Chapter 02 The Chemistry of Life Answer Key

True / False Questions

1. Minerals are organic elements extracted from the soil by plants.

FALSE

Accessibility: Keyboard Navigation Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: 001.01e List the important dietary minerals and describe the major uses of each mineral in the body.

HAPS Topic: Module 001 Nutrition.

Learning Outcome: 02.01c State the functions of minerals in the body.

Section: 02.01

Topic: Atoms and molecules

2. Molecules composed of two or more atoms are called compounds.

FALSE

Accessibility: Keyboard Navigation

Blooms Level: 3. Apply

Gradable: automatic

HAPS Objective: C01.03 Compare and contrast the terms atoms, molecules, elements, and compounds.

HAPS Topic: Module C01 Atoms and molecules.

Learning Outcome: 02.01b Distinguish between elements and compounds.

Section: 02.01

Topic: Atoms and molecules

3. Hydrogen, deuterium, and tritium are three isotopes of hydrogen.

TRUE

Accessibility: Keyboard Navigation

Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: C01.01c Explain how ions and isotopes are produced by changing the relative number of specific subatomic particles with respect to the structure of an atom.

HAPS Topic: Module C01 Atoms and molecules.

Learning Outcome: 02.01d Explain the basis for radioactivity and the types and hazards of ionizing radiation.

Section: 02.01

Topic: Atoms and molecules

4. Potassium, sodium, and chlorine are trace elements.

FALSE

Accessibility: Keyboard Navigation

Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: C01.03 Compare and contrast the terms atoms, molecules, elements, and compounds.

HAPS Topic: Module C01 Atoms and molecules.

Learning Outcome: 02.01b Distinguish between elements and compounds.

Section: 02.01

5. Ionic bonds break apart in water more easily than covalent bonds do.

TRUE

Accessibility: Keyboard Navigation Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: C02.01a List each type of bond in order by relative strength with respect to non-polar covalent, polar covalent, ionic, and hydrogen bonds.

HAPS Topic: Module C02 Chemical bonding.

Learning Outcome: 02.01f Define the types of chemical bonds.

Section: 02.01

Topic: Chemical bonding

6. A solution is a mixture of two or more substances that are physically blended but not chemically combined.

TRUE

Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic

HAPS Objective: C03.02 Distinguish among the terms solution, solute, solvent, colloid suspension, and emulsion.

HAPS Topic: Module C03 Inorganic compounds and solutions.

Learning Outcome: 02.02c Show how three kinds of mixtures differ from each other.

Section: 02.02

Topic: Inorganic compounds and solutions

7. The pH of blood plasma is approximately 7.4, which is slightly acidic.

FALSE

Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C03.05 State acidic, neutral, and alkaline pH values. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02d Define acid and base and interpret the pH scale. Section: 02.02 Topic: Inorganic compounds and solutions

8. The high heat capacity of water makes it a very ineffective coolant.

FALSE

Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic

HAPS Objective: C03.01 Discuss the physiologically important properties of water. HAPS Topic: Module C03 Inorganic compounds and solutions.

Learning Outcome: 02.02b Describe the biologically important properties of water.

Section: 02.02

Topic: Inorganic compounds and solutions

9. In an exchange reaction, covalent bonds are broken and new covalent bonds are formed.

TRUE

Accessibility: Keyboard Navigation Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: C04.03 Define and give examples of dehydration synthesis and hydrolysis reactions.

HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.03c List and define the fundamental types of chemical reactions.

Section: 02.03

Topic: Chemical bonding

10. Chemical reactions in which larger molecules are broken down into smaller ones are called catabolic reactions.

TRUE

Accessibility: Keyboard Navigation Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: O02.01 Define metabolism, anabolism and catabolism.

HAPS Topic: Module O02 Introduction to metabolism.

Learning Outcome: 02.03e Define metabolism and its two subdivisions. Section: 02.03

Topic: Atoms and molecules

11. The opposite of a dehydration synthesis reaction is a hydrolysis reaction.

TRUE

Accessibility: Keyboard Navigation

Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: C04.03 Define and give examples of dehydration synthesis and hydrolysis reactions.

HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.03c List and define the fundamental types of chemical reactions.

Section: 02.03

Topic: Atoms and molecules

12. Unsaturated fatty acids have as much hydrogen as they can carry.

FALSE

Accessibility: Keyboard Navigation

Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: C04.04b Compare and contrast general molecular structure of carbohydrates, proteins, lipids and nucleic acids.

HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.04e Discuss the types and functions of lipids.

Section: 02.04

Topic: Organic compounds

13. A dipeptide is a molecule with two peptide bonds.

FALSE

Accessibility: Keyboard Navigation

Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: C04.04a Identify the monomers and polymers of carbohydrates, proteins, lipids and nucleic acids.

HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.04f Discuss protein structure and function.

Section: 02.04

Topic: Organic compounds

14. All amino acids have both a carboxyl group and an amino group attached to a central carbon.

TRUE

Accessibility: Keyboard Navigation

Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: C04.04b Compare and contrast general molecular structure of carbohydrates, proteins, lipids and nucleic acids.

HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.04f Discuss protein structure and function.

Section: 02.04
Topic: Organic compounds

15. ATP is the body's most important form of long-term energy storage.

FALSE

Accessibility: Keyboard Navigation

Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: C05.01 Describe the generalized reversible reaction for release of energy from ATP and explain the role of ATP in the

HAPS Topic: Module C05 Energy transfer using ATP.

Learning Outcome: 02.04h Describe the structure, production, and function of ATP.

Section: 02.04

Topic: Energy transfer using ATP

Multiple Choice Questions

- 16. The most abundant element in the human body, by weight, is ______
 - A. nitrogen
 - B. hydrogen
 - C. carbon
 - D. oxygen
 - E. calcium

Accessibility: Keyboard Navigation

Blooms Level: 1. Remember

Gradable: automatic

HAPS Objective: C01.03 Compare and contrast the terms atoms, molecules, elements, and compounds.

HAPS Topic: Module C01 Atoms and molecules.

Learning Outcome: 02.01a Identify the elements of the body from their symbols.

Section: 02.01

Topic: Atoms and molecules

- 17. Sodium has an atomic number of 11 and an atomic mass of 23. Sodium has _____
 - **A.** 12 neutrons and 11 protons
 - B. 12 protons and 11 neutrons
 - C. 12 electrons and 11 neutrons
 - D. 12 protons and 11 electrons
 - E. 12 electrons and 11 protons

Accessibility: Keyboard Navigation

Blooms Level: 3. Apply

Gradable: automatic

HAPS Objective: C01.01d Distinguish among the terms atomic number, mass number and atomic weight with respect to the structure of an

HAPS Topic: Module C01 Atoms and molecules.

Learning Outcome: 02.01a Identify the elements of the body from their symbols.

Section: 02.01

18. The chemical properties of an atom are determined by its
 A. protons B. electrons C. neutrons D. protons and neutrons E. particles
Accessibility: Keyboard Navigatio. Blooms Level: 2. Understan. Gradable: automati HAPS Objective: C01.01b Relate the number of electrons in an electron shell to an atoms chemical stability and its ability to form chemica bonds with respect to the structure of an atom HAPS Topic: Module C01 Atoms and molecules Learning Outcome: 02.01b Distinguish between elements and compounds Section: 02.0 Topic: Atoms and molecule
19. Na (atomic no. 11) reacts with Cl (atomic no. 17) to become stable. In the reaction, Na will, while Cl will
 A. accept one electron; give up one electron B. give up one proton; accept one proton C. share one electron with chlorine; share one electron with sodium D. become an anion; become a cation E. give up one electron; accept one electron
Accessibility: Keyboard Navigatio. Blooms Level: 3. Appl Gradable: automati HAPS Objective: C02.01b Explain the mechanism of each type of non-polar covalent, polar covalent, ionic, and hydrogen bonds HAPS Topic: Module C02 Chemical bonding Learning Outcome: 02.01f Define the types of chemical bonds Section: 02.0 Topic: Chemical bonding
20. Oxygen has an atomic number of 8 and an atomic mass of 16. How many valence electrons does it have?
A. 2 B. 4 C. 6 D. 8 E. 16
Accessibility: Keyboard Navigatio. Blooms Level: 3. Appl Gradable: automati HAPS Objective: C01.01d Distinguish among the terms atomic number, mass number and atomic weight with respect to the structure of atom atom
HAPS Topic: Module C01 Atoms and molecules Learning Outcome: 02.01b Distinguish between elements and compounds Section: 02.0 Topic: Atoms and molecule

21.	Oxygen has an atomic number of eight. When two oxygen atoms come together, they form a(n) bond.		
	 A. hydrogen B. nonpolar covalent C. polar covalent D. ionic E. Van der Waals 		
	Accessibility: Keyboard Navigation		
	Blooms Level: 3. Apply Gradable: automatic HAPS Objective: C02.01b Explain the mechanism of each type of non-polar covalent, polar covalent, ionic, and hydrogen bonds. HAPS Topic: Module C02 Chemical bonding. Learning Outcome: 02.01f Define the types of chemical bonds. Section: 02.01 Topic: Chemical bonding		
22.	When table salt, sodium chloride (NaCl), is placed in water		
	 A. Na⁺ and Cl⁻ form ionic bonds with each other B. Na⁺ and Cl⁻ form polar covalent bonds with each other C. Na⁺ and Cl⁻ form hydrogen bonds with water D. Ionic bonds between Na⁺ and Cl⁻ are broken E. Na⁺ and Cl⁻ become separated by their Van der Waals forces 		
	Accessibility: Keyboard Navigation		
	Blooms Level: 3. Apply Gradable: automatic HAPS Objective: C02.01b Explain the mechanism of each type of non-polar covalent, polar covalent, ionic, and hydrogen bonds. HAPS Topic: Module C02 Chemical bonding Learning Outcome: 02.01f Define the types of chemical bonds. Section: 02.01 Topic: Chemical bonding		
23.	The bonding properties of an atom are determined by its		
	 A. electrons B. protons C. positrons D. neutrons E. photons 		
HAPS (Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic Objective: C01.01b Relate the number of electrons in an electron shell to an atoms chemical stability and its ability to form chemical bonds with respect to the structure of an atom. HAPS Topic: Module C01 Atoms and molecules. Learning Outcome: 02.01f Define the types of chemical bonds. Section: 02.01 Topic: Chemical bonding		

24.	What ty	pe of bond attracts one water molecule to another?
	B. A po <u>C.</u> A h	ionic bond eptide bond ydrogen bond ovalent bond ydrolytic bond
	HAPS O	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic bjective: C02.01b Explain the mechanism of each type of non-polar covalent, polar covalent, ionic, and hydrogen bonds. HAPS Topic: Module C02 Chemical bonding. Learning Outcome: 02.01f Define the types of chemical bonds Section: 02.01 Topic: Chemical bonding
Chec	k All Th	at Apply Questions
25.	Which o	of these is a cation? Check all that apply.
	<u>X</u> <u>X</u> <u>X</u> <u>X</u>	O_2 $K+$ $Na+$ Ca^{2+} Cl^{-}
		Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic HAPS Objective: C01.02 Compare and contrast the terms ions, electrolytes, free radicals, isotopes and radioisotopes. HAPS Topic: Module C01 Atoms and molecules. Learning Outcome: 02.01e Distinguish between ions, electrolytes, and free radicals. Section: 02.01 Topic: Chemical bonding
Mult	iple Cho	ice Questions
26.		account for 98.5% of the body's weight.
	A. Car	bon, oxygen, hydrogen, sodium, potassium, and chlorine

B. Carbon, oxygen, iron, sodium, potassium, and chlorine
C. Carbon, nitrogen, hydrogen, sodium, potassium, and chlorine
D. Carbon, oxygen, hydrogen, nitrogen, sodium, and potassium
E. Carbon, oxygen, hydrogen, nitrogen, calcium, and phosphorus

Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C01.03 Compare and contrast the terms atoms, molecules, elements, and compounds. HAPS Topic: Module C01 Atoms and molecules. Learning Outcome: 02.01a Identify the elements of the body from their symbols. Section: 02.01 Topic: Atoms and molecules differ from one another in their number of neutrons and atomic mass. D. Electrolytes E. Free radicals Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C01.02 Compare and contrast the terms ions, electrolytes, free radicals, isotopes and radioisotopes. HAPS Topic: Module C01 Atoms and molecules. Learning Outcome: 02.01d Explain the basis for radioactivity and the types and hazards of ionizing radiation. Section: 02.01 Topic: Atoms and molecules When jumping into water you notice resistance. This resistance is caused by water's _ A. adhesiveness B. cohesiveness C. hydrophobic tension D. hydrophilic tension E. osmotic equilibrium Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic HAPS Objective: C03.01 Discuss the physiologically important properties of water. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02b Describe the biologically important properties of water. Section: 02.02 Topic: Inorganic compounds and solutions

- 29. Which of these is hydrophobic?
 - A. Glucose
 - $B. K^+$

27.

28.

A. Cations B. Anions C. Isotopes

- C. Cl
- D. Water
- **E.** Fat

Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic

HAPS Objective: C03.01 Discuss the physiologically important properties of water. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02b Describe the biologically important properties of water. Section: 02.02

	Topic: Inorganic compounds and solutions
	Blood contains NaCl, protein, and cells. The NaCl is in a(n), the protein is in a(n), and the cells are in a
	A amulaian salutian suamanaian
	A. emulsion; solution; suspension B. solvent; emulsion; colloid
	C. colloid; suspension; solution
	D. suspension; colloid; solution
	E. solution; colloid; suspension
	E. Solution, Conoid, Suspension
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic HAPS Objective: C03.02 Distinguish among the terms solution, solute, solvent, colloid suspension, and emulsion. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02c Show how three kinds of mixtures differ from each other. Section: 02.02
	Topic: Inorganic compounds and solutions
	Which of these is the most appropriate to express the number of molecules per volume?
	A. Molarity
	B. Volume
	C. Percentage
	D. Weight per volume
	E. Milliequivalents per liter
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic
	HAPS Objective: C03.02 Distinguish among the terms solution, solute, solvent, colloid suspension, and emulsion.
r	HAPS Topic: Module C03 Inorganic compounds and solutions. ning Outcome: 02.02e Discuss some ways in which the concentration of a solution can be expressed, and the kinds of information we can derive from the different units of measure. Section: 02.02
	Topic: Inorganic compounds and solutions
	A solution with pH 4 has the H ⁺ concentration of a solution with pH 8.
	A. ½
	1 h

B. 2 times

C. 4 times

<u>D.</u> 10,000 times

E. 1/10,000

Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic

HAPS Objective: C03.04 Define the terms pH, acid, base, and buffer and give examples of physiological significance.

HAPS Topic: Module C03 Inorganic compounds and solutions.

Learning Outcome: 02.02d Define acid and base and interpret the pH scale.

Section: 02.02

Topic: Inorganic compounds and solutions

33.	Which of these has the highest H ⁺ concentration?
	 A. Lemon juice, pH = 2.3 B. Red wine, pH = 3.2 C. Tomato juice, pH = 4.7 D. Saliva, pH = 6.6 E. Household ammonia, pH = 10.8
	A
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic HAPS Objective: C03.05 State acidic, neutral, and alkaline pH values. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02d Define acid and base and interpret the pH scale. Section: 02.02 Topic: Inorganic compounds and solutions
34.	In a workout your muscle cells produce lactate, yet you maintain a constant blood pH because
	 A. metabolic acids are neutralized in muscle cells before released into the blood B. metabolic bases are produced at the same rate by muscle cells to neutralize the acids C. the respiratory system removes excess H⁺ from the blood before the pH is lowered D. the body contains chemicals called buffers that resist changes in pH E. endothelial cells secrete excess H⁺ to prevent a decrease in pH
	Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic HAPS Objective: C03.04 Define the terms pH, acid, base, and buffer and give examples of physiological significance. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02d Define acid and base and interpret the pH scale. Section: 02.02 Topic: Inorganic compounds and solutions
35.	A solution that resists a change in pH when an acid or base is added to it is a(n)
	A. buffer B. catalyst C. reducing agent D. oxidizing agent E. colloid
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C03.04 Define the terms pH, acid, base, and buffer and give examples of physiological significance. HAPS Topic: Module C03 Inorganic compounds and solutions. Learning Outcome: 02.02d Define acid and base and interpret the pH scale.
	Section: 02.02

Topic: Inorganic compounds and solutions

36.	A chemical reaction that removes electrons from an atom is called a(n) reaction.
	A. reduction
	B. condensation
	C. hydrolysis D. anabolic
	E. oxidation
	E. Oxidation
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: 002.05 Describe the processes of oxidation, reduction, decarboxylation, and phosphorylation. HAPS Topic: Module 002 Introduction to metabolism. Learning Outcome: 02.03f Define oxidation and reduction, and relate these to changes in the energy content of a molecule. Section: 02.03
	Topic: Atoms and molecules
37.	The most relevant free energy in human physiology is the energy stored in
	A. electrolytes ionized in waterB. free radicals with an odd number of electronsC. radioisotopes
	<u>D.</u> the chemical bonds of organic molecules
	E. Van der Waals forces
	Accessibility: Keyboard Navigation
	Blooms Level: 3. Apply Gradable: automatic HAPS Objective: O02.01 Define metabolism, anabolism and catabolism. HAPS Topic: Module O02 Introduction to metabolism. Learning Outcome: 02.03a Define energy and work, and describe some types of energy. Section: 02.03 Topic: Atoms and molecules
38.	The breakdown of glycogen (an energy-storage compound) is an example of a(n) reaction.
50.	The oreakdown of grycogen (an energy storage compound) is an example of a(n) reaction.
	A. exergonic B. endergonic C. exchange D. synthesis E. equilibrium
	Accessibility: Keyboard Navigation
	Accessibility: Reyboara Navigation Blooms Level: 2. Understand Gradable: automatic
	HAPS Objective: O02.01 Define metabolism, anabolism and catabolism.
	HAPS Topic: Module 002 Introduction to metabolism. Learning Outcome: 02.03c List and define the fundamental types of chemical reactions. Section: 02.03

39.	Potential energy stored in bonds is released as energy.
	A. electromagnetic B. electrical C. chemical D. heat E. kinetic
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: O02.01 Define metabolism, anabolism and catabolism. HAPS Topic: Module O02 Introduction to metabolism. Learning Outcome: 02.03c List and define the fundamental types of chemical reactions. Section: 02.03
40.	Topic: Atoms and molecules The breakdown of glucose to yield carbon dioxide, oxygen, and ATP can be described as
	 A. anabolic and endergonic B. catabolic and exergonic C. anabolic and exergonic D. catabolic and endergonic E. anabolic and exothermic
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic HAPS Objective: O02.01 Define metabolism, anabolism and catabolism. HAPS Topic: Module O02 Introduction to metabolism. Learning Outcome: 02.03e Define metabolism and its two subdivisions. Section: 02.03
41.	Topic: Cellular respiration Which one of the following would <i>not</i> increase the rate of a reaction?
	 A. An increase in reactant concentrations B. A rise in temperature C. The presence of a catalyst D. The presence of an enzyme E. A decrease in reactant concentrations
HAPS	Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic 5 Objective: C04.06 Demonstrate factors that affect enzyme activity, including denaturation, and interpret graphs showing the effects of various factors on the rate of enzyme- catalyzed reactions. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.03d Identify the factors that govern the speed and direction of a reaction. Section: 02.03

42.	Which of the following terms encompasses all of the other ones?
	A. Catabolism
	B. Anabolism
	<u>C.</u> Metabolism
	D. Oxidation reactions
	E. Reduction reactions
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic HAPS Objective: O02.01 Define metabolism, anabolism and catabolism. HAPS Topic: Module O02 Introduction to metabolism.
	HAPS Topic: Module 002 introduction to metabolism. Learning Outcome: 02.03e Define metabolism and its two subdivisions. Section: 02.03 Topic: Atoms and molecules
43.	The breakdown of starch by digestive enzymes into glucose molecules is a(n) reaction.
	A. synthesis
	B. decomposition
	C. exchange
	D. anabolic E. reduction
	Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic
	HAPS Objective: O02.01 Define metabolism, anabolism and catabolism. HAPS Topic: Module O02 Introduction to metabolism. Learning Outcome: 02.03c List and define the fundamental types of chemical reactions.
	Section: 02.03 Topic: Atoms and molecules
44.	Which of the following equations depicts an exchange reaction?
	$A AR \longrightarrow A + R$

A.
$$AB \rightarrow A + B$$

B.
$$A + B \rightarrow AB$$

$$\underline{C}. AB + CD \rightarrow AC + BD$$
D. $AB \rightarrow A^{T} + B^{+}$

D.
$$AB \rightarrow A + B$$

$$E. \quad A + B \rightarrow AB \rightarrow C + D$$

Accessibility: Keyboard Navigation Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: C04.03 Define and give examples of dehydration synthesis and hydrolysis reactions. HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.03b Understand how chemical reactions are symbolized by chemical equations.

Section: 02.03

45.	A(n) is a group of atoms that determines many of the properties of an organic molecule.
	 A. carboxyl group B. functional group C. hydroxyl group D. amino group E. phosphate group
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C04.04a Identify the monomers and polymers of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04b Identify some common functional groups of organic molecules from their formulae. Section: 02.04 Topic: Organic compounds
46.	Which of the following is <i>not</i> an organic compound?
	A. C ₁₆ H ₁₈ N ₃ CIS B. Na ₂ HPO ₃ (H ₂ O) ₅ C. CH ₄ D. C ₃ H ₇ O ₂ N
Lea	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic HAPS Objective: C04.01 Define the term organic molecule. HAPS Topic: Module C04 Organic compounds. rning Outcome: 02.04a Explain why carbon is especially well suited to serve as the structural foundation of many biological molecules. Section: 02.04
47.	A reaction breaks a down into its monomers.
	 A. hydrolysis; polymer B. dehydration synthesis; molecule C. dehydration synthesis; polymer D. polymer; molecule E. condensation; reactant
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automation HAPS Objective: C04.03 Define and give examples of dehydration synthesis and hydrolysis reactions. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04c Discuss the relevance of polymers to biology and explain how they are formed and broken by dehydration synthesis and hydrolysis.

48.	The formula of an amino group is; the formula of a carboxyl group is
	ACOOH; -OH BCH ₃ ; -NH ₂ COH; -SH <u>D.</u> -NH ₂ ; -COOH
	ESH; - H_2PO_4
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C04.04a Identify the monomers and polymers of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04b Identify some common functional groups of organic molecules from their formulae. Section: 02.04 Topic: Organic compounds
49.	Table sugar is a disaccharide called and is made up of the monomer(s)
	A. maltose; glucose and sucrose B. sucrose; glucose and fructose C. lactose; glucose and galactose D. glycogen; glucose and fructose E. glucose; galactose and fructose
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C04.04a Identify the monomers and polymers of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04d Discuss the types and functions of carbohydrates. Section: 02.04
50.	Which of the following is a disaccharide?
	A. Galactose B. Lactose C. Glucose D. Fructose E. Amylose
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C04.04a Identify the monomers and polymers of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04d Discuss the types and functions of carbohydrates. Section: 02.04 Topic: Organic compounds

51.	is a monosaccharide, whereas is a polysaccharide.
	 A. Fructose; sucrose B. Galactose; maltose C. Lactose; glycogen D. Glucose; starch E. Cellulose; glucose
	Accessibility: Keyboard Navigation
	Haps Objective: C04.04c Provide specific examples of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04d Discuss the types and functions of carbohydrates. Section: 02.04 Topic: Organic compounds
52.	In general, have a 2:1 ratio of hydrogen to oxygen.
	 A. enzymes B. proteins C. lipids D. carbohydrates E. nucleic acids
	Accessibility: Keyboard Navigation Blooms Level: 2. Understand Gradable: automatic HAPS Objective: C04.04b Compare and contrast general molecular structure of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04d Discuss the types and functions of carbohydrates. Section: 02.04 Topic: Organic compounds
53.	Proteoglycans are composed of
	 A. carbohydrates and fats B. nucleic acids and fats C. carbohydrates and proteins D. proteins and fats E. nucleic acids and proteins
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic HAPS Objective: C04.04c Provide specific examples of carbohydrates, proteins, lipids and nucleic acids. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04d Discuss the types and functions of carbohydrates. Section: 02.04

54.	Triglycerides cons	ist of a 3-carbon compound called _	bound to three
	A. pyruvate; fatty	acids	
	B. lactate; glycero		
	C. eicosanoid; ste		
	D. glycerol; fatty		
	E. sterol; fatty ac		
	E. Sicioi, latty ac	ius	
			Accessibility: Keyboard Navigation
			Blooms Level: 1. Remember
	HAPS Objective: C04.	04h Compare and contrast general molecular	Gradable: automatic structure of carbohydrates, proteins, lipids and nucleic acids.
			HAPS Topic: Module C04 Organic compounds.
		Learn	ing Outcome: 02.04e Discuss the types and functions of lipids.
			Section: 02.04 Topic: Organic compounds
			Topic. Organic compounds
55.	are m	najor components of cell membranes,	and are said to be
	A. Triglycerides;	hydrophobic	
	B. Steroids; hydro		
	C. Bile acids; fat-	-	
	D. Eicosanoids; v		
	E. Phospholipids		
	E. Phospholipius	, априринс	
			Accessibility: Keyboard Navigation
			Blooms Level: 3. Apply
		HAPS Objective: CO4 O4c Provide specific	Gradable: automatic examples of carbohydrates, proteins, lipids and nucleic acids.
		IIII 5 Objective. Cor.ore I rovide specific	HAPS Topic: Module C04 Organic compounds.
		Learn	ing Outcome: 02.04e Discuss the types and functions of lipids.
			Section: 02.04 Topic: Organic compounds
			Topic. Organic compounds
56.	Which of these mo	olecules is hydrophobic?	
	A. Glucose		
	B. Cholesterol		
	_		
	C. Amino acid		
	D. Protein		
	E. Disaccharide		
			Accessibility: Keyboard Navigation
			Blooms Level: 3. Apply
		HADS Objective: COA OA a Bravida and air	Gradable: automatic examples of carbohydrates, proteins, lipids and nucleic acids.
		им в Ovjective. C04.04c Frovide specific	examples of carbonyarates, proteins, uplas and nucleic acias. HAPS Topic: Module C04 Organic compounds.
		Learn	ing Outcome: 02.04e Discuss the types and functions of lipids.
			Section: 02.04
			Topic: Organic compounds

57.	Proteins perform all of the following functions <i>except</i>
	A. catalyze metabolic reactions
	B. give structural strength to cells and tissues
	C. produce muscular and other forms of movement
	D. regulate transport of solutes into and out of cells
	E. store hereditary information
	,
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember Gradable: automatic
	HAPS Objective: C04.04e Discuss physiological and structural roles in the human body of carbohydrates, proteins, lipids and nucleic acids.
	HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04f Discuss protein structure and function. Section: 02.04 Topic: Organic compounds
58.	A drastic conformational change in a protein in response to extreme heat or pH is called
	- Total and to more and the protest in the protest in the protest and the protest in the protest
	A. contamination
	B. denaturation
	C. saturation
	D. sedimentation
	E. deconformation
	E. decomormation
НА	Accessibility: Keyboard Navigation Blooms Level: I. Remember Gradable: automatic PS Objective: C04.06 Demonstrate factors that affect enzyme activity, including denaturation, and interpret graphs showing the effects
	of various factors on the rate of enzyme- catalyzed reactions. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04f Discuss protein structure and function. Section: 02.04
	Topic: Organic compounds
59.	
37.	Proteins are built from different amino acids.
	Troteins are built from different anniho acids.
	A. monomers; 10
	B. molecules; 10
	C. polymers; 20
	
	D. macromolecules; 40
	E
	peptides:25
	Accessibility: Keyboard Navigation Rlooms Level: 1. Remember

Gradable: automatic

HAPS Objective: C04.05 Describe the four levels of protein structure and discuss the importance of protein shape for protein function. HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04f Discuss protein structure and function.

Section: 02.04

60.	The folding and coiling of a protein into a globular shape is the	structure of the protein.	
	A. primary		
	B. secondary		
	C. tertiary		
	D. quaternary		
	E. denatured		
		Accessibility: Keyboard Navigation	
		Blooms Level: 1. Remember Gradable: automatic	
	HAPS Objective: C04.05 Describe the four levels of protein structure and discuss the impo-		
		PS Topic: Module C04 Organic compounds.	
	Learning Outcome: 02	2.04f Discuss protein structure and function.	
		Section: 02.04 Topic: Organic compounds	
		Topic. Organic compounds	
61.	An enzyme is substrate-specific because of the shape of its	·	
	A. active site		
	B. receptor		
	C. secondary structure		
	D. terminal amino acid		
	E. alpha chain		
	E. alpha cham		
		Accessibility: Keyboard Navigation	
		Blooms Level: 1. Remember	
	HAPS Objective: C04.05 Describe the four levels of protein structure and discuss the impo-	Gradable: automatic	
		PS Topic: Module C04 Organic compounds.	
		ome: 02.04g Explain how enzymes function.	
		Section: 02.04	
		Topic: Organic compounds	
62.	is the substrate of		
	A. Glucose; lactose		
	B. Lactase; glucose		
	C. Lactose; lactase		
	D. Galactose; lactose		
	E. Sucrase; sucrose		
	E. Sucrase, sucrose		
		Accessibility: Keyboard Navigation	
		Blooms Level: 3. Apply	
НΛ	PS Objective: CO4 06 Demonstrate factors that affect enzyme activity including denaturati	Gradable: automatic	
117	HAPS Objective: C04.06 Demonstrate factors that affect enzyme activity, including denaturation, and interpret graphs showing the effects of various factors on the rate of enzyme- catalyzed reactions.		
	HAI	PS Topic: Module C04 Organic compounds.	
	Learning Outc	ome: 02.04g Explain how enzymes function.	
		Section: 02.04 Topic: Organic compounds	
		r o. out compounds	

63.	All enzymes are
	A. cofactors
	B. proteins
	C. lipids
	D. carbohydrates
	E. nucleic acids
	Accessibility: Keyboard Navigation
	Blooms Level: 3. Apply
HAP	Gradable: automatic S Objective: C04.06 Demonstrate factors that affect enzyme activity, including denaturation, and interpret graphs showing the effects
	of various factors on the rate of enzyme- catalyzed reactions.
	HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04g Explain how enzymes function.
	Section: 02.04g Explain now enzymes function.
	Topic: Organic compounds
64.	Nucleic acids are of
	A manamana managagahari dag
	A. monomers; monosaccharides B. monomers; ATP
	C. polymers; nucleotides
	D. polymers; cAMP
	E. polymers; DNA
	E. polymers, DIVA
	Accessibility: Keyboard Navigation
	Blooms Level: 3. Apply Gradable: automatic
	HAPS Objective: C04.04a Identify the monomers and polymers of carbohydrates, proteins, lipids and nucleic acids.
	HAPS Topic: Module C04 Organic compounds. Learning Outcome: 02.04j Identify the principal types of nucleic acids.
	Section: 02.04
	Topic: Nucleic acids: DNA and RNA Topic: Organic compounds
	Topic. Organic compounds
65.	ATP endergonic and exergonic reactions.
	A. opposes
	B. decomposes
	C. reduces
	<u>D.</u> links
	E. dehydrates
	Accessibility: Keyboard Navigation
	Blooms Level: 3. Apply
HA	Gradable: automatic APS Objective: C05.01 Describe the generalized reversible reaction for release of energy from ATP and explain the role of ATP in the
	cell. HAPS Topic: Module C05 Energy transfer using ATP.
	Learning Outcome: 02.04h Describe the structure, production, and function of ATP. Section: 02.04
	Topic: Energy transfer using ATP
	Topic: Organic compounds

66.	Minerals are found in all of the following <i>except</i>
	A. bones and teeth
	B. vitamins
	C. thyroid hormone
	D. electrolytes
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember
	Gradable: automatic
	HAPS Objective: 001.01e List the important dietary minerals and describe the major uses of each mineral in the body.
	HAPS Topic: Module 001 Nutrition. Learning Outcome: 02.01c State the functions of minerals in the body.
	Section: 02.01
	Topic: Atoms and molecules
67.	
07.	An atom with 12 electrons, 13 neutrons, and 11 protons is a(n)
	All atom with 12 electrons, 13 heutrons, and 11 protons is a(n)
	A. anion
	B. cation
	C.
	free radical
	D. isotope
	<u>E.</u>
	both an anion and an isotope
	1
	F.
	both an anion and a free radical
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply
	Gradable: automatic
	HAPS Objective: C01.02 Compare and contrast the terms ions, electrolytes, free radicals, isotopes and radioisotopes.
	HAPS Topic: Module C01 Atoms and molecules. Learning Outcome: 02.01e Distinguish between ions, electrolytes, and free radicals.
	Section: 02.01
	Topic: Atoms and molecules
68.	The concentration of a solution may be expressed by all of the following <i>except</i>
00.	The concentuation of a solution may be expressed by an of the following except
	A. weight per volume
	B. percentage
	C. molarity
	<u>D.</u> pH
	Accessibility: Keyboard Navigation Blooms Level: 1. Remember

Lear	ning Outcome: 02.02e Discuss some ways in which the concentration of a solution can be expressed, and the kinds of information we can derive from the different units of measure.
	Section: 02.02
	Topic: Inorganic compounds and solutions
69.	The vibration of an ear drum is an example of energy.
	<u>A.</u> kinetic
	B. potential
	C. elastic
	D. radiant
	Accessibility: Keyboard Navigation Blooms Level: 2. Understand
HA	Gradable: automatic PS Objective: C05.01 Describe the generalized reversible reaction for release of energy from ATP and explain the role of ATP in the cell.
	HAPS Topic: Module C05 Energy transfer using ATP. Learning Outcome: 02.03a Define energy and work, and describe some types of energy. Section: 02.03
	Topic: Atoms and molecules
70.	In the following reaction, what is(are) the product(s)? $CO_2 + H_2O> H_2CO_3$
	<u>A.</u> H ₂ CO ₃
	B. CO ₂ and H ₂ O
	C. CO ₂ and H ₂ CO ₃
	D. H ₂ O and H ₂ CO ₃
	P. H ₂ O alid H ₂ CO ₃
	Accessibility: Keyboard Navigation Blooms Level: 3. Apply Gradable: automatic
	HAPS Objective: C04.03 Define and give examples of dehydration synthesis and hydrolysis reactions. HAPS Topic: Module C04 Organic compounds.
	Learning Outcome: 02.03b Understand how chemical reactions are symbolized by chemical equations. Section: 02.03
	Topic: Atoms and molecules
71.	Which of the following will increase the rate of a chemical reaction?
	A. An increase in reactant concentration
	B. An increase in product concentration
	C. A decreased temperature

D. Enzyme inhibition

Accessibility: Keyboard Navigation

Blooms Level: 3. Apply

Gradable: automatic

HAPS Objective: C04.06 Demonstrate factors that affect enzyme activity, including denaturation, and interpret graphs showing the effects of various factors on the rate of enzyme- catalyzed reactions.

HAPS Topic: Module C04 Organic compounds.

Learning Outcome: 02.03d Identify the factors that govern the speed and direction of a reaction.

Section: 02.03
Topic: Atoms and molecules

72.	Carbon is very versatile in forming bonds with other atoms because it has electrons.	valence
	electrons.	
	A. four B. two	
	C. eight	
	D. six	
	Acce	essibility: Keyboard Navigation Blooms Level: 1. Remember
	HAPS Objective: CO4 01 De	Gradable: automatic fine the term organic molecule.
	HAPS Topic: Mo	odule C04 Organic compounds.
Lear	ning Outcome: 02.04a Explain why carbon is especially well suited to serve as the structural foundation	of many biological molecules. Section: 02.04
		Topic: Chemical bonding
		Topic: Organic compounds
73.	Amylase is a digestive enzyme that breaks starches down into sugars through _	reactions.
	A. hydrolysis	
	B. dehydration synthesis	
	C. anabolic	
	D. endergonic	
	Acce	essibility: Keyboard Navigation
		Blooms Level: 2. Understand Gradable: automatic
	HAPS Objective: C04.03 Define and give examples of dehydration synt	thesis and hydrolysis reactions.
	HAPS Topic: Mc Learning Outcome: 02.04c Discuss the relevance of polymers to biology and explain how they are form	odule C04 Organic compounds. ned and broken by dehydration
		synthesis and hydrolysis. Section: 02.04
		Topic: Organic compounds
74.	Which of the following is <i>not</i> a nucleotide?	
/ + .	which of the following is not a nucleotide:	
	A. RNA	
	B. GTP C. ATP	
	D. cAMP	
	Acce	essibility: Keyboard Navigation Blooms Level: 1. Remember
	HARS Objection COA OAb Commany and contract control of the land of	Gradable: automatic
		odule C04 Organic compounds.
	Learning Outcome: 02.04j Identify the p	orincipal types of nucleic acids. Section: 02.04
		Topic: Organic compounds

75.	Metabolism is the sum of	and
	A. inhalation; exhalation	
	B. growth; differentiation	
	C. anabolism; catabolism	

D. positive; negative feedback E. responsiveness; movement

Accessibility: Keyboard Navigation

Blooms Level: 1. Remember

Gradable: automatic

PS Objective: 002.01 Define metabolism, analysism, and catalysism.

HAPS Objective: 002.01 Define metabolism, anabolism and catabolism.

HAPS Topic: Module 002 Introduction to metabolism.

Learning Outcome: 02.03e Define metabolism and its two subdivisions.

Section: 02.03

Topic: Energy transfer using ATP

True / False Questions

76. A molecule that is oxidized gains electrons and energy.

FALSE

Accessibility: Keyboard Navigation
Blooms Level: 2. Understand

Gradable: automatic

HAPS Objective: 002.05 Describe the processes of oxidation, reduction, decarboxylation, and phosphorylation.

HAPS Topic: Module C02 Chemical bonding.

Learning Outcome: 02.03f Define oxidation and reduction, and relate these to changes in the energy content of a molecule.

Section: 02.03