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CHAPTER 1
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RT (1716)(850)
v= L 123 fit'/slug
P
p _ (10)L01 x 10°) :
1.2 == . =111.0 kg/
P RT (287)(320)
P (10)(1.01 x 10°) T
n=—-= =)
RT (138 x 107)(320) m
5
n= __p _ (10)(1.01 x 10°) 10,0345 kg — mole
RT pRT (11.0)(8314)(320) kg
Ve
1.3 From the definition of enthe_ilpy,
h=e+pv=e+RT (AD)

For a calorically perfect gas, this becomes

¢, T=¢, T+RT,or

For a thermally perfect gas, Eq. (A1) is first differentiated

dh = de + Rdt

¢, dT =c¢, dT =Rdt
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(2) R=1716 fi-Ib/slug°R

_ R _(14)(1716) = 6006 fi-Ib/slug°R

y-1 04

Cp

52— 51 = (6006) ¢n (1.687) - (1716) n 4.5

52— 51 =[559.9 fi-Ib/slug°R]

(b) R =287 joule/kg°’K

- R _ (14)(287)
Y= 1 04

cp = 1004.5 joule/kg°K

$2— 51 =(1004.5) ¢n (1.687)-287 ¢n 4.5)

s2 — 51 =[93.6 joule/kg°K]

14

¥
T, )71 14
P2=pi (?2] = 1800 (400/500) °4

1

P2 =[824.3 Ib/ft]

P, 8243 '
=B " _ 00012 slug/ie
P27 RT, T W716)00) ug/

1.6

Volume of room - (20)(15)(8) =2400 ft>

Standard sea level de‘nsity =0.002377 slug/ft®

Mass of air = (0.002377)(2400) =

Weight = Mass x acceleration of gravity = (5.7)(32.2) = & gt
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(@ dp=-pvVdVv
dp
and dp=prtdp, or dp= L
pT
Combining
, 2 =-pVdV
fois
dp=-tp?VdVv
E =-1p VAV
Yo,
dp =-tpV? av
A" 7
1 I 6 2
b) 1= —= s— =7.07x 10" m*/N
o (14)(1.01 x 10°)

dv

Cdp _ 1, p V2 e (7.07 % 10°)(1.23)(10)%(0.01)
P

P 7109

2
Here, g will be larger by the ratio (1(1)30) .
p | |

’ 2
d—’o=(-_8.7x10'6) (%go) =1 8.7x107
P :

Comment: By increasing the véloc:ity of a factor of 100, the fractional change in density is

increased by factor of 10*. This is just another indication of why high-speed flows must be

treated as compressible.
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CHAPTER 2

2.1  Consider a two-dimensional body in a ﬂow, as sketched in Figure A. A control volume is
drawn around this body, as given in the dashed lines in Figure A. The control volume is
bounded by:
1. The upper and lower streamlines far above and below the body (ab and hi,
respectively.)
2. Lines perpendicular to the flow velocity far ahead of and_bchind the body (ai and
bh, respectively).
3. A cut that surrounds and wraps the surface of the body (cdefg).
The entire control volume is abcdefhia. The width of the control voimne in the z direction
(perpendicular to the page) is unity. Stations 1 and 2 are inflow and out'ﬂ;)w stations,
respectively.

Assume that the contour abhi is far enough from the body such that the pressure is
everywhere the same on abhi and eéiual to the fregstrcam pressure p = p... Also, assume that the
inflow velocity u, is uniform across ai (as it would be in a fréestfeam, or a test section of a wind
tunnel.) The outflow velocity u, is not uniform across bh, because the presence of the bod_y has
created a wake at the outflow station. However, assume that both u; and u; are in the x direction;
hence, u; = constant and u, = f{(y).

Consider the surface forces on the control volume shown in Figure A. They stem from
two contributions:

1. The pressure distribution over the surface, abhi,

Jf pes

abhi




e

Uniform velocity:

The surface shear stress on ab and hi has been neglected. Also, note that inFigure A the cuts cd
and fg are taken adjacent to each othe , hence any she‘gf stress or pressure distfibufi-‘-on on one is
equal and opposite to that on the other; i.e., the surface forces on cd and fg cancel each other.
Also, note that the surface on def is the ggual and opp- osite reaction to the shear stress and
‘ p?essm‘e distribution created by the how over the surface of the body. To see this more clearly,
examine Figure B. On the left is shown the flow over the body. The moving fluid exerts
pressure and shear stress distributions over the body surface which create a resultant
aerodynamic force per unit span R’ on the body. In turn, by Newton’s third law, the body exerts
equal and opposite pressure and shear stress distributions on the flow, i.e., on the part of the
control surface bounded by def. Hence, the body exerts a force —R’ on the control surface, as

shown on the right of Figure B. With the above in mind, the total surface force on the entire

control volume is

Surface force = — H pdsS- R

abhi




Moreover, this is the total force on the éontrol volume shown in Figure A because the volumetric
body force is negligible.

Consider the integral form of the momentum equation as given by Equation (2.11) iﬁ the
text. The right-hand side of this equation is physically the force on the fluid moving through the
control volume. For the control volume in Figure A, this force is simply the expression given by
Equation (1). Hence, using Equation (2.11), with the right-hand side given by Equation (1), we

have

§¢H pv%ﬁ dv+§f (Va9 V=-[] pps-r @
5 s

abhi

e (‘- - el
- — ‘.:-‘\ " d
— ._"‘-*
; £
Flow exerts p and 7 —R Equal and opposite :
on the surface of the reaction; body exerts
body, giving a resultant a surface force on the
aerodynamic force R section of the control
volume def that equals
-R

Figure B

Assuming steady flow, Equation (2) becomes

R'=-_<g (pV'dS)V—aQ; pdS 3)




_ fogs : S
Equation (3) is a vector equation. Consider again the control Volumé in Figure A. Take the x

component of Equation (3), nothing that the inflow and outflow velocities u; and u, are in the x

direction and the x component of R’ is the aerodynamic drag per unit span D':

D=-4f eV aS)u-|[ @dsy )

abhi
In Equation (4), the last term is the component of the pressure force in the x direction. [The
expression (p dS)y is the x component of the pressure force exerted on the elemental area dS of
the control surface.] Recall that the boundaries of the control volume abhi are chosen far enough

from the body such that p is constant along these boundaries. For a constant pressure.

I| asp=0 ®)

abhi
because, looking along the x direction in Figure A, .the pressure force on abiﬁ pushing toward the
. ; _ _
right exactly balances the pressure force pushing toward the left. This is true no matter what the
shape of abhi is, as long as p is constant along the surface. Therefore, substituting Equation (5)

into (4), we obtain

-

D’ =-<j:j (pV - dS)u (6)

Evaluating the surface integral in Equation (6), we note from F igure A that:
1. Tﬁe sections ab, hi and def are streamlheS of the flow. Since by definition V iis
parallel to the streamlines and dS is perpendicular to the control surface, along these
sections V and dS are perpendicular vectors, and hence V- dS = 0. As a result, the

contributions of ab, hi and def to the integral in Equation (6) are zero.




2. The cuts cd and fg are adjacent to each other. The mass flux out of one is identic’ally.
the mass flux into the other. Hence, the contributions of cd and fg to the integral in

Equation (6) cancel each other.
As a result, the only contributions to the integral in Equation (6) come from sections aj and bh.
These sections are oriented in the y direction. Also, the control volume has unit depth in the z
direction (perpendicular to the page). Hence, for these sections, dS = dy(1). The integral in

Equation (6) becomes

ﬁ PV dS)u=- _[ ia piuzldy+ J-: p2u22dy @)

N
Note that the minus in front of the first term on the right-hand side of Equation (7) is due to V
and dS being in opposite directions along ai (station 1 is an inflow boundary); in contrast, V and
dS are in the same direction over hb {station 2 is arvoutflow boundary), and helié(; the second
term has a positive sign. _
Before going further with Equation (7), consider the integral form of the continuity
equation for steady flow. Applied to the control volume in Figure A, this becomes

a b ’
- L piu; dy + J.h pux dy =0
or,

J. pudy= [ pasdy | ' ®)

Multiplying Equation (8) by u;, which is a constant, we obtain

a ) b
I . pruwdy = Ih pauzuy dy )
Substituting Equation (9) into Equation (7), we have

b b 2
cﬁ PV dS)u=- I , P2w dy + _[ , P2 2dy




b
g (pV 0 dS) u=- J.h P2u2 (111 = u2) dy 10)
N !

Substituting Equation (10) into Equation (6) yields

D' = I: p2uz (U3 —up) dy (11

Equation (11) is the desired result of this section; it expresses the drag of a body in terms
of the known freestream velocity u; and the flow-field properties p, and u,, across a vertical
station downstream of the body. These downstream properties can be measured in a wind
tunnel, and the drag per unit span of the body D’ can be obtained by evaluating the integral in
Equation (11) numerically, using the measured data for p2 and u; as a function of y.

Examine Equation (11) more closely. The quantity u; — u; is the velocity decrement at a
given y location. That is, because of the drag on the body, there is a wake that trails downstream
of the body. In this wake, there is a loss in flow veloci@ u; —uz. The quantity pyu, i‘s’ simply the

' mass flux; when multiplied by u; — w, it gives the decrement in momentum. Therefore, the
integral in Equation (11) is physically the decrement in momentum flow that exists across the

_~ wake, and from Equation (11), this wake momentum decrement is equal to the drag on the body.
For incompressible flow, p = constant and is known. For this case, Equation (11)

becomes

b
D'=p Ih u; (u; —w) dy ‘ (12)

Equation (12) is the answer to the questions posed at the beginning of this section. It shows how

a measurement of the velocity distribution across the wake of a body can yield the drag. These

velocity distributions are conventionally measured with a Pitot rake:




~ Denote the pressure distributions on the upper and lower walls by p.(x) and p , (x) respectively.

The walls are close enough to the model such that p, #hd p, are not necessarily equal to p.

=

Assume that faces ai and bh are far enough upstream and downstream of the model such that
P = P and v=0 | and ai and bh.

3 Take the y-component of Eq. (2.11) in the text:

L=-¢f (pV" ) v- [ pdS)y

abhi

The first integral = 0 over all surfaces, either because {; c?s = 0 or because v=10. Hence
- b . h
L'=- [[ @d®y =-[[ padx- | p, dx]
abhi a i

Minus sign because y-component is in downward
direction.

Note: In the above, the integrals over ia and bh cancel because p = p. on both faces. Hence

h ,b
L'= _[ p, dx- I pu dx

i




3.1

CHAPTER 3

From Table A.1, for M = 0.7; p,/p = 1.387 and To/T = 1.098. Hence,

Po=Dp (l’p&) =0.9 (1.01 x 10%)(1.387) = [[26 x 10° N/ (or 1.248 atm)|

T,=T [TT] =250 (1.098) = p74.5°K

2] )

Note that p*/p0 can be obtained from Table A.1 as the value of p/po for M = 1. Hence from

Table A.1 for M = 1; po/p* = 1.893 and T/T* = 1.2. Thus,

, * T '
p*=p (-I;i) (i—) =0.9(1.01x 105)(1.387)/1?893 =16.66 x 10* N/m? (or 0.659 atm)

* .
T*=T (T?) G—) =250 (1.098)/1.2 =

a*= _RT = J(1.4)(287)(228.8) =[303.2 m/sed

3.2

6
p_(,=1.5x1(31 - 130
p -5x10

From Table A.1: (linear interpolation)

T
Also from Table A.1: —]‘j— =2.643 (linear interpolation)

Hence,

T,=T (T?) =200 (2.643) =




33" a= \RT = /(14)(1716)(500) = 1096 ft/sec
M = V/a=3000/1096 = (2.74).

From Eq. (3.37)

3.4  From Table A.2, for M = 3; pa/p1 = 10.33, po/p; = 3.857, P., /P, =0.3283, and
M, =0.4752]. Thus,
p2=p1 (p2/p1) = (1)(1.01 x 10%)(10.33) = 1.043 x 10° N/m? (or 10.33 atm)

Thus,

= (—2J (D). 01x105)(10 33) ={1.043 x 10° N/m” (or 10.33 atm)

1

. pz—pl( j —123(3857)— 744 kg/m
o2

} 6
e P 108310 _peey

p, R (4.744)(287)

ay = IRT, =+/(14)(287)(766) = 554.8 m/sec

uy = 2 My = (554.8)(0.4752) = 263.6 m/se

From Table A.1, for M; =3, p, /p1 =36.73 and T, /T; =2.8. Hence:

P, =p1 (p ] pi=(1.o.1 x 10%) (36.73)(0.3283)=|1.218 X 10° N/m’}
’ P o . ' : ’ o

1




‘ (T, ) p (L) 101 x 10° ‘
T, =T, =T1(—1‘) p_l(_L] _101 x 107 (2.8) =

“Rp, \ T,/ (287)(123)

3.5

5
(@) po/p= L2—2—Xl—05=1.21. From Table A.1:

101 x 10

7222
() po/p= e = 3.413. From Table A.1, we find this would correspond to M, = 1.45.

However, since this is supersonic, a normal shock sits in front of the Pitot tube. Hence,
P, is now the total pressure behind a normal shock wave. Thus we have to use Table A.2.

7222

P, /P = >e =13.412. From Table A.2:

13107

©) Po, /Py == 1285. From Table A2:

¥

3.6

For the shock compression; use M, as a parameter, along with Table A.2. For the

isentropic compression, use py/p1 = (Vi/v1)”

NORMAL SHOCK COMPRESSION ISENTOPIC COMPRESSION

(papy)”

M; pz/ P1 = V2/V1 p2/p1 Vz/Vl pz/pl
1.0 1 1 1 1 |
1.2 1.34 0.745 1.51 0.75 1.50
1.5 1.86  0.537 2.46 0.50 2.64
1.7 2.20 0.455 321 0.40 . 3.61
2.0 2.67 0.375 4.50 0.30 54
2.5 3.33 0.30 7.13 0.20 9.51

3.0 3.86 0.259 10.3
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Note that: 7/
(a) For a given decrease in \;ol_ume, a shock wave yields a higher pressure and therefore
many be construed to be more “effective” than an isentropic compression.
= (b) On the other hand, because the entropy increases across the shock, a shock wave is
less efficient than an isentropic compression. To obtain a given pa/pi, it requires
more work via a shock.
(c) Note that for v/vi near unity, the shock and isentropic curves are essentially the

same. This is a reflection that the entropy increase across weak shocks (M; < 1.3) is

negligible.

37 From Table A.1 for Mo = 38, To/T = 289.9; T, = (289.8)(270) = 78246°

This temperature is almost 8 times the surface temperature of the sun. Long before this

temperature is even reached, the air will dissociate ad ionize, and y is no longer constant, nor




