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Chapter 2

1. The speed (assumed constant) is v = (90 km/h)(1000 m/km) ( (3600 s/h) = 25 m/s. Thus, in 0.50 s, the car travels a distance d = vt = (25 m/s)(0.50 s) ( 13 m. 

2. (a) Using the fact that time = distance/velocity while the velocity is constant, we find
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(b) Using the fact that distance = vt while the velocity v is constant, we find
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(c) The graphs are shown below (with meters and seconds understood). The first consists of two (solid) line segments, the first having a slope of 1.22 and the second having a slope of 3.05. The slope of the dashed line represents the average velocity (in both graphs). The second graph also consists of two (solid) line segments, having the same slopes as before — the main difference (compared to the first graph) being that the stage involving higher-speed motion lasts much longer.

[image: image3.jpg]146-

73

256

73





3. Since the trip consists of two parts, let the displacements during first and second parts of the motion be x1 and x2, and the corresponding time intervals be t1 and t2, respectively. Now, because the problem is one-dimensional and both displacements are in the same direction, the total displacement is x = x1 + x2, and the total time for the trip is t = t1 + t2. Using the definition of average velocity given in Eq. 2-2, we have 
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To find the average speed, we note that during a time t if the velocity remains a positive constant, then the speed is equal to the magnitude of velocity, and the distance is equal to the magnitude of displacement, with 
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(a) During the first part of the motion, the displacement is x1 = 40 km and the time interval is


[image: image6.wmf]t

1

40

1

33

=

=

(

.

 km)

(30 km

/

h)

 h.


Similarly, during the second part the displacement is x2 = 40 km and the time interval is
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The total displacement is x = x1 + x2 = 40 km + 40 km = 80 km, and the total time elapsed is t = t1 + t2 = 2.00 h. Consequently, the average velocity is
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(b) In this case, the average speed is the same as the magnitude of the average velocity: 
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(c) The graph of the entire trip is shown below; it consists of two contiguous line segments, the first having a slope of 30 km/h and connecting the origin to (t1, x1) = 
[image: image10.wmf](1.33 h, 40 km)

 and the second having a slope of 60 km/h and connecting (t1, x1) to (t, x) = (2.00 h, 80 km). 

[image: image11.jpg]Ax (km) (2.0 h, 80 km)

At (h)





4. Average speed, as opposed to average velocity, relates to the total distance, as opposed to the net displacement. The distance D up the hill is, of course, the same as the distance down the hill, and since the speed is constant (during each stage of the motion) we have speed = D/t. Thus, the average speed is
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which, after canceling D and plugging in vup = 40 km/h and vdown = 60 km/h, yields 48 km/h for the average speed.

5. Using x = 3t – 4t2 + t3 with SI units understood is efficient (and is the approach we will use), but if we wished to make the units explicit we would write 
x = (3 m/s)t – (4 m/s2)t2 + (1 m/s3)t3.
We will quote our answers to one or two significant figures, and not try to follow the significant figure rules rigorously.

(a) Plugging in t = 1 s yields x = 3 – 4 + 1 = 0. 
(b) With t = 2 s we get x = 3(2) – 4(2)2+(2)3 = –2 m. 
(c) With t = 3 s we have x = 0 m.

(d) Plugging in t = 4 s gives x = 12 m. 
For later reference, we also note that the position at t = 0 is x = 0.

(e) The position at t = 0 is subtracted from the position at t = 4 s to find the displacement x = 12 m.

(f) The position at t = 2 s is subtracted from the position at t = 4 s to give the displacement x = 14 m. Eq. 2-2, then, leads to
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(g) The position of the object for the interval 0  t  4 is plotted below. The straight line drawn from the point at (t, x) = (2 s , –2 m) to (4 s, 12 m) would represent the average velocity, answer for part (f).
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 6. Huber’s speed is 

v0 = (200 m)/(6.509 s) =30.72 m/s = 110.6 km/h,

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat Huber by 19.0 km/h, his speed is v1 = (110.6 km/h + 19.0 km/h) = 129.6 km/h, or 36 m/s (1 km/h = 0.2778 m/s). Thus, using Eq. 2-2, the time through a distance of 200 m for Whittingham is
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7. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h, the total time that elapses before they crash is t = (60 km)/(60 km/h) = 1.0 h. During this time, the bird travels a distance of x = vt = (60 km/h)(1.0 h) = 60 km.

8. The amount of time it takes for each person to move a distance L with speed 
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(a) The rate of increase of the layer of people is 
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(b) The amount of time required to reach a depth of 
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9. Converting to seconds, the running times are t1 = 147.95 s and t2 = 148.15 s, respectively. If the runners were equally fast, then
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From this we obtain
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where we set L1  1000 m in the last step. Thus, if L1 and L2 are no different than about 1.4 m, then runner 1 is indeed faster than runner 2. However, if L1 is shorter than L2 by more than 1.4 m, then runner 2 would actually be faster.

10. Let 
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be the speed of the wind and 
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 be the speed of the car.

(a) Suppose during time interval 
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, the car moves in the same direction as the wind. Then the effective speed of the car is given by
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. On the other hand, for the return trip during time interval t2, the car moves in the opposite direction of the wind and the effective speed would be 
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Adding the two equations and dividing by two, we obtain 
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. Thus, method 1 gives the car’s speed 
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(b) If method 2 is used, the result would be
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The fractional difference is 
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11. The values used in the problem statement make it easy to see that the first part of the trip (at 100 km/h) takes 1 hour, and the second part (at 40 km/h) also takes 1 hour.  Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is 160 km.  Thus, a speed v = (160 km)/(1.25 h) = 128 km/h is needed.

12. (a) Let the fast and the slow cars be separated by a distance d at t = 0. If during the time interval 
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in which the slow car has moved a distance of 
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 to join the line of slow cars, then the shock wave would remain stationary. The condition implies a separation of
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(b) Let the initial separation at 
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 At a later time t, the slow and the fast cars have traveled 
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 and the fast car joins the line by moving a distance 
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we get  
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which in turn gives 
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 Since the rear of the slow-car pack has moved a distance of 
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downstream, the speed of the rear of the slow-car pack, or equivalently, the speed of the shock wave, is
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(c) Since 
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, the direction of the shock wave is downstream.

13. (a) Denoting the travel time and distance from San Antonio to Houston as T and D, respectively, the average speed is
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which should be rounded to 73 km/h.

(b) Using the fact that time = distance/speed while the speed is constant, we find
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which should be rounded to 68 km/h.

(c) The total distance traveled (2D) must not be confused with the net displacement (zero). We obtain for the two-way trip
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(d) Since the net displacement vanishes, the average velocity for the trip in its entirety is zero.

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the distance D (the intent is not to make the student go to an atlas to look it up); the student can just as easily arbitrarily set T instead of D, as will be clear in the following discussion. We briefly describe the graph (with kilometers-per-hour understood for the slopes): two contiguous line segments, the first having a slope of 55 and connecting the origin to (t1, x1) = (T/2, 55T/2) and the second having a slope of 90 and connecting (t1, x1) to (T, D) where D = (55 + 90)T/2. The average velocity, from the graphical point of view, is the slope of a line drawn from the origin to (T, D). The graph (not drawn to scale) is depicted below:
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14. Using the general property 
[image: image53.wmf]d

dx

bx

b

bx

exp(

)

exp(

)

=

, we write


[image: image54.wmf]v

dx

dt

d

t

dt

e

t

de

dt

t

t

=

=

F

H

G

I

K

J

×

+

×

F

H

G

I

K

J

-

-

(

)

(

)

19

19

.


If a concern develops about the appearance of an argument of the exponential (–t) apparently having units, then an explicit factor of 1/T where T = 1 second can be inserted and carried through the computation (which does not change our answer). The result of this differentiation is
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with t and v in SI units (s and m/s, respectively). We see that this function is zero when t = 1 s.  Now that we know when it stops, we find out where it stops by plugging our result t = 1 into the given function x = 16te–t with x in meters. Therefore, we find x = 5.9 m.

15. We use Eq. 2-4 to solve the problem.

(a) The velocity of the particle is
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Thus, at t = 1 s, the velocity is v = (–12 + (6)(1)) = –6 m/s.

(b) Since v  0, it is moving in the –x direction at t = 1 s.

(c) At t = 1 s, the speed is |v| = 6 m/s.

(d) For 0  t  2 s, |v| decreases until it vanishes. For 2  t  3 s, |v| increases from zero to the value it had in part (c). Then, |v| is larger than that value for t  3 s.

(e) Yes, since v smoothly changes from negative values (consider the t = 1 result) to positive (note that as t  + , we have v  + ). One can check that v = 0 when 
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(f) No. In fact, from v = –12 + 6t, we know that v  0 for t  2 s.

16. We use the functional notation x(t), v(t), and a(t) in this solution, where the latter two quantities are obtained by differentiation:


[image: image58.wmf]v

t

dx

t

dt

t

a

t

dv

t

dt

b

g

b

g

b

g

b

g

=

=

-

=

=

-

12

12

and


with SI units understood.

(a) From v(t) = 0 we find it is (momentarily) at rest at t = 0.

(b) We obtain x(0) = 4.0 m.

(c) and (d) Requiring x(t) = 0 in the expression x(t) = 4.0 – 6.0t2 leads to t = 0.82 s for the times when the particle can be found passing through the origin.

(e) We show both the asked-for graph (on the left) as well as the “shifted” graph that is relevant to part (f). In both cases, the time axis is given by –3  t  3 (SI units understood).
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(f) We arrived at the graph on the right (shown above) by adding 20t to the x(t) expression.

(g) Examining where the slopes of the graphs become zero, it is clear that the shift causes the v = 0 point to correspond to a larger value of x (the top of the second curve shown in part (e) is higher than that of the first).

17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and work with distances in centimeters and times in seconds.

(a) We plug into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 = 21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time interval 2.00  t  3.00 s is
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which yields vavg = 28.5 cm/s.

(b) The instantaneous velocity is 
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, which, at time t = 2.00 s, yields v = (4.5)(2.00)2 = 18.0 cm/s.

(c) At t = 3.00 s, the instantaneous velocity is v = (4.5)(3.00)2 = 40.5 cm/s.

(d) At t = 2.50 s, the instantaneous velocity is v = (4.5)(2.50)2 = 28.1 cm/s.

(e) Let tm stand for the moment when the particle is midway between x2 and x3 (that is, when the particle is at xm = (x2 + x3)/2 = 36 cm). Therefore,
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in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)2 = 30.3 cm/s.

(f) The answer to part (a) is given by the slope of the straight line between t = 2 and t = 3 in this x-vs-t plot. The answers to parts (b), (c), (d), and (e) correspond to the slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate points.
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18. (a) Taking derivatives of x(t) = 12t2 – 2t3 we obtain the velocity and the acceleration functions:

v(t) = 24t – 6t2   and   a(t) = 24 – 12t
with length in meters and time in seconds. Plugging in the value t = 3 yields 
[image: image64.wmf](3)54 m
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(b) Similarly, plugging in the value t = 3 yields v(3) = 18 m/s.
(c) For t = 3, a(3) = –12 m/s2.  
(d) At the maximum x, we must have v = 0; eliminating the t = 0 root, the velocity equation reveals t = 24/6 = 4 s for the time of maximum x.  Plugging t = 4 into the equation for x leads to x = 64 m for the largest x value reached by the particle.
(e) From (d), we see that the x reaches its maximum at t = 4.0 s.  

(f) A maximum v requires a = 0, which occurs when t = 24/12 = 2.0 s. This, inserted into the velocity equation, gives vmax = 24 m/s.
(g) From (f), we see that the maximum of v occurs at t = 24/12 = 2.0 s.
(h) In part (e), the particle was (momentarily) motionless at t = 4 s. The acceleration at that time is readily found to be 24 – 12(4) = –24 m/s2.
(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at t = 0 and t = 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part (a)).  Thus,

vavg = 
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 = 18 m/s.

19. We represent the initial direction of motion as the +x direction. The average acceleration over a time interval 
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Let v1 = +18 m/s at 
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and v2 = –30 m/s at t2 = 2.4 s. Using Eq. 2-7 we find
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The average acceleration has magnitude 20 m/s2 and is in the opposite direction to the particle’s initial velocity. This makes sense because the velocity of the particle is decreasing over the time interval.

20. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities by differentiating:
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with SI units understood. These expressions are used in the parts that follow.

(a) From 
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, we see that the only positive value of t for which the particle is (momentarily) stopped is 
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(b) From 0 = – 30t, we find a(0) = 0 (that is, it vanishes at t = 0).

(c) It is clear that a(t) = – 30t is negative for t > 0. 
(d) The acceleration a(t) = – 30t is positive for t < 0.

(e) The graphs are shown below. SI units are understood.
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21. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding our coordinate choices, the initial position of the man is taken as the origin and his direction of motion during 5 min  t  10 min is taken to be the positive x direction. We also use the fact that 
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 when the velocity is constant during a time interval 
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(a) The entire interval considered is t = 8 – 2 = 6 min, which is equivalent to 360 s, whereas the sub-interval in which he is moving is only 
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 His position at t = 2 min is x = 0 and his position at t = 8 min is 
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(b) The man is at rest at t = 2 min and has velocity v = +2.2 m/s at t = 8 min. Thus, keeping the answer to 3 significant figures,
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(c) Now, the entire interval considered is t = 9 – 3 = 6 min (360 s again), whereas the sub-interval in which he is moving is 
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). His position at 
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is x = 0 and his position at t = 9 min is
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. Therefore,
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(d) The man is at rest at t = 3 min and has velocity v = +2.2 m/s at t = 9 min. Consequently, aavg = 2.2/360 = 0.00611 m/s2 just as in part (b).
(e) The horizontal line near the bottom of this x-vs-t graph represents the man standing at x = 0 for 0  t < 300 s and the linearly rising line for 300  t  600 s represents his constant-velocity motion. The lines represent the answers to part (a) and (c) in the sense that their slopes yield those results.
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The graph of v-vs-t is not shown here, but would consist of two horizontal “steps” (one at v = 0 for 0  t < 300 s and the next at v = 2.2 m/s for 300  t  600 s). The indications of the average accelerations found in parts (b) and (d) would be dotted lines connecting the “steps” at the appropriate t values (the slopes of the dotted lines representing the values of aavg).

22. In this solution, we make use of the notation x(t) for the value of x at a particular t. The notations v(t) and a(t) have similar meanings.

(a) Since the unit of ct2 is that of length, the unit of c must be that of length/time2, or m/s2 in the SI system. 
(b) Since bt3 has a unit of length, b must have a unit of length/time3, or m/s3.

(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is zero. Since the velocity is given by v = dx/dt = 2ct – 3bt2, v = 0 occurs for t = 0 and for
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For t = 0, x = x0 = 0 and for t = 1.0 s, x = 1.0 m > x0. Since we seek the maximum, we reject the first root (t = 0) and accept the second (t = 1s).

(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and goes back to
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The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m.

(e) Its displacement is x = x2 – x1, where x1 = 0 and x2 = –80 m. Thus,
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The velocity is given by v = 2ct – 3bt2 = (6.0 m/s2)t – (6.0 m/s3)t2. 
(f) Plugging in t = 1 s, we obtain 
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(g) Similarly, 
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(h) 
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The acceleration is given by a = dv/dt = 2c – 6b = 6.0 m/s2 – (12.0 m/s3)t.
(j) Plugging in t = 1 s, we obtain
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(k) 
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(l) 
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23. Since the problem involves constant acceleration, the motion of the electron can be readily analyzed using the equations in Table 2-1:
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The acceleration can be found by solving Eq. (2-16). With 
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, x0 = 0 and x = 0.010 m, we find the average acceleration to be
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24. In this problem we are given the initial and final speeds, and the displacement, and are asked to find the acceleration. We use the constant-acceleration equation given in Eq. 2-16, v2 = vEQ \o(2,0) + 2a(x – x0).

(a) Given that 
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 the acceleration of the spores during the launch is 
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(b) During the speed-reduction stage, the acceleration is 
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The negative sign means that the spores are decelerating.

25. We separate the motion into two parts, and take the direction of motion to be positive.  In part 1, the vehicle accelerates from rest to its highest speed; we are given v0 = 0; v = 20 m/s and a = 2.0 m/s2. In part 2, the vehicle decelerates from its highest speed to a halt; we are given v0 = 20 m/s; v = 0 and a = –1.0 m/s2 (negative because the acceleration vector points opposite to the direction of motion).

(a) From Table 2-1, we find t1 (the duration of part 1) from v = v0 + at. In this way, 
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yields t1 = 10 s. We obtain the duration t2 of part 2 from the same      equation. Thus, 0 = 20 + (–1.0)t2 leads to t2 = 20 s, and the total is t = t1 + t2 = 30 s.
(b) For part 1, taking x0 = 0, we use the equation v2 = vEQ \o(2,0) + 2a(x – x0) from Table 2-1 and find
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This position is then the initial position for part 2, so that when the same equation is     used in part 2 we obtain
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Thus, the final position is x = 300 m. That this is also the total distance traveled should be evident (the vehicle did not "backtrack" or reverse its direction of motion).

26. The constant-acceleration condition permits the use of Table 2-1.

(a) Setting v = 0 and x0 = 0 in 
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, we find
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Since the muon is slowing, the initial velocity and the acceleration must have opposite signs.

(b) Below are the time plots of the position x and velocity v of the muon from the moment it enters the field to the time it stops. The computation in part (a) made no reference to t, so that other equations from Table 2-1 (such as 
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27. We use v = v0 + at, with t = 0 as the instant when the velocity equals +9.6 m/s.

(a) Since we wish to calculate the velocity for a time before t = 0, we set t = –2.5 s. Thus, Eq. 2-11 gives
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(b) Now, t = +2.5 s and we find
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28. We take +x in the direction of motion, so v0 = +24.6 m/s and a = – 4.92 m/s2. We also take x0 = 0.

(a) The time to come to a halt is found using Eq. 2-11:
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(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq. 2-16 (since it does not depend on our answer to part (a)).
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(c) Using these results, we plot 
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 (the x graph, shown next, on the left) and v0 + at (the v graph, on the right) over 0  t  5 s, with SI units understood.
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29. We assume the periods of acceleration (duration t1) and deceleration (duration t2) are periods of constant a so that Table 2-1 can be used. Taking the direction of motion to be +x then a1 = +1.22 m/s2 and a2 = –1.22 m/s2. We use SI units so the velocity at t = t1 is v = 305/60 = 5.08 m/s.

(a) We denote x as the distance moved during t1, and use Eq. 2-16:
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(b) Using Eq. 2-11, we have
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The deceleration time t2 turns out to be the same so that t1 + t2 = 8.33 s. The distances traveled during t1 and t2 are the same so that they total to 2(10.59 m) = 21.18 m. This implies that for a distance of 190 m – 21.18 m = 168.82 m, the elevator is traveling at constant velocity. This time of constant velocity motion is
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Therefore, the total time is 8.33 s + 33.21 s  41.5 s.

30. We choose the positive direction to be that of the initial velocity of the car (implying that a < 0 since it is slowing down). We assume the acceleration is constant and use Table 2-1.

(a) Substituting v0 = 137 km/h = 38.1 m/s, v = 90 km/h = 25 m/s, and a = –5.2 m/s2 into v = v0 + at, we obtain
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(b) We take the car to be at x = 0 when the brakes are applied (at time t = 0). Thus, the coordinate of the car as a function of time is given by
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in SI units. This function is plotted from t = 0 to t = 2.5 s on the graph to the right. We have not shown the v-vs-t graph here; it is a descending straight line from v0 to v.
31. The constant acceleration stated in the problem permits the use of the equations in Table 2-1.

(a) We solve v = v0 + at for the time:
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which is equivalent to 1.2 months.

(b) We evaluate 
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 with x0 = 0. The result is


[image: image131.wmf](

)

26213

1

9.8 m/s(3.110s)4.610 m .

2

x

=´=´


Note that in solving parts (a) and (b), we did not use the equation
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. This equation can be employed for consistency check. The final velocity based on this equation is 
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which is what was given in the problem statement. So we know the problems have been solved correctly.

32. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7).
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In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s2 as follows:
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33. The problem statement (see part (a)) indicates that a = constant, which allows us to use Table 2-1.

(a) We take x0 = 0, and solve x = v0t + 
[image: image136.wmf]1
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at2 (Eq. 2-15) for the acceleration: a = 2(x – v0t)/t2. Substituting x = 24.0 m, v0 = 56.0 km/h = 15.55 m/s and t = 2.00 s, we find
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or 
[image: image138.wmf]2

||3.56 m/s

a

=

. The negative sign indicates that the acceleration is opposite to the direction of motion of the car. The car is slowing down.

(b) We evaluate v = v0 + at as follows:
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which can also be converted to
[image: image140.wmf]30.3 km/h.


34. Let d be the 220 m distance between the cars at t = 0, and v1 be the 20 km/h = 50/9 m/s speed (corresponding to a passing point of x1 = 44.5 m) and v2 be the 40 km/h =100/9 m/s speed (corresponding to a passing point of x2 = 76.6 m) of the red car.  We have two equations (based on Eq. 2-17):

d – x1 = vo t1  +  EQ \f(1,2) a t12  

where t1 = x1 ( v1
d – x2 = vo t2  +  EQ \f(1,2) a t22  

where t2 = x2  ( v2
We simultaneously solve these equations and obtain the following results:

(a) The initial velocity of the green car is vo =  13.9 m/s. or roughly  50 km/h (the negative sign means that it’s along the –x direction).

(b) The corresponding acceleration of the car is a =  2.0 m/s2 (the negative sign means that it’s along the –x direction).

35. The positions of the cars as a function of time are given by
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where we have substituted the velocity and not the speed for the green car. The two cars pass each other at 
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which can be solved to give
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36. (a) Equation 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2: 

 x1 = vo1 t1 +  EQ \f(1,2) a1 t12     where a1 = 2.25 m/s2 and x1 =  EQ \f(900,4) m
    
 x2 = v2 t2   EQ \f(1,2) a2 t22      where a2 = 0.75 m/s2 and x2 =  EQ \f(3(900),4) m
In addition, vo1 = v2 = 0. Solving these equations for the times and adding the results gives t = t1 + t2 = 56.6 s.

(b) Equation 2-16 is used for part 1 of the trip:
v2 = (vo1)2 + 2a1x1 = 0 + 2(2.25)
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= 1013 m2/s2
which leads to v = 31.8 m/s for the maximum speed.

37. (a) From the figure, we see that x0 = –2.0 m. From Table 2-1, we can apply 

x – x0 = v0t + 
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with t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two unknowns, v0 and a:
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Solving these simultaneous equations yields the results v0 = 0 and a = 4.0 m/s2. 
(b) The fact that the answer is positive tells us that the acceleration vector points in the +x direction.
38. We assume the train accelerates from rest (
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 at the next station. The velocity at the midpoint is v1, which occurs at x1 = 806/2 = 403m.

(a) Equation 2-16 leads to
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(b) The time t1 for the accelerating stage is (using Eq. 2-15)
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Since the time interval for the decelerating stage turns out to be the same, we double this result and obtain t = 49.1 s for the travel time between stations.

(c) With a “dead time” of 20 s, we have T = t + 20 = 69.1 s for the total time between start-ups. Thus, Eq. 2-2 gives
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(d) The graphs for x, v and a as a function of t are shown below. The third graph, a(t), consists of three horizontal “steps” — one at 1.34 m/s2  during 0 < t < 24.53 s, and the next at –1.34 m/s2 during 24.53 s < t < 49.1 s and the last at zero during the “dead time” 49.1 s < t < 69.1 s). 
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39. (a) We note that vA = 12/6 = 2 m/s (with two significant figures understood).  Therefore, with an initial x value of 20 m, car A will be at x = 28 m when t = 4 s.  This must be the value of x for car B at that time; we use Eq. 2-15:
28 m = (12 m/s)t +  EQ \f(1,2) aB t2    where t = 4.0 s .
This yields aB = – 2.5 m/s2.
(b) The question is: using the value obtained for aB in part (a), are there other values of t (besides t = 4 s) such that xA = xB ? The requirement is
20 + 2t = 12t +  EQ \f(1,2) aB t2
where aB = –5/2. There are two distinct roots unless the discriminant  EQ \r(102 - 2(-20)(aB))  is zero. In our case, it is zero – which means there is only one root.  The cars are side by side only once at t = 4 s. 
(c) A sketch is shown below. It consists of a straight line (xA) tangent to a parabola (xB) at t = 4.
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(d) We only care about real roots, which means 102  2(20)(aB) ( 0.  If  |aB| > 5/2 then there are no (real) solutions to the equation; the cars are never side by side.
(e) Here we have 102  2(20)(aB) > 0  (  two real roots.  The cars are side by side at two different times.

40. We take the direction of motion as +x, so a = –5.18 m/s2, and we use SI units, so v0 = 55(1000/3600) = 15.28 m/s.

(a) The velocity is constant during the reaction time T, so the distance traveled during it is 
dr = v0T – (15.28 m/s) (0.75 s) = 11.46 m.
We use Eq. 2-16 (with v = 0) to find the distance db traveled during braking:
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which yields db = 22.53 m. Thus, the total distance is dr + db = 34.0 m, which means that the driver is able to stop in time. And if the driver were to continue at v0, the car would enter the intersection in t = (40 m)/(15.28 m/s) = 2.6 s, which is (barely) enough time to enter the intersection before the light turns, which many people would consider an acceptable situation.

(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than the distance to the intersection, so the driver cannot stop without the front end of the car being a couple of meters into the intersection. And the time to reach it at constant speed is 32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The driver is caught between a rock and a hard place.
41. The displacement (x) for each train is the “area” in the graph (since the displacement is the integral of the velocity).  Each area is triangular, and the area of a triangle is 1/2( base) × (height). Thus, the (absolute value of the) displacement for one train (1/2)(40 m/s)(5 s) = 100 m, and that of the other train is (1/2)(30 m/s)(4 s) = 60 m.  The initial “gap” between the trains was 200 m, and according to our displacement computations, the gap has narrowed by 160 m. Thus, the answer is 200 – 160 = 40 m.

42. (a) Note that 110 km/h is equivalent to 30.56 m/s. During a two-second interval, you travel 61.11 m. The decelerating police car travels (using Eq. 2-15) 51.11 m.  In light of the fact that the initial “gap” between cars was 25 m, this means the gap has narrowed by 10.0 m – that is, to a distance of 15.0 m between cars.
(b) First, we add 0.4 s to the considerations of part (a).  During a 2.4 s interval, you travel 73.33 m.  The decelerating police car travels (using Eq. 2-15) 58.93 m during that time.  The initial distance between cars of 25 m has therefore narrowed by 14.4 m.  Thus, at the start of your braking (call it t0) the gap between the cars is 10.6 m.  The speed of the police car at t0 is 30.56 – 5(2.4) = 18.56 m/s. Collision occurs at time t when xyou = xpolice (we choose coordinates such that your position is x = 0 and the police car’s position is x = 10.6 m at t0).  Eq. 2-15 becomes, for each car:
    


 xpolice – 10.6 = 18.56(t  t0) –  EQ \f(1,2) (5)(t  t0)2

    


        xyou = 30.56(t  t0) –  EQ \f(1,2) (5)(t  t0)2  .
Subtracting equations, we find 

10.6 = (30.56 – 18.56)(t  t0)  (  0.883 s = t  t0.

At that time your speed is 30.56 + a(t  t0) = 30.56 – 5(0.883) ( 26 m/s (or 94 km/h).  
43. In this solution we elect to wait until the last step to convert to SI units. Constant acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and denote the train’s initial velocity as vt and the locomotive’s velocity as 
[image: image162.wmf]v
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 (which is also the final velocity of the train, if the rear-end collision is barely avoided). We note that the distance x consists of the original gap between them, D, as well as the forward distance traveled during this time by the locomotive
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We now use Eq. 2-11 to eliminate time from the equation. Thus,
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which leads to


[image: image166.wmf]a

v

v

v

v

v

D

D

v

v

t

t

t

=

+

-

F

H

G

I

K

J

-

F

H

G

I

K

J

=

-

-

l

l

l

l

2

1

2

2

 

b

g

.


Hence,


[image: image167.wmf]a

=

-

-

F

H

G

I

K

J

=

-

1

2

0

676

29

161

12888

2

2

(

.

 km)

km

h

km

h

 km

/

h


which we convert as follows:
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so that its magnitude is |a| = 0.994 m/s2. A graph is shown here for the case where a collision is just avoided (x along the vertical axis is in meters and t along the horizontal axis is in seconds). The top (straight) line shows the motion of the locomotive and the bottom curve shows the motion of the passenger train.

The other case (where the collision is not quite avoided) would be similar except that the slope of the bottom curve would be greater than that of the top line at the point where they meet.

44. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 (with y replacing x) because this is constant acceleration motion. The ground level is taken to correspond to the origin of the y axis.

(a) Using 
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, with y = 0.544 m and t = 0.200 s, we find
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(b) The velocity at y = 0.544 m is
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(c) Using 
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 (with different values for y and v than before), we solve for the value of y corresponding to maximum height (where v = 0).
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Thus, the armadillo goes 0.698 – 0.544 = 0.154 m higher.

45. In this problem a ball is being thrown vertically upward. Its subsequent motion is under the influence of gravity. We neglect air resistance for the duration of the motion (between “launching” and “landing”), so a = –g = –9.8 m/s2 (we take downward to be the –y direction). We use the equations in Table 2-1 (with y replacing x) because this is a = constant motion:
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We set y0 = 0. Upon reaching the maximum height y, the speed of the ball is momentarily zero (v = 0). Therefore, we can relate its initial speed v0 to y via the equation
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The time it takes for the ball to reach maximum height is given by 
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, or 
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. Therefore, for the entire trip (from the time it leaves the ground until the time it returns to the ground), the total flight time is 
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(a) At the highest point v = 0 and 
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 Since y = 50 m we find
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(b) Using the result from (a) for v0, we find the total flight time to be
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(c) SI units are understood in the x and v graphs shown. The acceleration graph is a horizontal line at –9.8 m/s2.
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In calculating the total flight time of the ball, we could have used Eq. 2-15. At 
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, the ball returns to its original position (
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46. Neglect of air resistance justifies setting a = –g = –9.8 m/s2 (where down is our –y direction) for the duration of the fall. This is constant acceleration motion, and we may use Table 2-1 (with y replacing x).

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), we have
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Its magnitude is therefore 183 m/s.

(b) No, but it is hard to make a convincing case without more analysis. We estimate the mass of a raindrop to be about a gram or less, so that its mass and speed (from part (a)) would be less than that of a typical bullet, which is good news. But the fact that one is dealing with many raindrops leads us to suspect that this scenario poses an unhealthy situation. If we factor in air resistance, the final speed is smaller, of course, and we return to the relatively healthy situation with which we are familiar.

47. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1 (with y replacing x).

(a) Starting the clock at the moment the wrench is dropped (v0 = 0), then 
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so that it fell through a height of 29.4 m.

(b) Solving v = v0 – gt for time, we find:
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(c) SI units are used in the graphs, and the initial position is taken as the coordinate origin. The acceleration graph is a horizontal line at –9.8 m/s2.
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As the wrench falls, with 
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ag

=-<

, its speed increases but its velocity becomes more negative.

48. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the fall. This is constant acceleration motion, which justifies the use of Table 2-1 (with y replacing x).

(a) Noting that y = y – y0 = –30 m, we apply Eq. 2-15 and the quadratic formula (Appendix E) to compute t:
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which (with v0 = –12 m/s since it is downward) leads, upon choosing the positive root (so that t > 0), to the result:
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(b) Enough information is now known that any of the equations in Table 2-1 can be used to obtain v; however, the one equation that does not use our result from part (a) is Eq. 2-16:
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where the positive root has been chosen in order to give speed (which is the magnitude of the velocity vector).
49. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 (with y replacing x) because this is constant acceleration motion. We are placing the coordinate origin on the ground. We note that the initial velocity of the package is the same as the velocity of the balloon, v0 = +12 m/s, and that its initial coordinate is y0 = +80 m.

(a) We solve 
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 for time, with y = 0, using the quadratic formula (choosing the positive root to yield a positive value for t).
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(b) If we wish to avoid using the result from part (a), we could use Eq. 2-16, but if that is not a concern, then a variety of formulas from Table 2-1 can be used. For instance, Eq. 2-11 leads to 
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Its final speed is about 41 m/s.

50. The y coordinate of Apple 1 obeys y – yo1 = –  EQ \f(1,2) g t2 where y = 0 when t = 2.0 s.  This allows us to solve for yo1, and we find yo1 = 19.6 m.  
The graph for the coordinate of Apple 2 (which is thrown apparently at t = 1.0 s with velocity v2) is

y – yo2 = v2(t – 1.0) –  EQ \f(1,2) g (t – 1.0)2
where yo2 = yo1 = 19.6 m and where y = 0 when t = 2.25 s. Thus, we obtain |v2| = 9.6 m/s, approximately.
51. (a) With upward chosen as the +y direction, we use Eq. 2-11 to find the initial velocity of the package: 
v = vo + at  (  0 = vo – (9.8 m/s2)(2.0 s)
which leads to vo = 19.6 m/s. Now we use Eq. 2-15:
y = (19.6 m/s)(2.0 s) +  EQ \f(1,2) (–9.8 m/s2)(2.0 s)2 ( 20 m .
We note that the “2.0 s” in this second computation refers to the time interval 2 < t < 4 in the graph (whereas the “2.0 s” in the first computation referred to the 0 < t < 2 time interval shown in the graph).
(b) In our computation for part (b), the time interval (“6.0 s”) refers to the 2 < t < 8 portion of the graph:
y = (19.6 m/s)(6.0 s) +  EQ \f(1,2) (–9.8 m/s2)(6.0 s)2 ( –59 m ,

or 
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52. The full extent of the bolt’s fall is given by 

y – y0 = – EQ \f(1,2) g t2
where y – y0 = –90 m (if upward is chosen as the positive y direction). Thus the time for the full fall is found to be t = 4.29 s. The first 80% of its free-fall distance is given by –72 = –g 2/2, which requires time  = 3.83 s.

(a) Thus, the final 20% of its fall takes t –  = 0.45 s.
(b) We can find that speed using v = g.  Therefore, |v| = 38 m/s, approximately.
(c) Similarly, vfinal = g t  (  |vfinal| = 42 m/s.

53. The speed of the boat is constant, given by vb = d/t. Here, d is the distance of the boat from the bridge when the key is dropped (12 m) and t is the time the key takes in falling. To calculate t, we put the origin of the coordinate system at the point where the key is dropped and take the y axis to be positive in the downward direction. Taking the time to be zero at the instant the key is dropped, we compute the time t when y = 45 m. Since the initial velocity of the key is zero, the coordinate of the key is given by 
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Therefore, the speed of the boat is
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54. (a) We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Eq. 2-15 (with y replacing x) because this is constant acceleration motion. We use primed variables (except t) with the first stone, which has zero initial velocity, and unprimed variables with the second stone (with initial downward velocity –v0, so that v0 is being used for the initial speed). SI units are used throughout.
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Since the problem indicates y’ = y = –43.9 m, we solve the first equation for t (finding t = 2.99 s) and use this result to solve the second equation for the initial speed of the second stone:
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which leads to v0 = 12.3 m/s.

(b) The velocity of the stones are given by 
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The plot is shown below:
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55. During contact with the ground its average acceleration is given by
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where v is the change in its velocity during contact with the ground and 
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is the duration of contact. Thus, we must first find the velocity of the ball just before it hits the ground (y = 0). 

(a) Now, to find the velocity just before contact, we take t = 0 to be when it is dropped. Using Eq. (2-16) with 
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where the negative sign is chosen since the ball is traveling downward at the moment of contact. Consequently, the average acceleration during contact with the ground is
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(b) The fact that the result is positive indicates that this acceleration vector points upward. In a later chapter, this will be directly related to the magnitude and direction of the force exerted by the ground on the ball during the collision.

56. We use Eq. 2-16, 

vB2 = vA2 + 2a(yB – yA),

with a = –9.8 m/s2, yB – yA = 0.40 m, and vB =  EQ \f(1,3) vA. It is then straightforward to solve: vA = 3.0 m/s, approximately.

57. The average acceleration during contact with the floor is aavg = (v2 – v1) / t, where v1 is its velocity just before striking the floor, v2 is its velocity just as it leaves the floor, and t is the duration of contact with the floor (12  10–3 s). 
(a) Taking the y axis to be positively upward and placing the origin at the point where the ball is dropped, we first find the velocity just before striking the floor, using 
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. With v0 = 0 and y = – 4.00 m, the result is
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where the negative root is chosen because the ball is traveling downward. To find the velocity just after hitting the floor (as it ascends without air friction to a height of 2.00 m), we use 
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 with v = 0, y = –2.00 m (it ends up two meters below its initial drop height), and y0 = – 4.00 m. Therefore,
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Consequently, the average acceleration is


[image: image218.wmf]32

21

avg

3

6.26m/s(8.85m/s)

1.2610m/s.

12.010s

vv

a

t

-

-

--

===´

D´


(b) The positive nature of the result indicates that the acceleration vector points upward. In a later chapter, this will be directly related to the magnitude and direction of the force exerted by the ground on the ball during the collision.
58. We choose down as the +y direction and set the coordinate origin at the point where it was dropped (which is when we start the clock). We denote the 1.00 s duration mentioned in the problem as t – t' where t is the value of time when it lands and t' is one second prior to that. The corresponding distance is y – y' = 0.50h, where y denotes the location of the ground. In these terms, y is the same as h, so we have h –y' = 0.50h or 0.50h = y' .

(a) We find t' and t from Eq. 2-15 (with v0 = 0):
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Plugging in y = h and y' = 0.50h, and dividing these two equations, we obtain
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Letting t' = t – 1.00 (SI units understood) and cross-multiplying, we find
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which yields t = 3.41 s.

(b) Plugging this result into 
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 we find h = 57 m.

(c) In our approach, we did not use the quadratic formula, but we did “choose a root” when we assumed (in the last calculation in part (a)) that 
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 = +0.707 instead of –0.707. If we had instead let 
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 = –0.707 then our answer for t would have been roughly 0.6 s, which would imply that t' = t – 1 would equal a negative number (indicating a time before it was dropped), which certainly does not fit with the physical situation described in the problem.

59. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 (with y replacing x) because this is constant acceleration motion. The ground level is taken to correspond to the origin of the y-axis. 
(a) The time drop 1 leaves the nozzle is taken as t = 0 and its time of landing on the floor t1 can be computed from Eq. 2-15, with v0 = 0 and y1 = –2.00 m.
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At that moment, the fourth drop begins to fall, and from the regularity of the dripping we conclude that drop 2 leaves the nozzle at t = 0.639/3 = 0.213 s and drop 3 leaves the nozzle at t = 2(0.213 s) = 0.426 s.  Therefore, the time in free fall (up to the moment drop 1 lands) for drop 2 is t2 = t1 – 0.213 s = 0.426 s. Its position at the moment drop 1 strikes the floor is
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or about 89 cm below the nozzle.

(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is t3 = t1 –0.426 s = 0.213 s. Its position at the moment drop 1 strikes the floor is
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or about 22 cm below the nozzle. 
60. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum height (where the speed is momentarily zero)
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so that v0 = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the tower (taking y0 = 0 at the ground level)
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Thus, we obtain y = 26 m.
61. We choose down as the +y direction and place the coordinate origin at the top of the building (which has height H). During its fall, the ball passes (with velocity v1) the top of the window (which is at y1) at time t1, and passes the bottom (which is at y2) at time t2. We are told y2 – y1 = 1.20 m and t2 – t1 = 0.125 s. Using Eq. 2-15 we have
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which immediately yields
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From this, Eq. 2-16 (with v0 = 0) reveals the value of y1:
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It reaches the ground (y3 = H) at t3. Because of the symmetry expressed in the problem (“upward flight is a reverse of the fall’’) we know that t3 – t2 = 2.00/2 = 1.00 s. And this means t3 – t1 = 1.00 s + 0.125 s = 1.125 s. Now Eq. 2-15 produces
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which yields y3 = H = 20.4 m.

62. The height reached by the player is y = 0.76 m (where we have taken the origin of the y axis at the floor and +y to be upward).

(a) The initial velocity v0 of the player is
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This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y1 = 0.76 m – 0.15 m = 0.61 m, his speed v1 satisfies 
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, which yields
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The time t1 that the player spends ascending in the top y1 = 0.15 m of the jump can now be found from Eq. 2-17:
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which means that the total time spent in that top 15 cm (both ascending and descending) is 2(0.175 s) = 0.35 s = 350 ms.

(b) The time t2 when the player reaches a height of 0.15 m is found from Eq. 2-15:


[image: image239.wmf]

 EMBED Equation  [image: image240.wmf]222

02222

11

0.15 m(3.86m/s)(9.8m/s) ,

22

vtgttt

=-=-


which yields (using the quadratic formula, taking the smaller of the two positive roots) t2 = 0.041 s = 41 ms, which implies that the total time spent in that bottom 15 cm (both ascending and descending) is 2(41 ms) = 82 ms.

63. The time t the pot spends passing in front of the window of length L = 2.0 m is 0.25 s each way. We use v for its velocity as it passes the top of the window (going up). Then, with a = –g = –9.8 m/s2 (taking down to be the –y direction), Eq. 2-18 yields
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The distance H the pot goes above the top of the window is therefore (using Eq. 2-16 with the final velocity being zero to indicate the highest point)
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64. The graph shows y = 25 m to be the highest point (where the speed momentarily vanishes). The neglect of “air friction” (or whatever passes for that on the distant planet) is certainly reasonable due to the symmetry of the graph.

(a) To find the acceleration due to gravity gp on that planet, we use Eq. 2-15 (with +y up)
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so that gp = 8.0 m/s2.

(b) That same (max) point on the graph can be used to find the initial velocity.
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Therefore, v0 = 20 m/s.

65. The key idea here is that the speed of the head (and the torso as well) at any given time can be calculated by finding the area on the graph of the head’s acceleration versus time, as shown in Eq. 2-26:
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(a) From Fig. 2.14a, we see that the head begins to accelerate from rest (v0 = 0) at t0 = 110 ms and reaches a maximum value of 90 m/s2 at t1 = 160 ms. The area of this region is
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which is equal to v1, the speed at t1. 

(b) To compute the speed of the torso at t1=160 ms, we divide the area into 4 regions: From 0 to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the shape of a triangle with area 
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From 100 to 120 ms, region C has the shape of a rectangle with area 
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From 110 to 160 ms, region D has the shape of a trapezoid with area
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Substituting these values into Eq. 2-26, with v0 = 0 then gives
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66. The key idea here is that the position of an object at any given time can be calculated by finding the area on the graph of the object’s velocity versus time, as shown in Eq. 2-25:
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(a) To compute the position of the fist at t = 50 ms, we divide the area in Fig. 2-34 into two regions. From 0 to 10 ms, region A has the shape of a triangle with area 
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From 10 to 50 ms, region B has the shape of a trapezoid with area 
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Substituting these values into Eq. 2-25 with x0 = 0 then gives
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(b) The speed of the fist reaches a maximum at t1 = 120 ms. From 50 to 90 ms, region C has the shape of a trapezoid with area 
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From 90 to 120 ms, region D has the shape of a trapezoid with area 


[image: image258.wmf]D

1

area = (0.030 s) (5 + 7.5) m/s = 0.19 m.

2


Substituting these values into Eq. 2-25, with x0 = 0 then gives
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67. The problem is solved using Eq. 2-26: 
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To compute the speed of the unhelmeted, bare head at t1 = 7.0 ms, we divide the area under the a vs. t graph into 4 regions: From 0 to 2 ms, region A has the shape of a triangle with area
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From 2 ms to 4 ms, region B has the shape of a trapezoid with area 
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From 4 to 6 ms, region C has the shape of a trapezoid with area 
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From 6 to 7 ms, region D has the shape of a triangle with area
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Substituting these values into Eq. 2-26, with v0=0 then gives
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Carrying out similar calculations for the helmeted head, we have the following results: From 0 to 3 ms, region A has the shape of a triangle with area


[image: image267.wmf]2

A

1

area = (0.0030 s) (40 m/s) = 0.060 m/s.

2


From 3 ms to 4 ms, region B has the shape of a rectangle with area 


[image: image268.wmf]2

B

area(0.0010 s) (40 m/s)0.040 m/s.

==


From 4 to 6 ms, region C has the shape of a trapezoid with area 
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From 6 to 7 ms, region D has the shape of a triangle with area
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Substituting these values into Eq. 2-26, with v0 = 0 then gives
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Thus, the difference in the speed is
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68. This problem can be solved by noting that velocity can be determined by the graphical integration of acceleration versus time. The speed of the tongue of the salamander is simply equal to the area under the acceleration curve:
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69. Since 
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, which corresponds to the area under the v vs t graph. Dividing the total area A into rectangular (baseheight) and triangular 
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with SI units understood. In this way, we obtain x = 100 m.

70. To solve this problem, we note that velocity is equal to the time derivative of a position function, as well as the time integral of an acceleration function, with the integration constant being the initial velocity. Thus, the velocity of particle 1 can be written as 
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Similarly, the velocity of particle 2 is 
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The condition that 
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which can be solved to give (taking positive root) 
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 Thus, the velocity at this time is 
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71. (a) The derivative (with respect to time) of the given expression for x yields the “velocity” of the spot:
v(t) = 9 –  EQ \f(9,4) t2
with 3 significant figures understood. It is easy to see that v = 0 when t = 2.00 s.
(b) At t = 2 s, x = 9(2) – ¾(2)3 = 12. Thus, the location of the spot when v = 0 is 12.0 cm from left edge of screen.

(c) The derivative of the velocity is a = –  EQ \f(9,2) t, which gives an acceleration of 
[image: image284.wmf]2
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 (negative sign indicating leftward) when the spot is 12 cm from the left edge of screen.
(d) Since v > 0 for times less than t = 2 s, then the spot had been moving rightward.
(e) As implied by our answer to part (c), it moves leftward for times immediately after t = 2 s.  In fact, the expression found in part (a) guarantees that for all t > 2, v < 0 (that is, until the clock is “reset” by reaching an edge).
(f) As the discussion in part (e) shows, the edge that it reaches at some t > 2 s cannot be the right edge; it is the left edge (x = 0). Solving the expression given in the problem statement (with x = 0) for positive t yields the answer: the spot reaches the left edge at t =  EQ \r(12) s ( 3.46 s.
72. We adopt the convention frequently used in the text: that "up" is the positive y direction.
(a) At the highest point in the trajectory v = 0. Thus, with t = 1.60 s, the equation

v = v0 – gt yields v0 = 15.7 m/s.

(b) One equation that is not dependent on our result from part (a) is y – y0 = vt +  EQ \f (1,2)gt2; this readily gives ymax – y0 = 12.5 m for the highest ("max") point measured relative to where it started (the top of the building).

(c) Now we use our result from part (a) and plug into y y0 = v0t +  EQ \f (1,2)gt2 with t = 6.00 s and y = 0 (the ground level). Thus, we have

0 – y0 = (15.68 m/s)(6.00 s) –  EQ \f (1,2) (9.8 m/s2)(6.00 s)2.

Therefore, y0 (the height of the building) is equal to 82.3 m.
73. We denote the required time as t, assuming the light turns green when the clock reads zero. By this time, the distances traveled by the two vehicles must be the same.

(a) Denoting the acceleration of the automobile as a and the (constant) speed of the truck as v then
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which leads to
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Therefore,
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(b) The speed of the car at that moment is
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74. If the plane (with velocity v) maintains its present course, and if the terrain continues its upward slope of 4.3°, then the plane will strike the ground after traveling
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This corresponds to a time of flight found from Eq. 2-2 (with v = vavg since it is constant)
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This, then, estimates the time available to the pilot to make his correction.

75. We denote tr as the reaction time and tb as the braking time. The motion during tr is of the constant-velocity (call it v0) type. Then the position of the car is given by
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where v0 is the initial velocity and a is the acceleration (which we expect to be negative-valued since we are taking the velocity in the positive direction and we know the car is decelerating). After the brakes are applied the velocity of the car is given by v = v0 + atb. Using this equation, with v = 0, we eliminate tb from the first equation and obtain
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We write this equation for each of the initial velocities:
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Solving these equations simultaneously for tr and a we get
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and
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(a) Substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m and v02 = 48.3 km/h = 13.4 m/s, we find
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(b) Similarly, substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m, and v02 = 48.3 km/h = 13.4 m/s gives
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The magnitude of the deceleration is therefore 6.2 m/s2. Although rounded-off values are displayed in the above substitutions, what we have input into our calculators are the “exact” values (such as 
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76. (a) A constant velocity is equal to the ratio of displacement to elapsed time. Thus, for the vehicle to be traveling at a constant speed 
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(b) The time required for the car to accelerate from rest to a cruising speed 
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 The car then moves at a constant speed 
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 to reach intersection 2, and the time elapsed is 
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. Thus, the time delay at intersection 2 should be set to
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77. Since the problem involves constant acceleration, the motion of the rod can be readily analyzed using the equations in Table 2-1. We take +x in the direction of motion, so
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and a > 0. The location where it starts from rest (v0 = 0) is taken to be x0 = 0.

(a) Using Eq. 2-7, we find the average acceleration to be
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(b) Assuming constant acceleration 
[image: image312.wmf]2

avg

3.09m/s

aa

==

, the total distance traveled during the 5.4-s time interval is 
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(c) Using Eq. 2-15, the time required to travel a distance of x = 250 m is:
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Note that the displacement of the rod as a function of time can be written as 
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. Also we could have chosen Eq. 2-17 to solve for (b):
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78. We take the moment of applying brakes to be t = 0. The deceleration is constant so that Table 2-1 can be used. Our primed variables (such as
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) refer to one train (moving in the +x direction and located at the origin when t = 0) and unprimed variables refer to the other (moving in the –x direction and located at x0 = +950 m when t = 0). We note that the acceleration vector of the unprimed train points in the positive direction, even though the train is slowing down; its initial velocity is v0 = –144 km/h = –40 m/s. Since the primed train has the lower initial speed, it should stop sooner than the other train would (were it not for the collision). Using Eq 2-16, it should stop (meaning 
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The speed of the other train, when it reaches that location, is
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using Eq 2-16 again. Specifically, its velocity at that moment would be –10 m/s since it is still traveling in the –x direction when it crashes. If the computation of v had failed (meaning that a negative number would have been inside the square root) then we would have looked at the possibility that there was no collision and examined how far apart they finally were. A concern that can be brought up is whether the primed train collides before it comes to rest; this can be studied by computing the time it stops (Eq. 2-11 yields t = 20 s) and seeing where the unprimed train is at that moment (Eq. 2-18 yields x = 350 m, still a good distance away from contact).

79. The y coordinate of Piton 1 obeys y – y01 = –  EQ \f(1,2) g t2 where y = 0 when t = 3.0 s. This allows us to solve for yo1, and we find y01 = 44.1 m. The graph for the coordinate of Piton 2 (which is thrown apparently at t = 1.0 s with velocity v1) is 
y – y02 = v1(t–1.0) –  EQ \f(1,2) g (t – 1.0)2
where y02 = y01 + 10 = 54.1 m and where (again) y = 0 when t = 3.0 s.  Thus we obtain |v1| = 17 m/s, approximately.

80. We take +x in the direction of motion. We use subscripts 1 and 2 for the data. Thus, v1 = +30 m/s, v2 = +50 m/s, and x2 – x1 = +160 m.

(a) Using these subscripts, Eq. 2-16 leads to
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(b) We find the time interval corresponding to the displacement x2 – x1 using Eq. 2-17:


[image: image322.wmf](

)

(

)

21

21

12

22160 m

4.0s.

30m/s50m/s

xx

tt

vv

-

-===

++


(c) Since the train is at rest (v0 = 0) when the clock starts, we find the value of t1 from Eq. 2-11:
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(d) The coordinate origin is taken to be the location at which the train was initially at rest (so x0 = 0).  Thus, we are asked to find the value of x1. Although any of several equations could be used, we choose Eq. 2-17:
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(e) The graphs are shown below, with SI units understood.
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81. Integrating (from t = 2 s to variable t = 4 s) the acceleration to get the velocity and using the values given in the problem leads to 
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= 17 +  EQ \f(1,2) (5.0)(42 – 22) = 47 m/s.

82. The velocity v at t = 6 (SI units and two significant figures understood) is 
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.  A quick way to implement this is to recall the area of a triangle ( EQ \f(1,2)  base × height). The result is v = 7 m/s + 32 m/s = 39 m/s.
83. The object, once it is dropped (v0 = 0) is in free fall (a = –g = –9.8 m/s2 if we take down as the –y direction), and we use Eq. 2-15 repeatedly.

(a) The (positive) distance D from the lower dot to the mark corresponding to a certain reaction time t is given by 
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(b) For t2 = 100 ms, 
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(c) For t3 = 150 ms, 
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(d) For t4 = 200 ms, 
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(e) For t4 = 250 ms, 
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84. We take the direction of motion as +x, take x0 = 0 and use SI units, so v = 1600(1000/3600) = 444 m/s.

(a) Equation 2-11 gives 444 = a(1.8) or a = 247 m/s2. We express this as a multiple of g by setting up a ratio:
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(b) Equation 2-17 readily yields
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85. Let D be the distance up the hill. Then

   average speed =  EQ \f(total distance traveled,total time of travel)  =  EQ \f(2D,\f(D,20 km/h) + \f(D,35 km/h))  ( 25 km/h .

86. We obtain the velocity by integration of the acceleration:
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Lengths are in meters and times are in seconds. The student is encouraged to look at the discussion in the textbook in §2-7 to better understand the manipulations here.
(a) The result of the above calculation is
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where the problem states that v0 = 2.7 m/s. The maximum of this function is found by knowing when its derivative (the acceleration) is zero (a = 0 when t = 6.1/1.2 = 5.1 s) and plugging that value of t into the velocity equation above. Thus, we find 
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(b) We integrate again to find x as a function of t:
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With x0 = 7.3 m, we obtain x = 83 m for t = 6.  This is the correct answer, but one has the right to worry that it might not be; after all, the problem asks for the total distance traveled (and x  x0 is just the displacement). If the cyclist backtracked, then his total distance would be greater than his displacement.  Thus, we might ask, "did he backtrack?"  To do so would require that his velocity be (momentarily) zero at some point (as he reversed his direction of motion).  We could solve the above quadratic equation for velocity, for a positive value of t where v = 0; if we did, we would find that at t = 10.6 s, a reversal does indeed happen.  However, in the time interval we are concerned with in our problem (0 ≤ t ≤ 6 s), there is no reversal and the displacement is the same as the total distance traveled.

87. The time it takes to travel a distance d with a speed v1 is 
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 With 
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, the time difference between the two is
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or 1 h and 13 min.
88. The acceleration is constant and we may use the equations in Table 2-1.

(a) Taking the first point as coordinate origin and time to be zero when the car is there, we apply Eq. 2-17:
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With x = 60.0 m (which takes the direction of motion as the +x direction) we solve for the initial velocity: v0 = 5.00 m/s.

(b) Substituting v = 15.0 m/s, v0 = 5.00 m/s, and t = 6.00 s into a = (v – v0)/t (Eq. 2-11), we find a = 1.67 m/s2.

(c) Substituting v = 0 in 
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 and solving for x, we obtain
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(d) The graphs require computing the time when v = 0, in which case, we use v = v0 + at' = 0. Thus,
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indicates the moment the car was at rest. SI units are understood.
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89. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 (with y replacing x) because this is constant acceleration motion. When something is thrown straight up and is caught at the level it was thrown from, the time of flight t is half of its time of ascent ta, which is given by Eq. 2-18 with y = H and v = 0 (indicating the maximum point).
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Writing these in terms of the total time in the air t = 2ta we have
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We consider two throws, one to height H1 for total time t1 and another to height H2 for total time t2, and we set up a ratio:
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from which we conclude that if t2 = 2t1 (as is required by the problem) then H2 = 22H1 = 4H1.

90. (a) Using the fact that the area of a triangle is 
[image: image355.wmf]1
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(base) (height) (and the fact that the integral corresponds to the area under the curve) we find, from t = 0 through t = 5 s, the integral of v with respect to t is 15 m. Since we are told that x0 = 0 then we conclude that x = 15 m when t = 5.0 s.
(b) We see directly from the graph that v = 2.0 m/s when t = 5.0 s.

(c) Since a = dv/dt = slope of the graph, we find that the acceleration during the interval 4 < t < 6 is uniformly equal to –2.0 m/s2.

(d) Thinking of x(t) in terms of accumulated area (on the graph), we note that x(1) = 1 m; using this and the value found in part (a), Eq. 2-2 produces
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(e) From Eq. 2-7 and the values v(t) we read directly from the graph, we find
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91. Taking the +y direction downward and y0 = 0, we have 
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(a) For this part of the motion, y1 = 50 m so that
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(b) For this next part of the motion, we note that the total displacement is y2 = 100 m. Therefore, the total time is


[image: image361.wmf]2

2

2(100 m)

4.5 s .

9.8m/s

t

==


The difference between this and the answer to part (a) is the time required to fall through that second 50 m distance: 
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4.5 s – 3.2 s = 1.3 s.
92. Direction of +x is implicit in the problem statement. The initial position (when the clock starts) is x0 = 0 (where v0 = 0), the end of the speeding-up motion occurs at x1 = 1100/2 = 550 m, and the subway train comes to a halt (v2 = 0) at x2 = 1100 m.

(a) Using Eq. 2-15, the subway train reaches x1 at
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The time interval t2 – t1 turns out to be the same value (most easily seen using Eq. 2-18 so the total time is t2 = 2(30.3) = 60.6 s.

(b) Its maximum speed occurs at t1 and equals
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(c) The graphs are shown below:
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93. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the stone’s motion. We are allowed to use Table 2-1 (with x replaced by y) because the ball has constant acceleration motion (and we choose y0 = 0).

(a) We apply Eq. 2-16 to both measurements, with SI units understood.
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We equate the two expressions that each equal 
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which yields 
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(b) An object moving upward at A with speed v = 8.85 m/s will reach a maximum height y – yA = v2/2g = 4.00 m above point A (this is again a consequence of Eq. 2-16, now with the “final” velocity set to zero to indicate the highest point). Thus, the top of its motion is 1.00 m above point B.

94. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 (with y replacing x) because this is constant acceleration motion. The ground level is taken to correspond to the origin of the y-axis. The total time of fall can be computed from Eq. 2-15 (using the quadratic formula).
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with the positive root chosen. With y = 0, v0 = 0, and y0 = h = 60 m, we obtain
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Thus, “1.2 s earlier” means we are examining where the rock is at t = 2.3 s:
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where we again use the fact that h = 60 m and v0 = 0.
95. (a) The wording of the problem makes it clear that the equations of Table 2-1 apply, the challenge being that v0, v, and a are not explicitly given.  We can, however, apply x – x0 = v0t +  EQ \f (1,2)at2 to a variety of points on the graph and solve for the unknowns from the simultaneous equations.  For instance,

16 m – 0 = v0(2.0 s) +  EQ \f (1,2) a(2.0 s)2
27 m – 0 = v0(3.0 s) +  EQ \f (1,2) a(3.0 s)2
lead to the values v0 = 6.0 m/s and a = 2.0 m/s2.
(b) From Table 2-1,

x – x0 = vt –  EQ \f (1,2)at2  (  27 m – 0 = v(3.0 s) –  EQ \f (1,2) (2.0 m/s2)(3.0 s)2
which leads to v = 12 m/s.
(c) Assuming the wind continues during 3.0 ≤ t ≤ 6.0, we apply x – x0 = v0t +  EQ \f (1,2)at2 to this interval (where v0 = 12.0 m/s from part (b)) to obtain
(x = (12.0 m/s)(3.0 s) +  EQ \f (1,2) (2.0 m/s2)(3.0 s)2 = 45 m .

96. (a) Let the height of the diving board be h. We choose down as the +y direction and set the coordinate origin at the point where it was dropped (which is when we start the clock). Thus, y = h designates the location where the ball strikes the water. Let the depth of the lake be D, and the total time for the ball to descend be T. The speed of the ball as it reaches the surface of the lake is then v = 
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 (from Eq. 2-16), and the time for the ball to fall from the board to the lake surface is t1 = 
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 (from Eq. 2-15). Now, the time it spends descending in the lake (at constant velocity v) is
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Thus, T = t1 + t2 = 
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(b) Using Eq. 2-2, the magnitude of the average velocity is
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(c) In our coordinate choices, a positive sign for vavg means that the ball is going downward. If, however, upward had been chosen as the positive direction, then this answer in (b) would turn out negative-valued.

(d) We find v0 from 
[image: image382.wmf]2

1

0

2

yvtgt

D=+

 with t = T and y = h + D. Thus,
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(e) Here in our coordinate choices the negative sign means that the ball is being thrown upward.
97. We choose down as the +y direction and use the equations of Table 2-1 (replacing x with y) with a = +g, v0 = 0, and y0 = 0. We use subscript 2 for the elevator reaching the ground and 1 for the halfway point.

(a) Equation 2-16, 
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(b) The time at which it strikes the ground is (using Eq. 2-15)
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(c) Now Eq. 2-16, in the form 
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(d) The time at which it reaches the halfway point is (using Eq. 2-15)
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98. Taking +y to be upward and placing the origin at the point from which the objects are dropped, then the location of diamond 1 is given by 
[image: image390.wmf]y

gt

1

1

2

2

=

-

 and the location of diamond 2 is given by 
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99. With +y upward, we have y0 = 36.6 m and y = 12.2 m. Therefore, using Eq. 2-18 (the last equation in Table 2-1), we find
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at t = 2.00 s. The term speed refers to the magnitude of the velocity vector, so the answer is |v| = 22.0 m/s.

100. During free fall, we ignore the air resistance and set a = –g = –9.8 m/s2 where we are choosing down to be the –y direction. The initial velocity is zero so that Eq. 2-15 becomes 
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 where y represents the negative of the distance d she has fallen. Thus, we can write the equation as 
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(a) The time t1 during which the parachutist is in free fall is (using Eq. 2-15) given by
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which yields t1 = 3.2 s. The speed of the parachutist just before he opens the parachute is given by the positive root 
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If the final speed is v2, then the time interval t2 between the opening of the parachute and the arrival of the parachutist at the ground level is
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This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued) velocities (so that final-velocity minus initial-velocity turns out to equal initial-speed minus final-speed); we also note that the acceleration vector for this part of the motion is positive since it points upward (opposite to the direction of motion — which makes it a deceleration). The total time of flight is therefore t1 + t2 = 17 s.

(b) The distance through which the parachutist falls after the parachute is opened is given by
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In the computation, we have used Eq. 2-16 with both sides multiplied by –1 (which changes the negative-valued y into the positive d on the left-hand side, and switches the order of v1 and v2 on the right-hand side). Thus the fall begins at a height of h = 50 + d  290 m.

101. We neglect air resistance, which justifies setting a = –g = –9.8 m/s2 (taking down as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 (with y replacing x) because this is constant acceleration motion. The ground level is taken to correspond to y = 0.

(a) With y0 = h and v0 replaced with –v0, Eq. 2-16 leads to
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The positive root is taken because the problem asks for the speed (the magnitude of the velocity).

(b) We use the quadratic formula to solve Eq. 2-15 for t, with v0 replaced with –v0,
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where the positive root is chosen to yield t > 0. With y = 0 and y0 = h, this becomes
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(c) If it were thrown upward with that speed from height h then (in the absence of air friction) it would return to height h with that same downward speed and would therefore yield the same final speed (before hitting the ground) as in part (a). An important perspective related to this is treated later in the book (in the context of energy conservation).

(d) Having to travel up before it starts its descent certainly requires more time than in part (b). The calculation is quite similar, however, except for now having +v0 in the equation where we had put in –v0 in part (b). The details follow:
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with the positive root again chosen to yield t > 0. With y = 0 and y0 = h, we obtain
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102. We assume constant velocity motion and use Eq. 2-2 (with vavg = v > 0). Therefore,
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