Chapter 2

1. The load line will intersect at $I_{D}=\frac{E}{R}=\frac{12 \mathrm{~V}}{750 \Omega}=16 \mathrm{~mA}$ and $V_{D}=12 \mathrm{~V}$.
(a) $V_{D_{Q}} \cong \mathbf{0 . 8 5} \mathrm{~V}$
$I_{D_{Q}} \cong 15 \mathrm{~mA}$
$V_{R}=E-V_{D_{Q}}=12 \mathrm{~V}-0.85 \mathrm{~V}=\mathbf{1 1 . 1 5} \mathrm{V}$
(b) $\quad V_{D_{Q}} \cong 0.7 \mathrm{~V}$
$I_{D_{Q}} \cong \mathbf{1 5} \mathbf{~ m A}$
$V_{R}=E-V_{D_{Q}}=12 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 1 . 3} \mathbf{V}$
(c) $V_{D_{Q}} \cong \mathbf{0} \mathbf{~ V}$
$I_{D_{Q}} \cong \mathbf{1 6} \mathbf{~ m A}$
$V_{R}=E-V_{D_{Q}}=12 \mathrm{~V}-0 \mathrm{~V}=\mathbf{1 2} \mathrm{V}$
For (a) and (b), levels of $V_{D_{Q}}$ and $I_{D_{Q}}$ are quite close. Levels of part (c) are reasonably close but as expected due to level of applied voltage E.
2. (a) $I_{D}=\frac{E}{R}=\frac{6 \mathrm{~V}}{0.2 \mathrm{k} \Omega}=30 \mathrm{~mA}$

The load line extends from $I_{D}=30 \mathrm{~mA}$ to $V_{D}=6 \mathrm{~V}$.
$V_{D_{Q}} \cong \mathbf{0 . 9 5} \mathrm{~V}, I_{D_{Q}} \cong \mathbf{2 5 . 3} \mathbf{~ m A}$
(b) $\quad I_{D}=\frac{E}{R}=\frac{6 \mathrm{~V}}{0.47 \mathrm{k} \Omega}=12.77 \mathrm{~mA}$

The load line extends from $I_{D}=12.77 \mathrm{~mA}$ to $V_{D}=6 \mathrm{~V}$.
$V_{D_{Q}} \cong \mathbf{0 . 8} \mathrm{~V}, I_{D_{Q}} \cong \mathbf{1 1} \mathbf{m A}$
(c) $I_{D}=\frac{E}{R}=\frac{6 \mathrm{~V}}{0.68 \mathrm{k} \Omega}=8.82 \mathrm{~mA}$

The load line extends from $I_{D}=8.82 \mathrm{~mA}$ to $V_{D}=6 \mathrm{~V}$.
$V_{D_{Q}} \cong \mathbf{0 . 7 8} \mathrm{~V}, I_{D_{Q}} \cong \mathbf{7 8} \mathbf{~ m A}$

The resulting values of $V_{D_{Q}}$ are quite close, while $I_{D_{Q}}$ extends from 7.8 mA to 25.3 mA .
3. Load line through $I_{D_{Q}}=10 \mathrm{~mA}$ of characteristics and $V_{D}=7 \mathrm{~V}$ will intersect I_{D} axis as 11.3 mA .

$$
\begin{aligned}
I_{D} & =11.3 \mathrm{~mA}=\frac{E}{R}=\frac{7 \mathrm{~V}}{R} \\
& \text { with } R=\frac{7 \mathrm{~V}}{11.3 \mathrm{~mA}}=619.47 \mathrm{k} \Omega \cong \mathbf{0 . 6 2} \mathbf{~ k} \boldsymbol{\Omega} \text { standard resistor }
\end{aligned}
$$

4. (a) $I_{D}=I_{R}=\frac{E-V_{D}}{R}=\frac{30 \mathrm{~V}-0.7 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=\mathbf{1 9 . 5 3} \mathbf{~ m A}$
$V_{D}=\mathbf{0 . 7} \mathbf{V}, V_{R}=E-V_{D}=30 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{2 9 . 3} \mathbf{V}$
(b) $\quad I_{D}=\frac{E-V_{D}}{R}=\frac{30 \mathrm{~V}-0 \mathrm{~V}}{1.5 \mathrm{k} \Omega}=\mathbf{2 0} \mathbf{~ m A}$
$V_{D}=\mathbf{0} \mathrm{V}, V_{R}=\mathbf{3 0} \mathbf{V}$
Yes, since $E \gg V_{T}$ the levels of I_{D} and V_{R} are quite close.
5. (a) $I=\mathbf{0} \mathbf{m A}$; diode reverse-biased.
(b) $V_{20 \Omega}=20 \mathrm{~V}-0.7 \mathrm{~V}=19.3 \mathrm{~V}$ (Kirchhoff's voltage law)

$$
\begin{aligned}
& I(20 \Omega)=\frac{19.3 \mathrm{~V}}{20 \Omega}=0.965 \mathrm{~A} \\
& V(10 \Omega)=20 \mathrm{~V}-0.7 \mathrm{~V}=19.3 \mathrm{~V} \\
& I(10 \Omega)=\frac{19.3 \mathrm{~V}}{10 \Omega}=1.93 \mathrm{~A} \\
& I=I(10 \Omega)+I(20 \Omega) \\
& \quad=\mathbf{2 . 8 9 5} \mathbf{~ A}
\end{aligned}
$$

(c) $I=\frac{10 \mathrm{~V}}{10 \Omega}=\mathbf{1} \mathbf{A}$; center branch open
6. (a) Diode forward-biased,

Kirchhoff's voltage law (CW): $-5 \mathrm{~V}+0.7 \mathrm{~V}-V_{o}=0$

$$
V_{o}=-4.3 \mathrm{~V}
$$

$I_{R}=I_{D}=\frac{\left|V_{o}\right|}{R}=\frac{4.3 \mathrm{~V}}{2.2 \mathrm{k} \boldsymbol{\Omega}}=\mathbf{1 . 9 5 5} \mathbf{~ m A}$
(b) Diode forward-biased,

$$
\begin{aligned}
& I_{D}=\frac{8 \mathrm{~V}+6 \mathrm{~V}-0.7 \mathrm{~V}}{1.2 \mathrm{k} \Omega+4.7 \mathrm{k} \Omega}=\mathbf{2 . 2 5} \mathbf{~ m A} \\
& V_{o}=8 \mathrm{~V}-(2.25 \mathrm{~mA})(1.2 \mathrm{k} \Omega)=\mathbf{5 . 3} \mathrm{V}
\end{aligned}
$$

7. (a) $V_{o}=\frac{10 \mathrm{k} \Omega(12 \mathrm{~V}-0.7 \mathrm{~V}-0.3 \mathrm{~V})}{2 \mathrm{k} \Omega+10 \mathrm{k} \Omega}=\mathbf{9 . 1 7} \mathrm{V}$
(b) $V_{o}=10 \mathrm{~V}$
8. (a) Determine the Thevenin equivalent circuit for the 10 mA source and $2.2 \mathrm{k} \Omega$ resistor.
$E_{T h}=I R=(10 \mathrm{~mA})(2.2 \mathrm{k} \Omega)=22 \mathrm{~V}$
$R_{T h}=2.2 \mathrm{k} \Omega$

Diode forward-biased

$$
\begin{aligned}
I_{D} & =\frac{22 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=\mathbf{4 . 8 4} \mathbf{~ m A} \\
V_{o} & =I_{D}(1.2 \mathrm{k} \Omega) \\
& =(4.84 \mathrm{~mA})(1.2 \mathrm{k} \Omega) \\
& =\mathbf{5 . 8 1} \mathbf{~ V}
\end{aligned}
$$

(b) Diode forward-biased
$I_{D}=\frac{20 \mathrm{~V}+20 \mathrm{~V}-0.7 \mathrm{~V}}{6.8 \mathrm{k} \Omega}=\mathbf{5 . 7 8} \mathbf{~ m A}$
Kirchhoff's voltage law (CW):
$+V_{o}-0.7 \mathrm{~V}+20 \mathrm{~V}=0$

$$
V_{o}=-19.3 \mathrm{~V}
$$

9. (a) $V_{o_{1}}=12 \mathrm{~V}-0.7 \mathrm{~V}=11.3 \mathrm{~V}$
$V_{o_{2}}=1.2 \mathrm{~V}$
(b) $V_{o_{1}}=\mathbf{0} \mathrm{V}$
$V_{o_{2}}=\mathbf{0} \mathbf{V}$
10. (a) Both diodes forward-biased

Si diode turns on first and locks in 0.7 V drop.

$$
\begin{aligned}
& I_{R}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=2.4 \mathrm{~mA} \\
& I_{D}=I_{R}=\mathbf{2 . 4} \mathbf{~ m A} \\
& V_{o}=12 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 1 . 3} \mathbf{~ V}
\end{aligned}
$$

(b) Right diode forward-biased:

$$
\begin{aligned}
& I_{D}=\frac{20 \mathrm{~V}+4 \mathrm{~V}-0.7 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{1 0 . 5 9} \mathbf{~ m A} \\
& V_{o}=20 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 9 . 3} \mathbf{~ V}
\end{aligned}
$$

11. (a) Si diode "on" preventing GaAs diode from turning "on":
$I=\frac{1 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{k} \Omega}=\frac{0.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{0 . 3} \mathbf{~ m A}$
$V_{o}=1 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{0 . 3} \mathbf{V}$
(b) $I=\frac{16 \mathrm{~V}-0.7 \mathrm{~V}-0.7 \mathrm{~V}+4 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=\frac{18.6 \mathrm{~V}}{4.7 \mathrm{k} \Omega}=\mathbf{3 . 9 6} \mathbf{~ m A}$
$V_{o}=16 \mathrm{~V}-0.7 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{1 4 . 6} \mathrm{V}$
12. Both diodes forward-biased:

$$
\begin{aligned}
& V_{o_{1}}=\mathbf{0 . 7 ~ V}, V_{o_{2}}=\mathbf{0 . 7} \mathbf{V} \\
& I_{1 \mathrm{k} \Omega}=\frac{20 \mathrm{~V}-0.7 \mathrm{~V}}{1 \mathrm{k} \Omega}=\frac{19.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=19.3 \mathrm{~mA} \\
& I_{0.47 \mathrm{k} \Omega}=0 \mathrm{~mA} \\
& I=I_{1 \mathrm{k} \Omega}-I_{0.47 \mathrm{k} \Omega}=19.3 \mathrm{~mA}-0 \mathrm{~mA} \\
& \quad=\mathbf{1 9 . 3} \mathbf{~ m A}
\end{aligned}
$$

13.

Superposition: $\quad V_{o_{1}}(9.3 \mathrm{~V})=\frac{1 \mathrm{k} \Omega(9.3 \mathrm{~V})}{1 \mathrm{k} \Omega+2 \mathrm{k} \Omega}=3.1 \mathrm{~V}$
$V_{o_{2}}(8.8 \mathrm{~V})=\frac{16 \mathrm{k} \Omega(8.8 \mathrm{~V})}{1 \mathrm{k} \Omega+2 \mathrm{k} \Omega}=2.93 \mathrm{~V}$
$V_{o}=V_{o_{1}}+V_{o_{2}}=6.03 \mathrm{~V}$
$I_{D}=\frac{9.3 \mathrm{~V}-6.03 \mathrm{~V}}{2 \mathrm{k} \Omega}=\mathbf{1 . 6 3 5} \mathbf{~ m A}$
14. Both diodes "off". The threshold voltage of 0.7 V is unavailable for either diode.

$$
V_{o}=\mathbf{0} \mathbf{V}
$$

15. Both diodes "on", $V_{o}=10 \mathrm{~V}-0.7 \mathrm{~V}=9 . \mathbf{9} \mathbf{~ V}$
16. Both diodes "on".

$$
V_{o}=\mathbf{0 . 7} \mathbf{V}
$$

17. Both diodes "off", $V_{o}=\mathbf{1 0} \mathbf{~ V}$
18. The Si diode with -5 V at the cathode is "on" while the other is "off". The result is

$$
V_{o}=-5 \mathrm{~V}+0.7 \mathrm{~V}=-\mathbf{4 . 3} \mathrm{V}
$$

19. 0 V at one terminal is "more positive" than -5 V at the other input terminal. Therefore assume lower diode "on" and upper diode "off".
The result:

$$
V_{o}=0 \mathrm{~V}-0.7 \mathrm{~V}=\mathbf{- 0 . 7} \mathbf{~ V}
$$

The result supports the above assumptions.
20. Since all the system terminals are at 10 V the required difference of 0.7 V across either diode cannot be established. Therefore, both diodes are "off" and

$$
V_{o}=+\mathbf{1 0} \mathbf{~ V}
$$

as established by 10 V supply connected to $1 \mathrm{k} \Omega$ resistor.
21. The Si diode requires more terminal voltage than the Ge diode to turn "on". Therefore, with 5 V at both input terminals, assume Si diode "off" and Ge diode "on".

The result: $V_{o}=5 \mathrm{~V}-0.3 \mathrm{~V}=\mathbf{4 . 7} \mathrm{V}$
The result supports the above assumptions.
22. $V_{\mathrm{dc}}=0.318 V_{m} \Rightarrow V_{m}=\frac{V_{\mathrm{dc}}}{0.318}=\frac{2 \mathrm{~V}}{0.318}=\mathbf{6 . 2 8} \mathbf{~ V}$

$I_{m}=\frac{V_{m}}{R}=\frac{6.28 \mathrm{~V}}{2 \mathrm{k} \Omega}=\mathbf{3 . 1 4} \mathbf{~ m A}$

23. Using $V_{\mathrm{dc}} \cong 0.318\left(V_{m}-V_{T}\right)$

$$
2 \mathrm{~V}=0.318\left(V_{m}-0.7 \mathrm{~V}\right)
$$

Solving: $V_{m}=\mathbf{6 . 9 8} \mathbf{V} \cong 10: 1$ for $V_{m}: V_{T}$

24. $\quad V_{m}=\frac{V_{\mathrm{dc}}}{0.318}=\frac{2 \mathrm{~V}}{0.318}=\mathbf{6 . 2 8} \mathrm{V}$

$I_{L_{\max }}=\frac{6.28 \mathrm{~V}}{10 \mathrm{k} \Omega}=\mathbf{0 . 6 2 8} \mathbf{~ m A}$

$I_{\max }(2 \mathrm{k} \Omega)=\frac{6.28 \mathrm{~V}}{2 \mathrm{k} \Omega}=\mathbf{3 . 1 4} \mathbf{~ m A}$
$I_{D_{\max }}=I_{L_{\max }}+I_{\max }(2 \mathrm{k} \Omega)=0.678 \mathrm{~mA}+3.14 \mathrm{~mA}=3.77 \mathbf{~ m A}$

25. $V_{m}=\sqrt{2}(120 \mathrm{~V})=169.68 \mathrm{~V}$
$V_{\mathrm{dc}}=0.318 V_{m}=0.318(169.68 \mathrm{~V})=\mathbf{5 3 . 9 6} \mathbf{~ V}$

26. Diode will conduct when $v_{o}=0.7 \mathrm{~V}$; that is,

$$
v_{o}=0.7 \mathrm{~V}=\frac{1 \mathrm{k} \Omega\left(v_{i}\right)}{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega}
$$

Solving: $v_{i}=1.4 \mathrm{~V}$

For $v_{i} \geq 1.4 \mathrm{~V}$ Si diode is "on" and $v_{o}=\mathbf{0 . 7} \mathbf{V}$.
For $v_{i}<1.4 \mathrm{~V}$ Si diode is open and level of v_{o} is determined by voltage divider rule:

$$
v_{o}=\frac{1 \mathrm{k} \Omega\left(v_{i}\right)}{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=0.5 v_{i}
$$

For $v_{i}=-10 \mathrm{~V}$:

$$
\begin{aligned}
v_{o} & =0.5(-10 \mathrm{~V}) \\
& =-\mathbf{5} \mathrm{V}
\end{aligned}
$$

When $v_{o}=0.7 \mathrm{~V}, v_{R_{\max }}=v_{i_{\max }}-0.7 \mathrm{~V}$

$$
\begin{aligned}
v_{R_{\max }} & =v_{i_{\max }}-0.7 \mathrm{~V} \\
& =10 \mathrm{~V}-0.7 \mathrm{~V}=9.3 \mathrm{~V} \\
I_{R_{\max }} & =\frac{9.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}
\end{aligned}
$$

$I_{\max }($ reverse $)=\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=\mathbf{0 . 5} \mathbf{~ m A}$
27. (a) $P_{\text {max }}=14 \mathrm{~mW}=(0.7 \mathrm{~V}) I_{D}$
$I_{D}=\frac{14 \mathrm{~mW}}{0.7 \mathrm{~V}}=\mathbf{2 0} \mathbf{~ m A}$
(b) $I_{\text {max }}=2 \times 20 \mathrm{~mA}=\mathbf{4 0} \mathbf{~ m A}$
(c) $4.7 \mathrm{k} \Omega \| 68 \mathrm{k} \Omega=4.4 \mathrm{k} \Omega$
$V_{R}=160 \mathrm{~V}-0.7 \mathrm{~V}=159.3 \mathrm{~V}$
$I_{\max }=\frac{159.3 \mathrm{~V}}{4.4 \mathrm{k} \Omega}=36.2 \mathrm{~mA}$
$I_{d}=\frac{I_{\max }}{2}=18.1 \mathrm{~mA}$
(d) Total damage, $\mathbf{3 6 . 2} \mathbf{~ m A}>\mathbf{2 0} \mathbf{~ m A}$
28.

$$
\text { (a) } \begin{aligned}
V_{m} & =\sqrt{2}(120 \mathrm{~V})=169.7 \mathrm{~V} \\
V_{L_{m}} & =V_{i_{m}}-2 V_{D} \\
& =169.7 \mathrm{~V}-2(0.7 \mathrm{~V})=169.7 \mathrm{~V}-1.4 \mathrm{~V} \\
& =168.3 \mathrm{~V} \\
V_{\mathrm{dc}} & =0.636(168.3 \mathrm{~V})=\mathbf{1 0 7 . 0 4} \mathbf{V}
\end{aligned}
$$

(b) $\mathrm{PIV}=V_{m}($ load $)+V_{D}=168.3 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{1 6 9} \mathrm{V}$
(c) $I_{D}(\max)=\frac{V_{L_{m}}}{R_{L}}=\frac{168.3 \mathrm{~V}}{1 \mathrm{k} \Omega}=\mathbf{1 6 8 . 3} \mathbf{~ m A}$
(d) $P_{\text {max }}=V_{D} I_{D}=(0.7 \mathrm{~V}) I_{\text {max }}$

$$
\begin{aligned}
& =(0.7 \mathrm{~V})(168.3 \mathrm{~mA}) \\
& =\mathbf{1 1 7 . 8 1} \mathbf{~ m W}
\end{aligned}
$$

29.

$$
I_{\max }=\frac{100 \mathrm{~V}}{2.2 \mathrm{k} \Omega}=\mathbf{4 5 . 4 5} \mathbf{~ m A}
$$

30. Positive half-cycle of v_{i} :

Negative half-cycle of v_{i} :

Voltage-divider rule:

$$
\begin{aligned}
V_{o_{\max }}= & \frac{2.2 \mathrm{k} \Omega\left(V_{i_{\max }}\right)}{2.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega} \\
& =\frac{1}{2}\left(V_{i_{\max }}\right) \\
& =\frac{1}{2}(100 \mathrm{~V}) \\
& =\mathbf{5 0} \mathbf{~}
\end{aligned}
$$

Polarity of v_{o} across the $2.2 \mathrm{k} \Omega$ resistor acting as a load is the same.

Voltage-divider rule:

$$
\begin{aligned}
V_{o_{\max }}= & \frac{2.2 \mathrm{k} \Omega\left(V_{i_{\max }}\right)}{2.2 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega} \\
= & \frac{1}{2}\left(V_{i_{\max }}\right) \\
= & \frac{1}{2}(100 \mathrm{~V}) \\
= & \mathbf{5 0} \mathbf{~}
\end{aligned}
$$

31. Positive pulse of v_{i} :

Top left diode "off", bottom left diode "on"
$2.2 \mathrm{k} \Omega \| 2.2 \mathrm{k} \Omega=1.1 \mathrm{k} \Omega$
$V_{o_{\text {peak }}}=\frac{1.1 \mathrm{k} \Omega(170 \mathrm{~V})}{1.1 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=56.67 \mathrm{~V}$
Negative pulse of v_{i} :
Top left diode "on", bottom left diode "off"
$V_{o_{\text {pak }}}=\frac{1.1 \mathrm{k} \Omega(170 \mathrm{~V})}{1.1 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=56.67 \mathrm{~V}$
$V_{\mathrm{dc}}=0.636(56.67 \mathrm{~V})=\mathbf{3 6 . 0 4} \mathbf{~ V}$
32. (a) Si diode open for positive pulse of v_{i} and $v_{o}=\mathbf{0} \mathbf{V}$

For $-20 \mathrm{~V}<v_{i} \leq-0.7 \mathrm{~V}$ diode "on" and $v_{o}=v_{i}+0.7 \mathrm{~V}$.
For $v_{i}=-20 \mathrm{~V}, v_{o}=-20 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{- 1 9 . 3} \mathbf{V}$
For $v_{i}=-0.7 \mathrm{~V}, v_{o}=-0.7 \mathrm{~V}+0.7 \mathrm{~V}=\mathbf{0} \mathbf{~ V}$

(b) For $v_{i} \leq 8 \mathrm{~V}$ the 8 V battery will ensure the diode is forward-biased and $v_{o}=v_{i}-8 \mathrm{~V}$.

$$
\begin{aligned}
\text { At } v_{i} & =8 \mathrm{~V} \\
v_{o} & =8 \mathrm{~V}-8 \mathrm{~V}=\mathbf{0} \mathbf{V} \\
\text { At } v_{i} & =-20 \mathrm{~V} \\
v_{o} & =-20 \mathrm{~V}-8 \mathrm{~V}=\mathbf{- 2 8} \mathbf{V}
\end{aligned}
$$

For $v_{i}>8 \mathrm{~V}$ the diode is reverse-biased and $v_{o}=\mathbf{0} \mathbf{V}$.

33. (a) Positive pulse of v_{i} :

$$
V_{o}=\frac{1.8 \mathrm{k} \Omega(12 \mathrm{~V}-0.7 \mathrm{~V})}{1.8 \mathrm{k} \Omega+2.2 \mathrm{k} \Omega}=5.09 \mathrm{~V}
$$

Negative pulse of v_{i} :
diode "open", $v_{o}=\mathbf{0} \mathbf{V}$
(b) Positive pulse of v_{i} :

$$
V_{o}=12 \mathrm{~V}-0.7 \mathrm{~V}+4 \mathrm{~V}=\mathbf{1 5 . 3} \mathrm{V}
$$

Negative pulse of v_{i} :
diode "open", $v_{o}=\mathbf{0} \mathbf{~ V}$

34. (a) For $v_{i}=20 \mathrm{~V}$ the diode is reverse-biased and $v_{o}=\mathbf{0} \mathbf{V}$.

For $v_{i}=-5 \mathrm{~V}, v_{i}$ overpowers the 4 V battery and the diode is "on".
Applying Kirchhoff's voltage law in the clockwise direction:

$$
\begin{aligned}
-5 \mathrm{~V}+4 \mathrm{~V}-v_{o} & =0 \\
v_{o} & =\mathbf{- 1} \mathbf{V}
\end{aligned}
$$

(b) For $v_{i}=20 \mathrm{~V}$ the 20 V level overpowers the 5 V supply and the diode is "on". Using the short-circuit equivalent for the diode we find $v_{o}=v_{i}=\mathbf{2 0} \mathbf{V}$.

For $v_{i}=-5 \mathrm{~V}$, both v_{i} and the 5 V supply reverse-bias the diode and separate v_{i} from v_{o}. However, v_{o} is connected directly through the $2.2 \mathrm{k} \Omega$ resistor to the 5 V supply and $v_{o}=5 \mathrm{~V}$.

35. (a) Diode "on" for $v_{i} \geq 4.7 \mathrm{~V}$

For $v_{i}>4.7 \mathrm{~V}, V_{o}=4 \mathrm{~V}+0.7 \mathrm{~V}=4.7 \mathrm{~V}$
For $v_{i}<4.7 \mathrm{~V}$, diode "off" and $v_{o}=\boldsymbol{v}_{i}$
(b) Again, diode "on" for $v_{i} \geq 3.7 \mathrm{~V}$ but v_{o} now defined as the voltage across the diode

For $v_{i} \geq 3.7 \mathrm{~V}, v_{o}=\mathbf{0 . 7} \mathbf{~ V}$
For $v_{i}<3.7 \mathrm{~V}$, diode "off", $I_{D}=I_{R}=0 \mathrm{~mA}$ and $V_{2.2 \mathrm{k} \Omega}=I R=(0 \mathrm{~mA}) R=0 \mathrm{~V}$
Therefore, $v_{o}=v_{i}-3 \mathrm{~V}$
At $v_{i}=0 \mathrm{~V}, v_{o}=-\mathbf{3} \mathbf{V}$
$v_{i}=-8 \mathrm{~V}, v_{o}=-8 \mathrm{~V}-3 \mathrm{~V}=\mathbf{- 1 1} \mathrm{V}$

36. For the positive region of v_{i} :

The right Si diode is reverse-biased.
The left Si diode is "on" for levels of v_{i} greater than
$5.3 \mathrm{~V}+0.7 \mathrm{~V}=6 \mathrm{~V}$. In fact, $v_{o}=6 \mathrm{~V}$ for $v_{i} \geq 6 \mathrm{~V}$.
For $v_{i}<6 \mathrm{~V}$ both diodes are reverse-biased and $v_{o}=\boldsymbol{v}_{i}$.
For the negative region of v_{i} :
The left Si diode is reverse-biased.
The right Si diode is "on" for levels of v_{i} more negative than $7.3 \mathrm{~V}+0.7 \mathrm{~V}=8 \mathrm{~V}$. In fact, $v_{o}=\mathbf{- 8} \mathrm{V}$ for $v_{i} \leq-8 \mathrm{~V}$.

For $v_{i}>-8 \mathrm{~V}$ both diodes are reverse-biased and $v_{o}=\boldsymbol{v}_{\boldsymbol{i}}$.

$i_{R}:$ For $-8 \mathrm{~V}<v_{i}<6 \mathrm{~V}$ there is no conduction through the $10 \mathrm{k} \Omega$ resistor due to the lack of a complete circuit. Therefore, $i_{R}=0 \mathrm{~mA}$.

For $v_{i} \geq 6 \mathrm{~V}$

$$
v_{R}=v_{i}-v_{o}=v_{i}-6 \mathrm{~V}
$$

For $v_{i}=10 \mathrm{~V}, v_{R}=10 \mathrm{~V}-6 \mathrm{~V}=4 \mathrm{~V}$

$$
\text { and } i_{R}=\frac{4 \mathrm{~V}}{10 \mathrm{k} \Omega}=\mathbf{0 . 4} \mathbf{~ m A}
$$

For $v_{i} \leq-8 \mathrm{~V}$

$$
v_{R}=v_{i}-v_{o}=v_{i}+8 \mathrm{~V}
$$

$$
\text { For } v_{i}=-10 \mathrm{~V}
$$

$v_{R}=-10 \mathrm{~V}+8 \mathrm{~V}=-2 \mathrm{~V}$
and $i_{R}=\frac{-2 \mathrm{~V}}{10 \mathrm{k} \Omega}=-\mathbf{0 . 2} \mathbf{~ m A}$

37. (a) Starting with $v_{i}=-20 \mathrm{~V}$, the diode is in the "on" state and the capacitor quickly charges to $-20 \mathrm{~V}+$. During this interval of time v_{o} is across the "on" diode (short-current equivalent) and $v_{o}=0 \mathrm{~V}$.
When v_{i} switches to the +20 V level the diode enters the "off" state (open-circuit equivalent) and $v_{o}=v_{i}+v_{C}=20 \mathrm{~V}+20 \mathrm{~V}=+40 \mathrm{~V}$

(b) Starting with $v_{i}=-20 \mathrm{~V}$, the diode is in the "on" state and the capacitor quickly charges up to $-15 \mathrm{~V}+$. Note that $v_{i}=+20 \mathrm{~V}$ and the 5 V supply are additive across the capacitor. During this time interval v_{o} is across "on" diode and 5 V supply and $v_{o}=-5 \mathrm{~V}$.

When v_{i} switches to the +20 V level the diode enters the "off" state and $v_{o}=v_{i}+v_{C}=$ $20 \mathrm{~V}+15 \mathrm{~V}=35 \mathrm{~V}$.

38. (a) For negative half cycle capacitor charges to peak value of $120 \mathrm{~V}=120 \mathrm{~V}$ with polarity $\left(--(-+)\right.$. The output v_{o} is directly across the "on" diode resulting in $v_{o}=\mathbf{0} \mathbf{V}$ as a negative peak value.
For next positive half cycle $v_{o}=v_{i}+120 \mathrm{~V}$ with peak value of $v_{o}=120 \mathrm{~V}+120 \mathrm{~V}=\mathbf{2 4 0} \mathbf{~ V}$.

\uparrow vertical shift of 120 V
(b) For positive half cycle capacitor charges to peak value of $120 \mathrm{~V}-20 \mathrm{~V}=100 \mathrm{~V}$ with polarity $(+--)$. The output $v_{o}=20 \mathrm{~V}=\mathbf{2 0} \mathrm{V}$
For next negative half cycle $v_{o}=v_{i}-100 \mathrm{~V}$ with negative peak value of $v_{o}=-120 \mathrm{~V}-100 \mathrm{~V}=\mathbf{- 2 2 0} \mathrm{V}$.
(
39.
(a) $\tau=R C=(56 \mathrm{k} \Omega)(0.1 \mu \mathrm{~F})=5.6 \mathrm{~ms}$
$5 \tau=\mathbf{2 8} \mathbf{~ m s}$
(b) $5 \tau=28 \mathrm{~ms} \gg \frac{T}{2}=\frac{1 \mathrm{~ms}}{2}=\mathbf{0 . 5} \mathrm{ms}, 56: 1$
(c) Positive pulse of v_{i} :

Diode "on" and $v_{o}=-2 \mathrm{~V}+0.7 \mathrm{~V}=-1.3 \mathrm{~V}$
Capacitor charges to $12 \mathrm{~V}+2 \mathrm{~V}-0.7 \mathrm{~V}=13.3 \mathrm{~V}$
Negative pulse of v_{i} :
Diode "off" and $v_{o}=-12 \mathrm{~V}-13.3 \mathrm{~V}=-25.3 \mathrm{~V}$

40. Solution is network of Fig. 2.181(b) using a 10 V supply in place of the 5 V source.
41. Network of Fig. 2.178 with 2 V battery reversed.

42. (a) In the absence of the Zener diode

$$
\begin{aligned}
& V_{L}=\frac{180 \Omega(20 \mathrm{~V})}{180 \Omega+220 \Omega}=9 \mathrm{~V} \\
& V_{L}=9 \mathrm{~V}<V_{Z}=10 \mathrm{~V} \text { and diode non-conducting }
\end{aligned}
$$

Therefore, $I_{L}=I_{R}=\frac{20 \mathrm{~V}}{220 \Omega+180 \Omega}=\mathbf{5 0} \mathbf{~ m A}$

$$
\text { with } I_{Z}=\mathbf{0} \mathbf{m A}
$$

$$
\text { and } V_{L}=\mathbf{9} \mathbf{V}
$$

(b) In the absence of the Zener diode

$$
\begin{aligned}
& V_{L}=\frac{470 \Omega(20 \mathrm{~V})}{470 \Omega+220 \Omega}=13.62 \mathrm{~V} \\
& V_{L}=13.62 \mathrm{~V}>V_{Z}=10 \mathrm{~V} \text { and Zener diode "on" }
\end{aligned}
$$

Therefore, $V_{L}=10 \mathbf{V}$ and $V_{R_{s}}=10 \mathrm{~V}$

$$
\begin{array}{ll}
& I_{R_{s}}=V_{R_{s}} / R_{s}=10 \mathrm{~V} / 220 \Omega=\mathbf{4 5 . 4 5} \mathbf{~ m A} \\
& I_{L}=V_{L} / R_{L}=10 \mathrm{~V} / 470 \Omega=\mathbf{2 1 . 2 8} \mathbf{~ m A} \\
\text { and } & I_{Z}=I_{R_{s}}-I_{L}=45.45 \mathrm{~mA}-21.28 \mathrm{~mA}=\mathbf{2 4 . 1 7} \mathbf{~ m A}
\end{array}
$$

(c) $\quad P_{Z_{\text {max }}}=400 \mathrm{~mW}=V_{Z} I_{Z}=(10 \mathrm{~V})\left(I_{Z}\right)$

$$
\begin{aligned}
& I_{Z}=\frac{400 \mathrm{~mW}}{10 \mathrm{~V}}=40 \mathrm{~mA} \\
& I_{L_{\min }}=I_{R_{s}}-I_{Z_{\max }}=45.45 \mathrm{~mA}-40 \mathrm{~mA}=5.45 \mathrm{~mA} \\
& R_{L}=\frac{V_{L}}{I_{L_{\min }}}=\frac{10 \mathrm{~V}}{5.45 \mathrm{~mA}}=\mathbf{1 , 8 3 4 . 8 6} \Omega
\end{aligned}
$$

Large R_{L} reduces I_{L} and forces more of $I_{R_{s}}$ to pass through Zener diode.
(d) In the absence of the Zener diode

$$
\begin{aligned}
V_{L}=10 \mathrm{~V} & =\frac{R_{L}(20 \mathrm{~V})}{R_{L}+220 \Omega} \\
10 R_{L}+2200 & =20 R_{L} \\
10 R_{L} & =2200 \\
R_{L} & =220 \Omega
\end{aligned}
$$

43. (a) $V_{Z}=12 \mathrm{~V}, R_{L}=\frac{V_{L}}{I_{L}}=\frac{12 \mathrm{~V}}{200 \mathrm{~mA}}=\mathbf{6 0} \Omega$

$$
\begin{aligned}
V_{L}=V_{Z}=12 \mathrm{~V} & =\frac{R_{L} V_{i}}{R_{L}+R_{S}}=\frac{60 \Omega(16 \mathrm{~V})}{60 \Omega+R_{s}} \\
720+12 R_{s} & =960 \\
12 R_{s} & =240 \\
R_{s} & =\mathbf{2 0} \Omega
\end{aligned}
$$

(b) $P_{Z_{\text {max }}}=V_{Z} I_{Z_{\text {max }}}$

$$
=(12 \mathrm{~V})(200 \mathrm{~mA})
$$

$$
=2.4 \mathrm{~W}
$$

44. Since $I_{L}=\frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L}}$ is fixed in magnitude the maximum value of $I_{R_{s}}$ will occur when I_{Z} is a maximum. The maximum level of $I_{R_{s}}$ will in turn determine the maximum permissible level of V_{i}.

$$
\begin{aligned}
& I_{Z_{\max }}=\frac{P_{Z_{\max }}}{V_{Z}}=\frac{400 \mathrm{~mW}}{8 \mathrm{~V}}=50 \mathrm{~mA} \\
& I_{L}=\frac{V_{L}}{R_{L}}=\frac{V_{Z}}{R_{L}}=\frac{8 \mathrm{~V}}{220 \Omega}=36.36 \mathrm{~mA} \\
& I_{R_{s}}=I_{Z}+I_{L}=50 \mathrm{~mA}+36.36 \mathrm{~mA}=86.36 \mathrm{~mA} \\
& I_{R_{s}}=\frac{V_{i}-V_{Z}}{R_{s}}
\end{aligned}
$$

$$
\text { or } V_{i}=I_{R_{s}} R_{s}+V_{Z}
$$

$$
=(86.36 \mathrm{~mA})(91 \Omega)+8 \mathrm{~V}=7.86 \mathrm{~V}+8 \mathrm{~V}=\mathbf{1 5 . 8 6} \mathbf{V}
$$

Any value of v_{i} that exceeds 15.86 V will result in a current I_{Z} that will exceed the maximum value.
45. At 30 V we have to be sure Zener diode is "on".

$$
\therefore V_{L}=20 \mathrm{~V}=\frac{R_{L} V_{i}}{R_{L}+R_{s}}=\frac{1 \mathrm{k} \Omega(30 \mathrm{~V})}{1 \mathrm{k} \Omega+R_{s}}
$$

$$
\text { Solving, } R_{s}=0.5 \mathrm{k} \Omega
$$

$$
\begin{gathered}
\text { At } 50 \mathrm{~V}, I_{R_{S}}=\frac{50 \mathrm{~V}-20 \mathrm{~V}}{0.5 \mathrm{k} \Omega}=60 \mathrm{~mA}, I_{L}=\frac{20 \mathrm{~V}}{1 \mathrm{k} \Omega}=20 \mathrm{~mA} \\
I_{Z M}=I_{R_{S}}-I_{L}=60 \mathrm{~mA}-20 \mathrm{~mA}=40 \mathrm{~mA}
\end{gathered}
$$

46. For $v_{i}=+50 \mathrm{~V}$:
Z_{1} forward-biased at 0.7 V
Z_{2} reverse-biased at the Zener potential and $V_{Z_{2}}=10 \mathrm{~V}$.
Therefore, $V_{o}=V_{Z_{1}}+V_{Z_{2}}=0.7 \mathrm{~V}+10 \mathrm{~V}=\mathbf{1 0 . 7} \mathrm{V}$

For $v_{i}=-50 \mathrm{~V}$:
Z_{1} reverse-biased at the Zener potential and $V_{Z_{1}}=-10 \mathrm{~V}$.
Z_{2} forward-biased at -0.7 V .
Therefore, $V_{o}=V_{Z_{1}}+V_{Z_{2}}=\mathbf{- 1 0 . 7} \mathbf{~ V}$

For a 5 V square wave neither Zener diode will reach its Zener potential. In fact, for either polarity of v_{i} one Zener diode will be in an open-circuit state resulting in $v_{o}=v_{i}$.

47. $\quad V_{m}=1.414(120 \mathrm{~V})=169.68 \mathrm{~V}$

$$
2 V_{m}=2(169.68 \mathrm{~V})=\mathbf{3 3 9 . 3 6} \mathbf{V}
$$

48. The PIV for each diode is $\mathbf{2} \boldsymbol{V}_{\boldsymbol{m}}$

$$
\therefore \mathrm{PIV}=2(1.414)\left(V_{\mathrm{rms}}\right)
$$

