Computer Exploration

Chapter 2 Section 7, Tangents and Derivatives

Problem 45.
Begin with the definition of the function f and the difference quotient function q.
$>f(x):=x^{3}+2 x: q(h):=\frac{f(0+h)-f(0)}{h}:$
Here is a plot of f.

$$
>\operatorname{plot}\left(f(x), x=-\frac{1}{2} . .3\right)
$$

Let m_{0} denote the limit of the difference quotient as $h \rightarrow 0$.
$>m_{0}:=\lim _{h \rightarrow 0} q(h)$

$$
\begin{equation*}
m_{0}:=2 \tag{1}
\end{equation*}
$$

The tangent line function is defined next.
$>T(x):=m_{0} \cdot(x-0)+f(0)$

$$
\begin{equation*}
T:=x \rightarrow m_{0} x+f(0) \tag{2}
\end{equation*}
$$

And the next entry defines the secant line at 0 as a function of x and h.

$$
\begin{align*}
& >S(x, h):=q(h) \cdot(x-0)+f(0) \\
& \qquad S:=(x, h) \rightarrow q(h) x+f(0) \tag{3}
\end{align*}
$$

The plots follow. The tangent line is blue and the secant lines are green.
$>\operatorname{plot}\left([f(x), T(x), S(x, 1), S(x, 2), S(x, 3)], x=-\frac{1}{2} . .3\right.$, color $=[$ red, blue, green $\left.\$ 3]\right)$

Computer Exploration

Chapter 2 Section 3, The Precise Definition of a Limit

Maple Preliminaries
To evaluate a limit type limit then press [esc]-[enter] to enter a limit template. Tab from position to position.
$>\lim _{x \rightarrow d} f(x)$

$$
\begin{equation*}
f(a) \tag{1}
\end{equation*}
$$

If no information is given, then Maple assumes that the function f is continuous at a.

Using a plot of the function

$$
\begin{align*}
& >f(x):=\frac{3 x^{2}-(7 x+1) \sqrt{x}+5}{x-1} \\
& \qquad f:=x \rightarrow \frac{3 x^{2}-(7 x+1) \sqrt{x}+5}{x-1} \tag{2}
\end{align*}
$$

near to $x_{0}=1$ our guess is that the limiting value of f is $L=-5$.
$>\operatorname{plot}(f(x), x=0 . .2)$

The following limit calculation confirms that this is the case.
$>\lim _{x \rightarrow 1} f(x)$

$$
-5
$$

Based upon the picture above we can make the following preliminary plot. Note that a horizontal line at $y=5$ has been added to the plot, and we have boxed the axes.
$>\operatorname{plot}([f(x),-5], x=0.5 . .1 .5, y=-5.2 . .-4.8$, axes $=$ boxed $)$

It appears that $\delta=0.3$ will do the job for $\epsilon=0.2$. See the following picture.
$>\operatorname{plot}([f(x),-5], x=1-0.3 . .1+0.3, y=-5-0.2 . .-5+0.2$, axes $=$ boxed $)$

>

