (S2.10.5) 

Inserting Equation (S2.10.5) into Equation (S2.10.4a) yields C2 = 0.  Thus the velocity is: 

    

� 

vr = C1

µ
y2

2
− h

2

8
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (S2.10.6) 

The volumetric flow rate is: 
 

  

� 

Q = v•ndA∫ = 2πrvrdyy=−h / 2

h / 2∫ = 2πrC1

µ
y2

2
− h

2

8
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dyy=−h / 2

h / 2∫   (S2.10.7) 

 

� 

Q = 2πrC1

µ
y3

6
− h

2y
8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
y=−h / 2

h / 2

= 2πrC1h
3

µ
1
24

− 1
8

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = −πrC1h

3

6µ
   (S2.10.8) 

 
Solving for C1 and inserting into equation (S2.10.6) 

    

� 

vr = − 6Q
πrh3

y2

2
− h

2

8
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       (S2.10.9) 

 
The shear stress can thus be written as; 

    

� 

τw = τ yr y=−h / 2
= µdvr

dr y=−h / 2

= − 6Q
πrh3

y
y=−h / 2

= 3µQ
πrh2

  (S2.10.10) 

 
 
2.11.  Flow rate per fiber, Qf  =  Q/250 = 0.8 mL/60 s = 0.01333 mL/s  
 
Average velocity per fiber:  <vf > = Qf/πRf 

2 =  (0.01333 mL/s)/(3.14159*(0.01 cm)2) 
    <vf > = 42 cm/s     
 
Re = ρ<vf >Df/µ = 1.05*42*0.02/0.03 = 29.7.    
 
Le = 0.058DRe = 0.058*(0.02 cm)(29.7) = 0.034 cm << L = 30 cm. 
 
2.12. (a)  The momentum balance is the same as that used for the case of pressure-driven flow in a 
cylindrical tube in Section 2.7.3. 

� 

dp
dz

= 1
r
d(rτ rz )
dr

     (S2.12.1) 

(b) The velocity profile is sketched below: 

   
Integrating the momentum balance and substituting Newton’s law of viscosity, 
    

� 

τ rz = − Δp
2L

r + C1
r

= µ
dvz
dr

     (S2.12.2) 
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Note that the shear stress and shear rate are a maximum at 

� 

r = 2C1
Δp / L

.  Assuming that C1 is greater 

than zero, then r will have a maximum in the fluid.   
 
(c) Integrating Equation (S2.12.2) yields: 
  

� 

vz = − Δp
4µL

r2 + C1
µ
ln(r) +C2      (S2.12.3) 

Applying the boundary conditions 
  

� 

V = − Δp
4µL

RC
2 + C1

µ
ln(RC ) +C2      (S2.12.4a) 

  

� 

0 = − Δp
4µL

R2 + C1
µ
ln(R) +C2      (S2.12.4b) 

Subtracting  
  

� 

V = − Δp
4µL

RC
2 − R2( ) + C1

µ
ln RC

R
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟     (S2.12.5) 

Solving for C1: 

  C1 =
µV

ln RC
R

⎛
⎝⎜

⎞
⎠⎟
+
Δp
4L

RC
2 − R2( )

ln RC
R

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.6a) 

 
Using this result to find C2 

  C2 =
Δp
4µL

R2 −
V

ln R
RC

⎛
⎝⎜

⎞
⎠⎟

+
Δp
4µL

RC
2 − R2( )

ln R
RC

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ln(R)   (S2.12.6b) 

 
The resulting expression for the velocity profile is 

vz =
ΔpR2

4µL
1− r2

R2
⎛
⎝⎜

⎞
⎠⎟
+ V +

Δp
4µL

RC
2 − R2( )⎛

⎝⎜
⎞
⎠⎟

ln r
R

⎛
⎝⎜

⎞
⎠⎟

ln R
RC

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.7) 

 
(d)  The shear stress is: 
 

τ zr = µ
dvz
dr

= −
rΔp
2L

+
µV + Δp

4L
RC

2 − R2( )
ln R

RC

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
r

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.8) 

 
(e) At r = R, the shear stress is: 
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τ zr = µ
dvz
dr

= −
RΔp
2L

+
µV + Δp

4L
RC

2 − R2( )
ln R

RC

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
R

⎛
⎝⎜

⎞
⎠⎟

    (S2.12.9) 

For the values provided 

τ zr r=R
= −

0.17 cm( ) 100 dyne/cm 3( )
2

       + 0.03 g/cm/s( ) + 25 dyne/cm 3( ) 0.15 cm( )2 − 0.17 cm( )2( )( )
1

0.17 cm( )
⎛
⎝⎜

⎞
⎠⎟

ln 0.17
0.15

⎛
⎝⎜

⎞
⎠⎟

 

 
τ zr r=R

= −16.0 dyne/cm2  
 
This compares with a shear stress of -8.5 dyne/cm2 in the absence of the catheter. 
 
2.13. For a Newtonian fluid    

� 

vz = ΔpR2

4µL
1− r

2

R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = vmax 1−

r2

R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 2 v 1− r

2

R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

� 

˙ γ r = −dvz

dr r= R

= 4Q
πR3   (S2.7.1a,b) 

� 

U = Q
2πR3        (S2.7.2) 

 
By comparing equations (S2.7.1b) and (S2.7.2), we find that, 

   

� 

Q
πR3 =

˙ γ r
4

= 2U  

As a result, 

� 

˙ γ r = 8U . 
 

For a power law fluid, the average velocity and shear rate equal (equations 2.7.52 and 2.7.55): 

   

� 

˙ γ = −dvz

dr r= R

= 3 + 1/ n( ) Q
πR3 = 2 3 + 1/ n( )U  

The constant relating shear rate and the reduced velocity equals 2(3n+1)/n. If n = 1, for a Newtonian 
fluid, then 2(3n+1)/n = 8. 

 
2.14.  A schematic of a volume element is shown below. 
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The momentum balance is: 

� 

ρgcosβΔxΔyΔz + τ xy y+Δy
− τ xy y( )ΔxΔz = 0      (S2.14.1) 

where the z direction is normal to the x-y plane. Dividing each term by the volume element ΔxΔyΔz 
and taking the limit as Δy goes to zero yields: 
 

� 

dτ xy
dy

= −ρgcosβ       (S2.14.2) 

Note that at the air-liquid interface the shear stress is zero.  This is because the viscosity of the gas is 
much less than the viscosity of the liquid.  As a result the velocity gradient at y = 0 is zero.   
Integrating the momentum balance and applying the boundary condition at y =0 yields: 
   τzx = -ρgycosβ        (S2.14.3) 
 
For a Bingham plastic, the velocity gradient is zero for a shear stress below the yield stress, τo = -
ρgδcosβ.  For the angles given, the difference in yield stress is only 6% so the manufacturer’s claim 
is exaggerated. 
 
2.15.  For fluid 1, since the resulting velocity is linearly related to the original velocity, the fluid is 
Newtonian. 
 
For fluid 2, there is no linear or power dependence between the velocities suggesting that the fluid is 
a Bingham plastic.  Applying Equation (2.7.12b) to the base case and cases (2a) and (2b) 

   

� 

V1 =
τ 1 − τ0( )H

µ0

 or 

� 

τ 1 = µ0V1

H
+ τ0   (S2.15.1a,b) 

   

� 

3V1 =
2τ 1 − τ0( )H

µ0

     (S2.15.2) 

   

� 

7V1 =
4τ 1 − τ0( )H

µ0

     (S2.15.3) 

Substituting Equation (S2.15.1b) for τ1 into equation (S2.15.2) 

� 

3V1 =
2 µ0V1

H
+ τ0

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ − τ0

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ H

µ0

= 2V1 + τ0
µ0

H    (S2.15.4) 

Solving for V1, 

� 

V1 = τ0
µ0

H        (S.2.15.5) 

Substituting equations (S2.15.5) into equation (S2.15.1a), yields. 
 
     τo = 0.5τ1       (S.2.15.6) 

Inserting Equations (S2.15.5) and (S2.15.6) into equation (S2.9.3) verifies that equation (S2.15.6) is 
the correct relation. 
 
For fluid 3, the resulting velocity is proportional to the square of the original velocity.  The fluid is a 
power law fluid. For a power law fluid, equation (2.7.7) becomes  
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� 

τ yx = m dvx
dy

n−1
dvx
dy

= m dvx
dy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n

   (S2.15.7) 

Rearranging yields an expression for the velocity gradient 

� 

dvx
dy

=
τ yx
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 / n

      (S2.15.8) 

Integrating, and evaluating the boundary condition that vx = 0 at y = 0. 

� 

vx =
τ yx
m

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 / n

y       (S2.15.9) 

Evaluating the velocity at y = H for the conditions given, 

    

� 

4V1 = 2τ 1
m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1 / n

H      (S2.15.10a) 

 

    

� 

16V1 = 4τ 1
m

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1 / n

H      (S2.15.10b) 

Dividing equation (S2.15.10b) by equation (S2.15.10a) yields: 
    

� 

4 = 2( )1 / n       (S2.15.11) 
Solving, yields n = 0.5. 
 
2.16. For a Bingham plastic the momentum balance is unchanged from equation (2.7.57) 

      
1
r2
d(r2τ rθ )
dr

= 0     

which after integration yields  r2τrθ = C1  If the shear stress is less than τo then the shear rate is zero.  

Thus,  d
dr

vθ
r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ = 0  or vθ = C2r where C2 is a constant.   The inner cylinder is not moving.  

Although the shear stress is lower on the outer cylinder, the only way the boundary condition at r = 
εR can be satisfied is for vθ = 0.  Thus when τrθ < τo, vθ = 0. 
 

For τrθ  greater than τo, 

� 

τ rθ = τ0 + µ0˙ γ 0 = τ0 + µ0
d
dr

vθ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = C1

r2
 

Rearranging 

� 

d
dr

vθ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = C1

µor
3 −

τ o
µor

 .  Integrating we have: 

     

� 

vθ = − C1
2µor

− τ or
µo

ln r + C2r  

Applying the boundary condition at r = R and r = εR we have τrθ > τ0, 

    

� 

vθ = − τ o
µo

r ln r / εR( ) + r
εR

− εR
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
ΩεR
1−ε2

− τ o
µo

εR lnε
1−ε2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

 
The yield stress τo can be determined from the torque required to begin rotation of the outer cylinder, 
T = 2πR2Lτo.  Once rotation begins, the viscosity can be determined by relating the torque to the 
shear stress at r = R (Equation (2.7.69)). For a Bingham plastic the result is: 
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    [ ]ετµ
ε
ετ θ ln

1
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22
2

ooRrr
RLLRT −Ω

−
π=π=

=
 

A plot of the torque versus the rotational speed Ω will be linear with a slope proportional to µo and 
an intercept proportional to τo. 
 
2.17.  For a power law fluid the shear stress is related to the shear rate as: 

  τrθ = mr d
dr

vθ
r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
n−1

r d
dr

vθ
r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟      (S2.17.1) 

Since vq increases with r, the derivative is positive, the shear stress can be written as; 

  τrθ = m r d
dr

vθ
r

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
n

= C1
r2

      (S2.17.2) 

Rearranging equation (S2.11.2) yields  

  

� 

d
dr

vθ
r

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = 1

r
C1

mr2
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1 / n

       (S2.17.3) 

Integrating and expressing the results in terms of vθ, 

  

� 

vθ = C1

m
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1 / n

r
n−2
n + rC2       (S2.17.4) 

Applying the boundary conditions at r = εR and r = R, the velocity profile is: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛−

−
Ω=

−1/2

/21

n

n r
R

R
rRv ε
εε

ε
θ      (S2.17.5) 

For n = 1 (Newtonian fluid) this result is equal to equation (2.7.67). 
The shear stress is: 

2

/2

2
1

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−
Ω=

r
R

n
m

nn

nr
ε

ε
τ θ      (S2.17.6) 

Finally, the torque is: 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−
Ωπ=π=

=

nn

nRrr n
mLRLRT 2

1
22 /2

222

ε
ετ θ    (S2.17.7) 

To find m and n, take the logarithm of the left and right hand sides of equation (S2.17.7), 

 

� 

log T
2πR2Lε2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = log m( ) + n log ΩεR

1−ε2 / n
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2
n

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = log m( ) + n log 2

n
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ + n log

ΩεR
1−ε2 / n

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 
A plot of the log of the torque/2πR2Lε versus log(ΩεR/(1-ε2/n))has an intercept equal to the 
log(m)+nlog(2/n) and a slope equal to n. 
 
2.18.  Letting t0 = 0, the shear rate function is: 

 

γ x (t) =
γ 0 / ε, for − ε < t < 0
0, for t < −ε or t > 0

⎧
⎨
⎩
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Thus, equation (2.5.15a) becomes: ')'(
0 0 dtttGyx ∫− −=
ε ε

γτ  

Rearranging the above equation, we have: 
ε

γτ ε
')'(

0

0

dtttG
yx

∫− −
=  

(b) According to L'Hopital's rule, the limit of this expression as ε goes to 0 is: 

1

')'(
lim 0

0

00

=
−

→

⎟⎠
⎞⎜⎝

⎛ −
=

∫
ε

ε

ε

εγτ
dtttG

d
d

yx  

Applying Leibnitz's rule when differentiating the integral, we have: 
)()(lim 0000
tGtGyx γεγτ

εε
=−=

=→
 

 
2.19. Since the apparent viscosity depends upon the shear rate, the fluid is not Newtonian.  For a 
power law fluid, 1-nm = γη app .  Taking the logarithm of each side yields. 

    
 
ln ηapp( )  = ln(m)+(n-1)ln( γ )  

The data are plotted in Figure S2.19.1.  From the slope n= 0.499 ≈ 0.50 so the cytoplasm is shear 
thinning.  The value of m is 147.4 Pa s. If the results are presented in terms of the base 10 log 
 
    

 
log ηapp( )  = log(m)+(n-1)log( γ )  

The regression line is  
 
log ηapp( )  = 2.169+0.499log( γ )  

 

 
Figure S2.19.1 
 
2.20.  A plot of the shear stress versus shear rate revealed that while a straight line gives a good fit, 
there is some curvature to the data suggesting a shear thinning fluid.  A log-log plot of shear stress 
versus shear rate yields n = 0.855 (Figure S2.20.1). So the fluid does exhibit some shear thinning 
behavior.  The apparent viscosity is 145.042.1 −= γη app  
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Figure S2.20.1 
 
After the enzyme is added the apparent viscosity decreases and is much less sensitive to shear rate, as 
determined by the following regression of data (Figure S2.20.2) 0225.001.0 −= γη app .  The enzyme 
functions by clipping the hyaluronic acid chains decreasing their length.  As a result the hyaluronic 
acid offers much less resistance to flow. 

 
Figure S2.20.2 
 
2.21. (a) Since the momentum balance is independent of the type of fluid, begin with 
Equation 2.7.36 with C2 = 0. 

   τ rz = −
Δp
2L

r  

The shear stress is greatest at r = R. If τrz(r =R) < τ0, vz = constant for 0 ≤  r ≤ R. Since the velocity at 
r = R is zero, vz = 0. Thus, the following criterion must be met 
for the fluid to flow. 

   τ rz r = R( ) = −
Δp
2L

R > τ 0  

 
(b) When τrz(r =R) > τ0, the fluid begins to move. Since τrz(r =0) = 0, the shear stress at some point 
in the fluid, say r0, equals the yield stress. Thus for 0 ≤ r ≤ r0, the velocity is constant. The location of 
r0 is determined by solving for the yield stress 

   r0 =
2Lτ 0
Δp
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In the region 0 ≤ r ≤ r0, τrz < 0 and the constitutive relation is: 

   τ rz = −
Δp
2L

r = −τ 0 + µ0
dvz
dr

 

Rearranging and integrating once, we have: 

   vz =
τ 0
µ0
r −

Δp
4µ0L

r2 + C3  

 
Applying the boundary condition at r = R that vz = 0, the C3 equals: 

   C3 = −
τ 0
µ0
R +

Δp
4µ0L

R2  

Replacing C3 yields the final expression for vz(r). 
 

vz =
ΔpR2

4µ0L
1− r2

R2
⎛
⎝⎜

⎞
⎠⎟
−
τ 0R
µ0

1− r
R

⎛
⎝⎜

⎞
⎠⎟   r0 ≤ r ≤ R 

 vz =
ΔpR2

4µ0L
1− r0

2

R2
⎛
⎝⎜

⎞
⎠⎟
−
τ 0R
µ0

1− r0
R

⎛
⎝⎜

⎞
⎠⎟   0 ≤ r ≤ r0  

The volumetric flow rate is: 

 Q = vzrdrdθ
θ=0

2π

∫
r=0

R

∫ = 2π vzrdr + vzrdr
r= r0

R

∫
r=0

r0

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2π vz r = r0( ) r0

2

2
+ vzrdr

r= r0

R

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

Q == 2π ΔpR2

4µ0L
1− r0

2

R2
⎛
⎝⎜

⎞
⎠⎟
−
τ 0R
µ0

1− r0
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
r0
2

2
+

ΔpR2

4µ0L
1− r2

R2
⎛
⎝⎜

⎞
⎠⎟
−
τ 0R
µ0

1− r
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
rdr

r= r0

R

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

Replacing τ0 with r0. 

Q == 2π ΔpR2

4µ0L
1− r0

2

R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

1− r0
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
r0
2

2
+ 1− r2

R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

1− r
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
rdr

r= r0

R

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

Integrating: 

Q == 2π ΔpR2

4µ0L
1− r0

2

R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

1− r0
R

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
r0
2

2
+

r2

2
−

r4

4R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

r2

2
−
r3

3R
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
r= r0

R⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

Evaluating the limits. 

Q = 2π ΔpR2

4µ0L
r0
2

2
−
r0
4

2R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

r0
2

2
−
r0
3

2R
⎛
⎝⎜

⎞
⎠⎟
+

R2

2
−
r0
2

2
−
R2

4
+
r0
4

4R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

R2

2
−
r0
2

2
−
R2

3
+
r0
3

2R
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

Collecting terms 

Q == 2π ΔpR2

4µ0L
r0
2

2
−
r0
4

2R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

r0
2

2
−
r0
3

2R
⎛
⎝⎜

⎞
⎠⎟
+

R2

4
−
r0
2

2
+
r0
4

4R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

R2

6
+
r0
3

3R
−
r0
2

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

Q == 2π ΔpR2

4µ0L
R2

4
−
r0
4

4R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

R2

6
+
r0
3

3R
−
r0
3

2R
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = 2π

ΔpR2

4µ0L
R2

4
−
r0
4

4R2
⎛
⎝⎜

⎞
⎠⎟
−
2r0
R

R2

6
−
r0
3

6R
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  
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Q =
πΔpR4

8µ0L
1− r0

4

R4
⎛
⎝⎜

⎞
⎠⎟
−
4r0
3R

1− r0
3

R3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

Note that for r0 = 0, the result for a Newtonian fluid is obtained. 
 
2.22. (a) Since δ = R(1-ε)<<R, the magnitude of the radial position does not vary significantly with a 
differential change in r, equation (2.7.57) can be approximated as: 

� 

1
r2
d(r2τ rθ )
dr

≈ r
2

r2
dτ rθ
dr

= dτ rθ
dr

= 0   (S2.22.1) 

Since y = r-εR, the momentum balance can be written as: 

     
dτyθ

dy
 =  0      (S2.22.2) 

As a result the shear stress is constant.  If curvature can be neglected, equation (2.7.62b) can be 
written as: 
 

     τ yθ = µ
dvy
dr

     (S2.22.3) 

Inserting Equation (S2.22.3) into Equation (S2.22.2), integrating and evaluating the boundary 
conditions (y = 0 vθ = 0, y = δ vθ = ΩR) leads to the following expression for the velocity: 
 
     vθ =

ΩRy
δ

     (S2.22.4) 

The shear stress is:   τ yθ =
µΩR
δ

=
µΩ
1− ε

    (S2.22.5) 

The torque is  

     T = 2πR2Lτ yθ =
2πR3LµΩ

δ
=
2πR2LµΩ
1− ε

 (S2.22.6) 

(b) Taking the ratio of the shear stress obtained neglecting curvature (equation (S2.22.5) to the exact 
result (equation (2.7.70)), yields: 

     

� 

τ yθ
τ rθ r=R

= 1+ ε
2ε2

     (S2.22.7) 

This relation can be used to compute the error induced by neglecting curvature.  The error is 0.76% 
for δ/R equal to 0.005, 1.52% for δ equal to 0.01, and 4.69% for δ equal to 0.03. 
(c) For a power law fluid: 

     τ yθ = m
dvy
dr

⎛
⎝⎜

⎞
⎠⎟
dvy
dr

n−1

   (S2.22.8) 

The momentum balance indicates that the shear stress is constant and positive. 

     
dτ yθ
dy

= m
dvy
dr

⎛
⎝⎜

⎞
⎠⎟

n

= 0     (S2.22.9) 

Integrating once 

     
dvy
dr

= C      (S2.22.10) 
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Evaluating the boundary conditions, yields Equation (S2.22.4).  Thus, the torque for a power law 
fluid is: 

T = 2πR2Lτ yθ = 2πR
2Lm

ΩR
δ

⎛
⎝⎜

⎞
⎠⎟
n

   (S2.22.11) 

Taking the logarithm of both sides of Equation (S2.22.11) 

    ln(T ) = ln(2πR2Lm) + n ln ΩR
δ

⎛
⎝⎜

⎞
⎠⎟    (S2.22.12) 

Thus, a plot of ln(T) versus ln(ΩR/δ) has a slope equal to n and an intercept equal to ln(2πR2Lm). 
 
2.23. (a) For low rotational speeds, there is only 1 velocity component, vθ.  This velocity is a 
function of r only.  There is no angular variation in velocity or pressure.  Thus there is only one shear 
stress term, τrθ.  Applying a momentum balance, Equation (2.7.57): 
 

    0 = 1
r2

d
dr

r2τ rθ( )  

 

(b)      
 
(c) Integrating once: 

    τ rθ =
C1
r2

 

We need the velocity profile in order to determine the constant.  From Equation (2.7.62b), we have. 

    τ rθ = µr d
dr

vθ
r

⎛
⎝⎜

⎞
⎠⎟
=
C1
r2

 

Rearranging   
d
dr

vθ
r

⎛
⎝⎜

⎞
⎠⎟
=
C1
µr3

 

Integrating   vθ = −
C1
2µr

+ C2r  

The boundary conditions are   r —>∞   vθ  = 0 
     r = R   vθ  = ωR 
 
From the B.C. at r —>∞, C2 = 0.  At r = R, C1 = -2µ wR2. 
Thus, the velocity field is: 
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    vθ =
ωR2

r
 

(d)  T = (F|r=R)xRer The torque and force are determined on the surface of the cylinder.   
Note that the velocity is constant and the unit normal is in the  - r direction.  The shear stress can be 

found by substituting for C1 in the relation  τ rθ =
C1
r2

= −2µω  

F|r=R = -er.(ereθ) 2πRLτrq|r=R = eθ4πRLµω. 
 
The torque is  T = 4πRLµωReθxer   = ez 4πLµwR2 
The cylinder must exert an equal and opposite torque to remain in motion. 
 
(e)  The torque can be measured from the electrical energy needed to keep the motion of the cylinder 
constant.  Then, from a plot of  Torque versus πLwR2, the viscosity can be found from the slope. 

 
2.24. Using the definitions of the tube and discharge hematocrits provided in the text 

  

� 

HCTT = 2
RT
2 HCTT r( )
0

RT

∫ rdr = 2
RT
2 HCTo

0

RT −δ

∫ rdr = HCTo
RT −δ( )2
RT
2

� 

  (S2.24.1) 

    

 

� 

HCTD =
HCTovz r( )

0

RT −δ

∫ rdr

vz r( )
0

RT

∫ rdr
=
HCTo 1− r2

RT
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

RT −δ

∫ rdr

1− r2

RT
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

RT

∫ rdr
= HCTo

RT −δ( )2
2

−
RT −δ( )4
4RT

2

RT
2 / 4

  

 

 

� 

HCTD = HCTo
2 RT −δ( )2

RT
2 −

RT −δ( )4
RT
4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

 
(a) Since HCTF =HCTD, the relation between HCTo and HCTF is: 
   

    

� 

HCTo = HCTF
2 RT −δ( )2

RT
2 −

RT −δ( )4
RT
4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

    (S2.24.2) 

As expected, HCTo > HCTF . 
 
(b) Substituting equation (S2.24.2) into equation (S2.24.1) yields: 

  

� 

HCTT =

HCTF
RT
2

RT −δ( )2
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2 RT −δ( )2
RT
2 −

RT −δ( )4
RT
4

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

= HCTF

2 −
RT −δ( )2
RT
2

 

RT, µ,m  δ/RT  HCTT/HCTF 
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500   0.01  0.9805 
400   0.0125  0.9758 
250   0.02  0.9619 
100   0.05  0.9111 
50   0.10  0.8403 
 

2.25. (a)  τ rz r=RC
= µ

dvz
dr r=R

= −µ
dvz
dy y=δ

= −µ
VC
δ

 

(b)  A force balance yields: 
Pressure X Cross-sectional area of cell = shear stress X area over which stress acts 

 ΔPπRC
2 = τ rz r=RC( )2πRCL = µ

VC
δ
2πRCL   

VC =
Δp
2µL

δRC =
Δp
2µL

R2
δ
R

⎛
⎝⎜

⎞
⎠⎟
1− δ

R
⎛
⎝⎜

⎞
⎠⎟  

 
Alternatively, the momentum balance, Equation (2.7.34b), is: 

dp
dz

=
1
r
d rτ rz( )
dr

⎛

⎝⎜
⎞

⎠⎟
  

Or after integration and applying the symmetry boundary condition at r = 0.     

 τ rz = −
Δp
2L

r  

Evaluating at r = RC and using the result obtained in part (a) for the shear stress: 

  −µ
VC
δ

= −
Δp
2L

RC  

Rearranging:  VC =
Δp
2µL

δRC  

(c)  There are two possible ways to approach this.  One is to neglect the fluid in the gaps. 

  v =
π VCrdr

0

RC

∫
πR2

= VC
RC
R

= VC 1− δ
R

⎛
⎝⎜

⎞
⎠⎟  

The more general approach is to consider the fluid in the gap. 

  v =
π vzrdr
0

R

∫
πR2

=
1
R2

VCrdr + vzrdr
RC

R

∫
0

RC

∫
⎛

⎝
⎜

⎞

⎠
⎟ = VC 1− δ

R
⎛
⎝⎜

⎞
⎠⎟
+VC

y3

3R3 RC

R

 

 

  v = VC 1− δ
R

⎛
⎝⎜

⎞
⎠⎟
+
VC
3
1− RC

3

R3
⎛
⎝⎜

⎞
⎠⎟
= VC 1− δ

R
⎛
⎝⎜

⎞
⎠⎟
+
VC
3

δ 3

R3
⎛
⎝⎜

⎞
⎠⎟

 

 
(d)  From parts (b) and (c) 
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 v = VC 1− δ
R

⎛
⎝⎜

⎞
⎠⎟
=

Δp
2µL

R2
δ
R

⎛
⎝⎜

⎞
⎠⎟
1− δ

R
⎛
⎝⎜

⎞
⎠⎟
2

 

or 

 v = VC 1− δ
R

⎛
⎝⎜

⎞
⎠⎟
=

Δp
2µL

R2
δ
R

⎛
⎝⎜

⎞
⎠⎟
1− δ

R
⎛
⎝⎜

⎞
⎠⎟

1− δ
R

⎛
⎝⎜

⎞
⎠⎟
−
1
3

δ 3

R3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

   v =
R2

8µeff

Δp
L

 

 

Thus, 
µeff
µ

=
1

4 δ
R

⎛
⎝⎜

⎞
⎠⎟ 1− δ

R
⎛
⎝⎜

⎞
⎠⎟
2   (1) or 

µeff
µ

=
1

4 δ
R

⎛
⎝⎜

⎞
⎠⎟ 1− δ

R
⎛
⎝⎜

⎞
⎠⎟
2

1− δ
R

⎛
⎝⎜

⎞
⎠⎟ −

1
3

δ 3

R3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

  (2) 

 
(e)  As shown in the table below, there is a minimum in the viscosity at δ/R between 0.2 and 0.3 and 
the viscosity increases as δ/R  increases. 
 
δ /R µeff/µ formula 1 µeff/µ formula 2 

0.1 3.09 3.43 
0.2 1.95 2.45 
0.3 1.70 2.46 
0.4 1.74 3.00 

 
2.26. (a) From Equation (2.7.36), the shear stress of the flow in a cylindrical tube is: 

L
pr

rz 2
Δ−=τ         (S2.26.1) 

When 0, ττ << rzcrr  and when 0, ττ >> rzcrr . Therefore, 

( ) ( )
2/1

2/12/1
0

2/1

2
, ⎟

⎠
⎞⎜

⎝
⎛+=⎟

⎠
⎞⎜

⎝
⎛ Δ<<

dr
dv

L
prRrr z

Nc ητ     (S2.26.2) 

r < rc ,
dvz
dr

= 0        (S2.26.3) 

Rearrange Equation (S2.26.2), we have, 

dvz
dr

=
1
ηN

Δpr
2L

⎛
⎝⎜

⎞
⎠⎟
1/2

− τ 0( )1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

     (S2.26.4) 

 
Integrating Equation (S2.26.4) from r to R: 

vz (R) − vz (r) =
1
ηN

Δpx
2L

⎛
⎝⎜

⎞
⎠⎟
1/2

− τ 0( )1/2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

dx
r

R

∫

=
1
ηN

Δp
4L

x2 −
4
3

Δpτ 0
2L

⎛
⎝⎜

⎞
⎠⎟
x3/2 + τ 0x

⎡
⎣⎢

⎤
⎦⎥ r

R
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Applying the no slip boundary condition at r = R and evaluating the integral, we have, 

rc < r < R, vz  = ΔpR2

4ηNL
1− r2

R2

⎛
⎝⎜

⎞
⎠⎟
−

8
3
rc

1/2

R1/2 1− r3/2

R3/2

⎛
⎝⎜

⎞
⎠⎟
+

2rc
R

1− r
R

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  (S2.26.5) 

Integrating Equation (S2.26.3) from r to rc,  
 vz (rc ) − vz (r) = 0  
The velocity at r = rc is obtained from Equation (S2.26.5). For crr < , the velocity profile is: 

 

� 

vz =  ΔpR2

4ηNL
1− 8

3
rc
1 / 2

R1 / 2 + 2rc
R

− rc
2

3R2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥       (S2.26.6) 

 

(b) Based on Equation (S2.26.1), 
L
pR

w 2
Δ−=τ  

Combining the above equation and Equation (S2.10.7), we have, 
τw
τo

=
R
rc

     (S2.26.7)  

(c) Results are plotted in Figure S.2.26.1. 

 
Figure S2.26.1 
 

(d)  The wall shear stress (r = R) can be computed from Equation (2.7.36) and is independent of the 

constitutive equation, τw = ΔpR/2L. The velocity profiles, shear rate and apparent viscosity are 

dependent on the constitutive equation.  For blood, the shear rate at r =  R is: 

 

� 

dvz

dr
 =  ΔpR2

4ηNL
− 2
R

+ 8
3
rc
1 / 2

R1 / 2
3
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
1
R
− 2rc
R2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

τw
ηN

−1+ 2 τ0
τw

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 / 2

− τ0
τw

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

where 

� 

rc
R

= τ0
τw

.  For τw = 15 dyne cm-2, τ0/τw = 0.0013.  The shear rate is 7.2% lower than the value 

for a Newtonian fluid.  Correspondingly, the apparent fluid viscosity at r = R is 7.2% greater than the 
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value for a Newtonian fluid. For τw = 2 dyne cm-2, τ0/τw = 0.01 and the shear rate is 19% lower than 
the value for a Newtonian fluid and the apparent viscosity at r = R is 19% larger than the value for a 
Newtonian fluid. For τw = 0.2 dyne cm-2, τ0/τw = 0.1 and the shear rate is 53.3% lower than the value 
for a Newtonian fluid and the apparent viscosity at r = R is 53.3% larger than the value for a 
Newtonian fluid. 
 
2.27.  The relation between flow and pressure drop is: 

    Q =  ΔpπR4

8µL
 

Assuming that flow is proportional to current and pressure drop is proportional to potential 
difference, this result is analogous to Ohm’s Law with a resistance equal to: 

     

� 

Resistance =  8µL
πR4  

 
The enzyme treatment decreased the resistance by 14%.  Assuming that the enzyme decreased the 
inner radius of the blood vessel by removing the glycocalyx completely, the change is resistance is 
due solely to a change in the effective radius of the blood vessel.  Thus: 

     

� 

0.86 =  R4

Renzyme
4  

Taking the one-fourth root yields an increase in radius of Renzyme = 1.038R.  Assuming that the radius 
after enzyme treat is 14.5 µm, then the glycocalyx thickness is 0.038*14.5 µm = 0.551 µm. 
 


