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1.3 From the definition of enthalpy,

h:e*pv:e*RT

Eor a calorically perfect gas, this bebomes

cpT:c"T+RT,or 6JF
For a thermally perfect gzrs, EQ. (A1) is first differentiated

dh: de + Rdt

of,

co dT: c" dT: Rdt

of,

(Al)



t.4 sz-sr :c, tn?-.^ f
(a) R:1716 ft-lb/slug"R

"r= h= W= 6oo6 ftJb/slug.R

s2 - sr : (6006) tn (1.687) - (t716) tn 4.5

(b) R:287 joulelkg.K

"r= h: W: too4.5 jouletkg"K

sz - sr = (1004.5) tn (1.657) _287 n @.1)

52-sl = 59.9 ftJb/slue"

s2-sl = 3'6 ioul /

1.5 Pr-
Pr

W:p

pz 824.3
=--r' RT, (1716X400)

t.4

= 1800 (400/500) 0.4

0012

1.6 Volume of room : (20X15XB) = 2400 ff
Standard sea level density :0.002377 slug/ft3

Mass of air : (0.002377)e400)= 
IS.ZO slud



1.7

(a) dp = -pVdV

and dp: p t dp, or

Combining:

dp
, _L=_pVdV

pr

dp:-"p2vdv

dp4 
=-tpVdVp

dP =-rpv2 dV
Vp

(b) ,,: 1= 
- 

1

7P (1'4[l^ol 
" 1d) 

:7'07 x 1o-6m2/N

Y 
: r, p y2 + = - (7.07ii ro{y1r.23x10)2(0.01)

+ =FT?. ro=1p

(c) Here, & *iff belargerbytherati, 
(tooo\'

p "[ rol

y:(:8.7xrof (-*9'

Comment: By increasing the velocity of a factor of 100, the fractional change in density is

increased by factor of 104. This is just another indication of why high-speed flows must be

dp: dP

pr



CHAPTER 2

2-l Consider a two-dimensional body in a flow, as sketched in Figure A. A control volume is

drawn around this body, as given in the dashed lines in Figure A. The control volume is

bounded by:

l. The upper and lower streamlines far above and below the body (ab and hi,

respectively.)

2. Lines perpendicular to the flow velocity far ahead of and behind the body (ai and

bh, respectively).

. 3. A cut that surrounds and wraps the surface of the body (cdefg)

The entire control volume is abcdefiria. The lyidth of the control volume in the z direction

(perpendicular to the page) is unity. Stations I iand 2 arc inflow and outflow stations.

respectively.

Assume that the contour abhi is far enough from the body such that the pressure is

inflow velocity ur is uniform across ai (as it would be in a freestream, or a test section of a wind

tunnel.) The outflow velocity u2 is not uniform across bh, because the presence of the body has

created u *uk at the outflow station. However, assume that both u1 and u2 8ro in the x direction:

hence, u1 = coostdflt and u2: f(y).

Consider the surface forces on the control volume shown in Figrre A. They stem from

two contributions:

l. The pressure distribution over the surface, abhi,

-lJ out
abhi



e_ _ 6
Figure A

The sr:rface shear stress on ab and hi has been negfected. Also, note that in Figwe A.the cuts cd

and fg are taken adjacent to each otheri hence any she6r stess or pressure distribution on one is

' equal and opposite to that on the other; i.e., the surface forces on cd and fg cancel each other.

Also, note that the surface on def is the ewal and opposite reaction to the shear shess and
i

-* pressure distribution created by the flow over the surface of the body. To see this more clearly,

examine Figrue B. On the left is shown the flow over the body. The moving fluid exerts

pressure and shear stress distibutions over the body surface which create a resultant

aerodynamic force per unit span R' on the body. In turn, by Newton's ttrird law, the body exerts

equal and opposite pressure and shear stress distributions on the flow, i.e., on the part of the

conftol surface bounded by def. Hence, the body'exerts a force -R on the contol surface, as

shown on the ri of Figure B. With the above in mind, the total surface force on the entire

control volume is

Surface force: - lJ
abhi



Morgover, this is the total force on the control volume shown in Figure A because the volumetric

body force is negligible.

Consider the integral form of the momentum equation as given by, Equation (2.1 l) in the

text. The right-hand side of this equation is physically the foree on the fluid moving through the

control volume. For the contol volume in Figure A, this force is simply the expression given by

Equation (1). Hence, using Equation (2.11), with the right-hand side given by Equation (1), we

have

ovll dv+'V Q)fl
S

(pv'ds) v: - lJ n ns - n'
abhi

Flow exerts p and r
on the surface of the
body, giving a resultant
aerodynamic force R

Figure B

Assuming steady flow, Equation (2) becomes

R':-fl rou'ds)v-lJ nus

a surface force on the
section of .the control
volume delthat equals

-R

(3)



Equation (3) is a vector equation. consider again the confrol volume in Figure A. Take the x

component of Equation (3), nothing that the inflow and outflow velocities u1 and u2 dre in the x

direction and the x component of R' is the aerodynamic drag per unit span D,:

D':- # (pv'ds)'-lf (pds).
S abhi

(4)

In Equation (4), the last term is the component of the pressure force in the x direction. [The

expression G dS),. is the x component of the pressure force exerted on the elemental area dS of

the control surface.] Recall that the boundaries of the control volume abhi are chosen far enough

from the body such th"t p is constant along these boundaries. For a constant pressure.

ll ro dS)* = o
abhi

because, looking along the x direction in Figure A, the pressure force on abhi pushing toward the
./

right exacfly balances the pressure force pushing toward the left. This is true no matter what the

shape of abhi is, as long as p is constant along the surface. Therefore, substituting Equation (5)

into (4), we obtain I
tl

D' : - (fl fnV.dS) un\r
s

Evaluating the surface integral in Equation (6), we note from Figure A that:

l. The sections ab, hi and def are steamlines of the flow. Since by definition V'is

parallel to the streamlines and dS is perpendicular to the control surface, along these

sections V and dS are perpendicular vectors, and hence V ' dS = 0. As a result. the

contributions of ab, hi and def to the integral in Equation (6) are zero.

(s)

(6)



2' The cuts cd and fg are adjacent to each other. The mass flux out of one is identically

the mass flux into the other. Hence, the contributions of cd and fg to the integral in
Equation (6) cancel each other.

As a result' the only contributions to the integral in Equation (6) come from sections ai and bh.

These sections are oriented in the y direction. Also, the control volume has unit depth in the z

direction (perpendicular to the page). Hence, for these sections, dS : dy(l). The integral in

Equation (6) becomes

fl rou'ds) u: - I, pru2rdy. JJ nfzdy
S

Note that the minus in front of the first tenn on the right-hand side of Equation (7) is due to v
and ds being in opposite directions along ai (station I is an inflow boundary); in contrast, v and

ds are in the same direction over hb (station 2 is anuoutflow boundary), and hence the second

tenn has a positive sign.

Before going fifther with Equation (7), consider the integral form of the continuity

equation for steady flow. Applied to the control volume in Figure A, this becomes

la 1b- J, prur dy + 
J n p2u2 dy: 0

or.

J," p,u, at: Jrt pzwdy

Multiplying Equation (8) by u1, which is a constant, we obtain

J'" o'u"dv: IJ Pzwur dY

Substituting Equation (9) into Equation (7), we have

f rou'ds) u: - IJ pzvuray * J,' nizdy

(7)

(8)

(e)



fl fon'ds)u=- IJ pzuz(ur-uz)dy
S

Substituting Equation (10) into Equation (6) yields

o' : Jrt pzuz (ur - uz) dy

(10)

(l 1)

(r2)

Equation (l 1) is the desired result of this section; it expresses the drag of a body in terms

of the known freestream velocity u1 and the flow-field properties p2 and u2, &croSS a vertical

station downstream of the body. These downstearn properties can be measured in a wind

tunnel, and the drag per unit span of the body D' can be obtained by evaluating the integrat in

Equation (l l) numerically, using the measured data for p2 and u2 as a function of y.

Examine Equation (11) more closely. The quantrty ur - uz is the velocity decrement at a

given y location. That is, because of the drag on the body, there is a wake that trails downstream

of the body. In this wake, there is a loss in flow velocif ur - uz. The quantiy mwis simply the

mass flux; when multiplied by ot - u2, it gives the decrement in momentum. Therefore, the

integral in Equation (11) is physically the decrement in momentum flow that exists across the

-- W6ke, and from Equation (11), this #ake momentum decrement is equal to the drag on the body.

For incompressible flow, p : constant and is known. For this case, Equation (11)

becomes

. D'=o JJ uz(ur-uz)dy

Equation (12) is the answer to the questions posed at the beginning of this section. It shows how

a measurement of the velocity distribution across the wake of a body can yield the drag. These

velocity distributions are conventionally measwed with a Pitot rake:
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Denote the pressure distributions on the upper andjower walls by pr(") and.p, (x) respectively.

The walls are close enough to the modbl such that pu drd pz tr€ not necessarily equal to p-.

Assume that faces ai and bh are far enough upstream and downstream of the model such that

P: P- and v:0 and ai and bh.
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iut tt. y-component of Eq. (2.11)inthe text:

L:- # rpi at; v- lJ rnaSlv
sabhi++

The fust integral = 0 over all surfaces, either because V' ds = 0 or because v = 0. Hence

.bh
L':- JJtnaSlv:-tJ Pudx- J n,d*1

abhi a i

Minus sign because y-component is in downward
direction.

Note: In the above, the integrals over ia and bh cancel because p = p. on both faces. Hence

L':
hbc . 'f
J p, o*- J puox
i-a



CHAPTER 3

3.1 From Table A.1, for M: 0.7;pJp= l.3BTandTo/T: 1.09g. Hence.

r^\
Po = p 

l?J 
: o.e (1.01 x to-5y11.387y :

Note that P*/po can be obtained from Table A.l as the value of p/po for M: l. Hence, from

Table A.l for M = 1; po/p* :1.893 and TolT* : 1.2. Thus.

o* : n [&-) fa'.l :0.e (r.0r * ro)tr.s; 7)/rr8e3:- '\ p/ (p"/

r*:r t+) [+l :250 (t.os8)/1.2:ET&m
\1./ \lol

u*=.'ffi:^l@:bog2'A;d

1.26 x 10" N/m' (or 1.248 atrn

x 10" N/m'(or 0.659 atm

3.2
po _ 1.5 x 106 _",.,
p 5x104

From Table 4.1' Fod @near interpolation)

Also from Table A.1:

Hence,

T,
T

: 2.643 (linear interpolation)

/r\ro=r [+l :2oo(2.64T = ltt6E\ t./



3.3' a: JAT : rftr.4xr7r6x500) :1096ff/sec

M : y la= 3000/1 09 6 = (2.7 4i,

From Eq. (3.37)

(M*;z: y+l 2.4 :3.6

3.4 From Table A.2,for Mr :3; pzlpr:10.33, pzlpr:3.857, po, /po,= 0.3283, and

W4.4:.s2. rhus,

pz : pr @zlp): (lxt.0t x tO511tO.:3) : 1.043 x 106 N/m2 (or 10.33 atm)

Thus,
//

f.\
Pz= Pr I 

g 
I 
: (1)(l.ol x to)1t0.:3) :

\p,/

. /^ \_ Pz: pr | 
,, 

| :1.23 (3.lsT=wqUffi
\pr)

12: o:=#:#:F6m- pzR (4.744)(287)

u: Jtar, = ,[(L4)Q87)Q66) = 554.8 m/sec

w- a2M2= (554.9)(0.4752)= EOI.O rnAid

From Table A.l, for Mr :3, 
Po, /p1 :36.73 a1d T", lTr:2.8. Hence:

(P" \ t 
iu ,n. nnurn.Ao^\po,: pl 

t ij fr: 
(1.01 x rc\ Q6.73X0.32s3) : h218 "' 

10fr-/*-1

.i'

'(-Lr)' 
*' -'

M-:Tq



3.5
, 1.22 x 10'

(a) pJp = ffii# :7.2r. From rable e.t: F<s3

, 7222
(b) pJp : ffi:3.413. From Table A.l; we find this would correspond to M- = 1.45.

However, since this is supersonic, a normal shock sits in front of the Pitot tube. Hence,

Po is now the total pressure behind a normal shock wave. Thus we have to use Table A.2.

1)))
p^- /p, = 

t-z-!-'-:3.412. FromTableA.2' M;= l.jl
^ "? 2116

' l3tg: n.85. FromTableA.2' M;=Til(c) Po, / Pr = 
.,OZO

3.6 For the shock compression, use Mr iIS

isentropic compression, use pzlpt: (v1lv1)-7

:

NORMAL SHOCK COMPRESSION

" (pzpr)-t

Mr pzlil =vzlYr Pzlqr

a parameter, along with Table A.2. For the

ISENTOPIC COMPRESSION

vzlvr wlPr

1.0
t.2
1.5

t.7
2.0
2.5
3.0

I
1.34
1.86
2.20
2.67
J.JJ
3.86

1

0.745
0.537
0.455
0.375
0.30
0.259

1

l.5l
2.46
3.21
4.s0
7.13

10.3

I
0.7s
0.50
0.40
0.30
0.20

1

1.50
2.64

. 3.61

5.4
9.51



Note that: t
(a) For a given decrease in volume, a shock wave yields a higher pressure and therefore

many be construed to be more "effective" than an isentropic compression.

(b) On the other hand, becarise the entropy increases across the shock, a shock wave is

less efficient than an isentropic compression. To obtain a given pzlpt it requires

more work via a shock.

(c) Note that for vzlvr near unity, the shock and isentropic curves are essentially the

same. This is a reflection that the entropy increase across weak shocks (Mr < 1.3) is

negligible.

3.7 From Table A.1 fo M-::g, fJT =289.9;To: (289.8)(270):78246"4

This temperature is almost 8 times the surface temperature of the sun. Long before this

temperature is evenreached, the air will dissociate adiorize,and y is no longer constant, nor


