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0.1 Basic Problems

0.1 Let z = 8 + j3 and v = 9− j2,

(a) Find

(i) Re(z) + Im(v), (ii) |z + v|, (iii) |zv|, (iv) ∠z + ∠v, (v) |v/z|, (vi) ∠(v/z)

(b) Find the trigonometric and polar forms of

(i) z + v, (ii) zv, (iii) z∗ (iv) zz∗, (v) z − v

Answers: (a)Re(z) + Im(v) = 6; |v/z| =
√

85/
√

73; (b) zz∗ = |z|2 = 73.
Solution

(a) i. Re(z) + Im(v) = 8− 2 = 6

ii. |z + v| = |17 + j1| =
√

172 + 1

iii. |zv| = |72− j16 + j27 + 6| = |78 + j11| =
√

782 + 112

iv. ∠z + ∠v = tan−1(3/8)− tan−1(2/9)

v. |v/z| = |v|/|z| =
√

85/
√

73

vi. ∠(v/z) = − tan−1(2/9)− tan−1(3/8)

(b) i. z + v = 17 + j =
√

172 + 1ej tan−1(1/17)

ii. zv = 78 + j11 =
√

782 + 112ej tan−1(11/78)

iii. z∗ = 8− j3 =
√

64 + 9(e−j tan−1(3/8))∗ =
√

73ej tan−1(3/8)

iv. zz∗ = |z|2 = 73

v. z − v = −1 + j5 =
√

1 + 25e−j tan−1(5)
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0.2 Use Euler’s identity to

(a) show that

(i) cos(θ − π/2) = sin(θ), (ii) − sin(θ − π/2) = cos(θ), (iii) cos(θ) = sin(θ + π/2).

(b) to find

(i)

∫ 1

0

cos(2πt) sin(2πt)dt, (ii)

∫ 1

0

cos2(2πt)dt.

Answers: (b) 0 and 1/2.

Solution

(a) We have

i. cos(θ − π/2) = 0.5(ej(θ−π/2) + e−j(θ−π/2)) = −j0.5(ejθ − e−jθ) = sin(θ)

ii. − sin(θ − π/2) = 0.5j(ej(θ−π/2) − e−j(θ−π/2)) = 0.5j(−j)(ejθ + e−jθ) = cos(θ)

iii. sin(θ + π/2) = (jejθ + je−jθ)/(2j) = cos(θ)

(b) i. cos(2πt) sin(2πt) = (1/4j)(ej4πt − e−j4πt) so that

∫ 1

0

cos(2πt) sin(2πt)dt =
1

4j

ej4πt

4πj
|10 +

1

4j

e−j4πt

4πj
|10 = 0 + 0 = 0

ii. We have
cos2(2πt) =

1

4
(ej4πt + 2 + e−j4πt) =

1

2
(1 + cos(4πt))

so that its integral is 1/2 since the integral of cos(4πt) is over two of its periods and it
is zero.
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0.3 Use Euler’s identity to

(a) show the identities

(i) cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

(ii) sin(α+ β) = sin(α) cos(β) + cos(α) sin(β),

(b) find an expression for cos(α) cos(β), and for sin(α) sin(β).

Answers: ejαejβ = cos(α+β) + j sin(α+β) = [cos(α) cos(β)− sin(α) sin(β)] + j[sin(α) cos(β) +
cos(α) sin(β)].

Solution
(a) Using Euler’s identity the product

ejαejβ = (cos(α) + j sin(α))(cos(β) + j sin(β))

= [cos(α) cos(β)− sin(α) sin(β)] + j[sin(α) cos(β) + cos(α) sin(β)]

while

ej(α+β) = cos(α+ β) + j sin(α+ β)

so that equating the real and imaginary parts of the above two equations we get the desired
trigonometric identities.

(b) We have

cos(α) cos(β) = 0.5(ejα + e−jα) 0.5(ejβ + e−jβ)

= 0.25(ej(α+β) + e−j(α+β)) + 0.25(ej(α−β) + e−j(α−β))

= 0.5 cos(α+ β) + 0.5 cos(α− β)

Now,

sin(α) sin(β) = cos(α− π/2) cos(β − π/2)

= 0.5 cos(α− π/2 + β − π/2) + 0.5 cos(α− π/2− β + π/2)

= 0.5 cos(α+ β − π) + 0.5 cos(α− β)

= −0.5 cos(α+ β) + 0.5 cos(α− β)

Copyright 2018, Elsevier, Inc. All rights reserved.



Chaparro-Akan — Signals and Systems using MATLAB 0.5

0.4 Consider the calculation of roots of an equation zN = α where N ≥ 1 is an integer and α =
|α|ejφ a nonzero complex number.

(a) First verify that there are exactly N roots for this equation and that they are given by
zk = rejθk where r = |α|1/N and θk = (φ+ 2πk)/N for k = 0, 1, · · · , N − 1.

(b) Use the above result to find the roots of the following equations

(i) z2 = 1, (ii) z2 = −1, (iii) z3 = 1, (iv) z3 = −1.

and plot them in a polar plane (i..e., indicating their magnitude and phase). Explain how
the roots are distributed in the polar plane.

Answers: Roots of z3 = −1 = 1ejπ are zk = 1ej(π+2πk)/3, k = 0, 1, 2, equally spaced around
circle of radius r.

Solution
(a) Replacing zk = |α|1/Nej(φ+2πk)/N in zN we get zNk = |α|ej(φ+2πk) = |α|ej(φ) = α for any
value of k = 0, · · · , N − 1.
(b) Applying the above result we have:

• For z2 = 1 = 1ej2π the roots are zk = 1ej(2π+2πk)/2, k = 0, 1. When k = 0, z0 = ejπ = −1
and z1 = ej2π = 1.

• When z2 = −1 = 1ejπ the roots are zk = 1ej(π+2πk)/2, k = 0, 1. When k = 0, z0 = ejπ/2 = j,
and z1 = ej3π/2 = −j.

• For z3 = 1 = 1ej2π the roots are zk = 1ej(2π+2πk)/3, k = 0, 1, 2. When k = 0, z0 = ej2π/3;
for k = 1, z1 = ej4π/3 = e−j2π/3 = z∗0 ; and for k = 2, z2 = 1ej(2π) = 1.

• When z3 = −1 = 1ejπ the roots are zk = 1ej(π+2πk)/3, k = 0, 1, 2. When k = 0, z0 = ejπ/3;
for k = 1, z1 = ejπ = −1; and for k = 2, z2 = 1ej(5π)/3 = 1ej(−π)/3 = z∗0

(c) Notice that the roots are equally spaced around a circle of radius r and that the complex
roots appear as pairs of complex conjugate roots.
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0.5 Consider a function of z = 1 + j1, w = ez

(a) Find (i) log(w), (ii)Re(w), (iii) Im(w)

(b) What is w + w∗, where w∗ is the complex conjugate of w?

(c) Determine |w|, ∠w and | log(w)|2 ?

(d) Express cos(1) in terms of w using Euler’s identity.

Answers: log(w) = z; w + w∗ = 2Re[w] = 2e cos(1).

Solution
(a) If w = ez then

log(w) = z = 1 + j1

given that the log and e functions are the inverse of each other.
The real and imaginary of w are

w = ez = e1ej1 = e cos(1)︸ ︷︷ ︸
real part

+j e sin(1)︸ ︷︷ ︸
imaginary part

(b) The imaginary parts are cancelled and the real parts added twice in

w + w∗ = 2Re[w] = 2e cos(1)

(c) Replacing z
w = ez = e1ej1

so that |w| = e and ∠w = 1.
Using the result in (a)

| log(w)|2 = |z|2 = 2

(d) According to Euler’s equation

cos(1) = 0.5(ej + e−j) = 0.5

(
w

e
+
w∗

e

)

which can be verified using w + w∗ obtained above.

Copyright 2018, Elsevier, Inc. All rights reserved.
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0.6 A phasor can be thought of as a vector, representing a complex number, rotating around the
polar plane at a certain frequency in radians/second. The projection of such a vector onto
the real axis gives a cosine with a certain amplitude and phase. This problem will show the
algebra of phasors which would help you with some of the trigonometric identities that are
hard to remember.

(a) When you plot y(t) = A sin(Ω0t) you notice that it is a cosine x(t) = A cos(Ω0t) shifted in
time, i.e.,

y(t) = A sin(Ω0t) = A cos(Ω0(t−∆t)) = x(t−∆t)

how much is this shift ∆t? Better yet, what is ∆θ = Ω0∆t or the shift in phase? One
thus only need to consider cosine functions with different phase shifts instead of sines
and cosines.

(b) From above, the phasor that generates x(t) = A cos(Ω0t) isAej0 so that x(t) = Re[Aej0ejΩ0t].
The phasor corresponding to the sine y(t) should then be Ae−jπ/2. Obtain an expression
for y(t) similar to the one for x(t) in terms of this phasor.

(c) From the above results, give the phasors corresponding to −x(t) = −A cos(Ω0t) and
−y(t) = − sin(Ω0t). Plot the phasors that generate cos, sin, − cos and − sin for a given
frequency. Do you see now how these functions are connected? How many radians do
you need to shift in positive or negative direction to get a sine from a cosine, etc.

(d) Suppose then you have the sum of two sinusoids, for instance z(t) = x(t) + y(t) =
A cos(Ω0t) +A sin(Ω0t), adding the corresponding phasors for x(t) and y(t) at some time,
e.g., t = 0, which is just a sum of two vectors, you should get a vector and the correspond-
ing phasor. For x(t), y(t), obtain their corresponding phasors and then obtain from them
the phasor corresponding to z(t) = x(t) + y(t).

(e) Find the phasors corresponding to

(i) 4 cos(2t+ π/3), (ii) − 4 sin(2t+ π/3), (iii) 4 cos(2t+ π/3)− 4 sin(2t+ π/3)

Answers: sin(Ω0t) = cos(Ω0(t−T0/4)) = cos(Ω0t−π/2) since Ω0 = 2π/T0; z(t) =
√

2A cos(Ω0t−
π/4); (e) (i) 4ejπ/3; (iii) 4

√
2ej7π/12.

Solution

(a) Shifting to the right a cosine by a fourth of its period we get a sinusoid, thus

sin(Ω0t) = cos(Ω0(t− T0/4)) = cos(Ω0t− Ω0T0/4) = cos(Ω0t− π/2)

since Ω0 = 2π/T0 or Ω0T0 = 2π.
(b) The phasor that generates a sine is Ae−jπ/2 since

y(t) = Re[Ae−jπ/2ejΩ0t] = Re[Aej(Ω0t−π/2)] = A cos(Ω0t− π/2)

which equals A sin(Ω0t).
(c) The phasors corresponding to −x(t) = −A cos(Ω0t) = A cos(Ω0t+ π) is Aejπ . For

−y(t) = −A sin(Ω0t) = −A cos(Ω0t− π/2) = A cos(Ω0t− π/2 + π) = A cos(Ω0t+ π/2)

the phasor is Aejπ/2. Thus, relating any sinusoid to the corresponding cosine, the magni-
tude and angle of this cosine gives the magnitude and phase of the phasor that generates
the given sinusoid.

Copyright 2018, Elsevier, Inc. All rights reserved.
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(d) If z(t) = x(t) + y(t) = A cos(Ω0t) +A sin(Ω0t), the phasor corresponding to z(t) is the sum
of the phasors Aej0, corresponding to A cos(Ω0t), with the phasor Ae−jπ/2, corresponding
to A sin(Ω0t), which gives

√
2Ae−jπ/4 (equivalently the sum of a vector with length A and

angle 0 with another vector of length A and angle −π/2). We have that

z(t) = Re
[√

2Ae−jπ/4ejΩ0t
]

=
√

2A cos(Ω0t− π/4)

(e) i. Phasor 4ejπ/3

ii. −4 sin(2t+ π/3) = 4 cos(2t+ π/3 + π/2) with phasor 4ej5π/6

iii. We have

4 cos(2t+ π/3)− 4 sin(2t+ π/3) = Re[(4ejπ/3 + 4ej(π/2+π/3))ej2t]

= Re[4ejπ/3 (1 + ejπ/2)︸ ︷︷ ︸√
2ejπ/4

ej2t]

= Re[4
√

2ej7π/12ej2t]

so that the phasor is 4
√

2ej7π/12

Copyright 2018, Elsevier, Inc. All rights reserved.
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0.7 To get an idea of the number of bits generated and processed by a digital system consider the
following applications:

(a) A compact disc (CD) is capable of storing 75 minutes of “CD quality” stereo (left and right
channels are recorded) music. Calculate the number of bits that are stored in the CD as
raw data.
Hint: find out what ’CD quality’ means in the binary representation of each sample.

(b) Find out what the vocoder in your cell phone is used for. To attaining “telephone quality”
voice you use a sampling rate of 10, 000 samples/sec, and that each sample is represented
by 8 bits. Calculate the number of bits that your cell-phone has to process every second
that you talk. Why would you then need a vocoder?

(c) Find out whether text messaging is cheaper or more expensive than voice. Explain how
the text messaging works.

(d) Find out how an audio CD and an audio DVD compare. Find out why it is said that a vinyl
long-play record reproduces sounds much better. Are we going backwards with digital
technology in music recording? Explain.

(e) To understand why video streaming in the internet is many times of low quality, consider
the amount of data that needs to be processed by a video compressor every second. As-
sume the size of a video frame, in pixels, is 352 × 240, and that an acceptable quality for
the image is obtained by allocating 8 bits/pixel and to avoid jerking effects we use 60
frames/second.
• How many pixels need to be processed every second?
• How many bits would be available for transmission every second?
• The above is raw data, compression changes the whole picture (literally), find out

what some of the compression methods are.

Answers: (a) About 6.4 Gbs; vocoder (short for voice encoder) reduces number of transmitted
bits while keeping voice recognizable.

Solution
(a) Assuming a maximum frequency of 22.05 kHz for the acoustic signal, the numbers of bytes
(8 bits per byte) for two channels (stereo) and a 75 minutes recording is greater or equal to:
2 × 22, 050 samples/channel/second × 2 bytes/sample × 2 channels × 75 minutes × 60 sec-
onds/minute = 7.938 × 108 bytes. Multiplying by 8 we get the number of bits. CD quality
means that the signal is sampled at 44.1 kHz and each sample is represented by 16 bits or 2
bytes.

(b) The raw data would consist of 8 (bits/sample)×10, 000 (samples/sec)=80, 000 bits/sec. The
vocoder is part of a larger unit called a digital signal processor chip set. It uses various proce-
dures to reduce the number of bits that are transmitted while still keeping your voice recogniz-
able. When there is silence it does not transmit, letting another signal use the channel during
pauses.

(c) Texting between cell phones is possible by sending short messages (160 characters) using the
short message services (SMS). Whenever your cell-phone communicates with the cell phone
tower there is an exchange of messages over the control channel for localization, and call setup.
This channel provides a pathway for SMS messages by sending packets of data. Except for the
cost of storing messages, the procedure is rather inexpensive and convenient to users.

Copyright 2018, Elsevier, Inc. All rights reserved.
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(d) For CD audio the sampling rate is 44.1 kHz with 16 bits/sample. For DVD audio the sam-
pling rate is 192 kHz with 24 bits/sample. The sampling process requires getting rid of high
frequencies in the signal, also each sample is only approximated by the binary representation,
so analog recording could sound better in some cases.

(e) The number of pixels processed every second is: 352× 240 pixels/frame ×60 frames/sec.
The number of bits available for transmission every second is obtained by multiplying the
above answer by 8 bits/pixel. There many compression methods JPEG, MPEG, etc.

Copyright 2018, Elsevier, Inc. All rights reserved.
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0.8 The geometric series

S =

N−1∑

n=0

αn

will be used quite frequently in the next chapters so let us look at some of its properties:

(a) Suppose α = 1 what is S equal to?
(b) Suppose α 6= 1 show that

S =
1− αN
1− α

Verify that (1 − α)S = (1 − αN ). Why do you need the constraint that α 6= 1? Would this
sum exist if α > 1? Explain.

(c) Suppose now that N = ∞, under what conditions will S exist? if it does, what would S
be equal to? Explain.

(d) Suppose again that N =∞ in the definition of S. The derivative of S with respect to α is

S1 =
dS

dα
=

∞∑

n=0

nαn−1

obtain a rational expression to find S1 .

Answers: S = N when α = 1, S = (1− αN )/(1− α) when α 6= 1.

Solution
(a) If α = 1 then

S =

N−1∑

n=0

1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
N times

= N

(b) The expression

S(1− α) = S − αS
= (1 + α+ · · ·+ αN−1)− (α+ α2 + · · ·+ αN−1 + αN )

= 1− αN

as the intermediate terms cancel. So that

S =
1− αN
1− α , α 6= 1

Since we do not want the denominator 1− α to be zero, the above requires that α 6= 1. If α = 1
the sum was found in (a). As a finite sum, it exists for any finite values of α.
Putting (a) and (b) together we have

S =

{
(1− αN )/(1− α) α 6= 1
N α = 1

(c) If N is infinite, the sum is of infinite length and we need to impose the condition that |α| < 1
so that αn decays as n→∞. In that case, the term αN → 0 as N →∞, and the sum is

S =
1

1− α |α| < 1

Copyright 2018, Elsevier, Inc. All rights reserved.
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If |α| ≥ 1 this sum does not exist, i.e., it becomes infinite.
(d) The derivative becomes

S1 =
dS

dα
=

∞∑

n=0

nαn−1 =
1

(1− α)2
.

Copyright 2018, Elsevier, Inc. All rights reserved.
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0.2 Problems using MATLAB

0.9 Derivative and finite difference — Let y(t) = dx(t)/dt, where x(t) = 4 cos(2πt), −∞ < t <∞.
Find y(t) analytically and determine a value of Ts for which ∆[x(nTs)]/Ts = y(nTs) (consider
as possible values Ts = 0.01 and Ts = 0.1). Use the MATLAB function diff or create your own
to compute the finite difference. Plot the finite difference in the range [0, 1] and compare it with
the actual derivative y(t) in that range. Explain your results for the given values of Ts.
Answers: y(t) = −8π sin(2πt) has same sampling period as x(t), Ts ≤ 0.5; Ts = 0.01 gives
better results.

Solution
The derivative is

y(t) =
dx(t)

dt
= −8π sin(2πt)

which has the same frequency as x(t), thus the sampling period should be like in the previous
problem, Ts ≤ 0.5.

% Pr. 0.9
clear all
% actual derivative
Tss=0.0001;t1=0:Tss:3;
y=-8*pi*sin(2*pi*t1);
figure(2)
% forward difference
Ts=0.01;t=[0:Ts:3];N=length(t);
subplot(211)
xa=4*cos(2*pi*t); % sampled signal
der1_x=forwardiff(xa,Ts,t,y,t1);

clear der1_x
% forward difference
Ts=0.1;t=[0:Ts:3];N=length(t);
subplot(212)
xa=4*cos(2*pi*t); % sampled signal
der1_x=forwardiff(xa,Ts,t,y,t1);

The function forwardiff computes and plots the forward difference and the actual derivative.

function der=forwardiff(xa,Ts,t,y,t1)
% % forward difference
% % xa: sampled signal using Ts
% % y: actual derivative defined in t
N=length(t);n=0:N-2;
der=diff(xa)/Ts;
stem(n*Ts,der,’filled’);grid;xlabel(’t, nT_s’)
hold on
plot(t1,y,’r’); legend(’forward difference’,’derivative’)
hold off

For Ts = 0.1 the finite difference looks like the actual derivative but shifted, while for Ts = 0.01 it does
not.

Copyright 2018, Elsevier, Inc. All rights reserved.
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Figure 1: Problem 9: Ts = 0.01 sec (top) and Ts = 0.1 sec (bottom)
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0.10 Backward difference — Another definition for the finite difference is the backward difference:

∆1[x(nTs)] = x(nTs)− x((n− 1)Ts)

(∆1[x(nTs)]/Ts approximates the derivative of x(t)).

(a) Indicate how this new definition connects with the finite difference defined earlier in this Chapter.

(b) Solve Problem 9 with MATLAB using this new finite difference and compare your results with the
ones obtained there.

(c) For the value of Ts = 0.1, use the average of the two finite differences to approximate the derivative
of the analog signal x(t). Compare this result with the previous ones. Provide an expression for
calculating this new finite difference directly.

Answers: ∆1[x(n+1)] = x(n+1)−x(n) = ∆[x(n)]; 0.5 {∆1[x(n)] + ∆[x(n)]} = 0.5[x(n+1)−x(n−1)].

Solution
(a) The backward finite difference (let Ts = 1 for simplicity)

∆1[x(n)] = x(n)− x(n− 1)

is connected with the forward finite difference ∆[x(n)] given in the chapter as follows

∆1[x(n+ 1)] = x(n+ 1)− x(n) = ∆[x(n)]

That is, ∆[x(n)] is ∆1[x(n)] shifted one sample to the left.
(b) (c) The average of the two finite differences gives

0.5 {∆1[x(n)] + ∆[x(n)]} = 0.5[x(n+ 1)− x(n− 1)]

which gives a better approximation to the derivative than either of the given finite differences. The fol-
lowing script is used to compute ∆1 and the average.

% Pro 0.10
% compares forward/backward differences
% with new average difference
Ts=0.1;
for k=0:N-2,

x1=4*cos(2*pi*(k-1)*Ts);
x2=4*cos(2*pi*k*Ts);
der_x(k+1)=x2-x1; % backward difference

end
der_x=der_x/Ts;
Tss=0.0001;t1=0:Tss:3;
y=-8*pi*sin(2*pi*t1); % actual derivative
n=0:N-2;
figure(3)
subplot(211)
stem(n*Ts,der_x,’k’);grid
hold on
stem(n*Ts,der1_x,’b’,’filled’) % derv1_x forward difference

% from Pr. 0.2
hold on
plot(t1,y,’r’); xlabel(’t, nT_s’)
legend(’bck diff’,’forwd diff’, ’derivative’)

Copyright 2018, Elsevier, Inc. All rights reserved.



Chaparro-Akan — Signals and Systems using MATLAB 0.16

hold off
subplot(212)
stem(n*Ts,0.5*(der_x+der1_x));grid;xlabel(’t, nT_s’) % average
hold on
plot(t1,y,’r’)
hold off
legend(’average diff’,’derivative’)
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Figure 2: Problem 10: Comparison of different finite differences.
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0.11 Sums and Gauss — Three laws in the computation of sums are

Distributive:
∑
k cak = c

∑
k ak

Associative:
∑
k(ak + bk) =

∑
k ak +

∑
k bk

Commutative:
∑
k ak =

∑
p(k) ap(k)

for any permutation p(k) of the set of integers k in the summation.

(a) Explain why the above rules make sense when computing sums. To do that consider

∑
k

ak =

2∑
k=0

ak, and
∑
k

bk =

2∑
k=0

bk.

Let c be a constant, and choose any permutation of the values [0, 1, 2] for instance [2, 1, 0] or [1, 0, 2].

(b) The trick that Gauss played when he was a preschooler can be explained by using the above rules.
Suppose you want to find the sum of the integers from 0 to 10, 000 (Gauss did it for integers between
0 and 100 but he was then just a little boy, and we can do better!). That is, we want to find S where

S =

10,000∑
k=0

k = 0 + 1 + 2 + · · ·+ 10000

to do so consider

2S =

10,000∑
k=0

k +

0∑
k=10,000

k

and apply the above rules to find then S. Come up with a MATLAB function of your own to do this
sum.

(c) Find the sum of an arithmetic progression

S1 =

N∑
k=0

(α+ βk)

for constants α and β, using the given three rules.

(d) Find out if MATLAB can do these sums symbolically, i.e., without having numerical values. Use the
found symbolic function to calculate the sum in the previous item when α = β = 1 and N = 100.

Answers: N = 10, 000, S = N(N + 1)/2; S1 = α(N + 1) + β(N(N + 1))/2.

Solution
(a) The distributive and the associative laws are equivalent to the ones for integrals, indeed∑

k

cak = c(· · ·+ a−1 + a0 + a1 + · · · ) = c
∑
k

ak

since c does not depend on k. Likewise∑
k

[ak + bk] = (· · ·+ a−1 + b−1 + a0 + b0 + a1 + b1 · · · ) =
∑
k

ak +
∑
k

bk

Finally, when adding a set of numbers the order in which they are added does not change the result. For
instance,

a0 + a1 + a2 + a3 = a0 + a2 + a1 + a3
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(b) Gauss’ trick can be shown in general as follows. Let S =
∑N
k=0 k then

2S =

N∑
k=0

k +

0∑
k=N

k

letting ` = −k +N in the second summation we have

2S =

N∑
k=0

k +

N∑
`=0

(N − `) =

N∑
k=0

(k +N − k) = N

N∑
k=0

1 = N(N + 1)

where we let the dummy variables of the two sums be equal. We thus have that for N = 104

S =
N(N + 1)

2
=

104(104 + 1)

2
≈ 0.5× 108

(c) Using the above properties of the sum,

S1 =

N∑
k=0

(α+ βk) = α

N∑
k=0

1 + β

N∑
k=0

k

= α(N + 1) + β
N(N + 1)

2

(d) The following script computes numerically and symbolically the various sums.

% Pro 0.11
clear all
% numeric
N=100;
S1=[0:1:N];
S2=[N:-1:0];
S=sum(S1+S2)/2
% symbolic
syms S1 N alpha beta k
simple(symsum(alpha+beta*k,0,N))
% computing sum for specific values of alpha, beta and N
subs(symsum(alpha+beta*k,0,N),{alpha,beta,N},{1,1,100})

S = 5050

((2*alpha + N*beta)*(N + 1))/2

5151

The answers shown at the bottom.
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0.12 Integrals and sums — Suppose you wish to find the area under a signal x(t) using sums. You will need
the following result found above

N∑
n=0

n =
N(N + 1)

2

(a) Consider first x(t) = t, 0 ≤ t ≤ 1, and zero otherwise. The area under this signal is 0.5. The integral
can be approximated from above and below as

N−1∑
n=1

(nTs)Ts <

∫ 1

0

tdt <

N∑
n=1

(nTs)Ts

whereNTs = 1 (i.e., we divide the interval [0, 1] intoN intervals of width Ts). Graphically show for
N = 4 that the above equation makes sense by showing the right and left bounds as approximations
for the area under x(t).

(b) Let Ts = 0.001, use the symbolic function symsum to compute the left and right bounds for the above
integral. Find the average of these results and compare it with the actual value of the integral.

(c) Verify the symbolic results by finding the sums on the left and the right of the above inequality using
the summation given at the beginning of the problem. What happens when N →∞.

(d) Write a MATLAB script to compute the area under the signal y(t) = t2 from 0 ≤ t ≤ 1. Let
Ts = 0.001. Compare the average of the lower and upper bounds to the value of the integral.

Answer: For Ts = 1/N[
(N − 1)(N − 2) + 2(N − 1)

2N2

]
≤ 1

2
≤
[

(N − 1)(N − 2) + 2(N − 1)

2N2

]
+

1

N

Solution
(a) The following figure shows the upper and lower bounds when approximating the integral of t:

upper bound

lower bound

0

0.25

0.5

0.75

1
t

x(t) = t

0.25 0.5 0.75

1

Figure 3: Problem 12: Upper and lower bounds of the integral of t when N = 4.

(b) (c) The lower bound for the integral is

S` =

N−1∑
n=1

(nTs)Ts = T 2
s

N−1∑
n=1

n = T 2
s

N−2∑
`=0

(`+ 1)

= T 2
s

[
(N − 1)(N − 2)

2
+ (N − 1)

]
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The definite integral is ∫ 1

0

tdt =
1

2

The upper bound is

Su =

N∑
n=1

(nTs)Ts = S` +NT 2
s

Letting NTs = 1, or Ts = 1/N we have then that[
(N − 1)(N − 2) + 2(N − 1)

2N2

]
≤ 1

2
≤
[

(N − 1)(N − 2) + 2(N − 1)

2N2

]
+

1

N

for large N the upper and the lower bound tend to 1/2.

The following script computes the lower and upper bound of the integral of t.

% Pr. 0.12
clear all
Ts=0.001;N=1/Ts;
% integral of t from 0 to 1 is 0.5
syms S1 n T k
% lower bound
n=subs(N);T=subs(Ts);
y=simple(symsum(k*Tˆ2,1,n-1));
yy=subs(y)

% upper bound
z=simple(symsum(k*Tˆ2,1,n));
zz=subs(z)

% average
int= 0.5*(yy+zz)

giving the following results (the actual integral is 1/2).

yy = 0.4995
zz = 0.5005
int = 0.5000

(d) For y(t) = t2, 0 ≤ t ≤ 1, the following script computes the upper and the lower bounds and their
average:

%% integral of tˆ2 from 0 to 1 is 0.333
% lower bound
y1=simple(symsum(kˆ2*Tˆ3,1,n-1));
yy1=subs(y1)

% upper bound
z1=simple(symsum(kˆ2*Tˆ3,1,n));
zz1=subs(z1)

% average
int= 0.5*(yy1+zz1)
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giving the following results, in this case the value of the definite integral is 1/3.

yy1 = 0.3328
zz1 = 0.3338
int = 0.3333
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0.13 Exponentials — The exponential x(t) = eat for t ≥ 0 and zero otherwise is a very common continuous-
time signal. Likewise, y(n) = αn for integers n ≥ 0 and zero otherwise is a very common discrete-time
signal. Let us see how they are related. Do the following using MATLAB:

(a) Let a = −0.5, plot x(t)

(b) Let a = −1, plot the corresponding signal x(t). Does this signal go to zero faster than the exponential
for a = −0.5?

(c) Suppose we sample the signal x(t) using Ts = 1 what would be x(nTs) and how can it be related to
y(n), i.e., what is the value of α that would make the two equal?

(d) Suppose that a current x(t) = e−0.5t for t ≥ 0 and zero otherwise is applied to a discharged capacitor
of capacitance C = 1 F at t = 0. What would be the voltage in the capacitor at t = 1 second?

(e) How would you obtain an approximate result to the above problem using a computer? Explain.

Answers: 0 < e−αt < e−βt for α > β ≥ 0; vc(1) = 0.79.

Solution
(a)(b) We have that

0 < e−αt < e−βt

for α > β ≥ 0.

% Pr. 0.13
clear all
% compare two exponentials
t=[0:0.001:10];
x=exp(-0.5*t);
x1=exp(-1*t);
figure(6)
plot(t,x,t,x1,’r’);
legend(’Exponential Signal, a=-0.5’,’Exponential Signal, a=-1’)
grid
axis([0 10 0 1.1 ]); xlabel(’time’)
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0

0.2

0.4

0.6

0.8

1

time

 

 
Exponential Signal, a=−0.5
Exponential Signal, a=−1

Figure 4: Problem 13: Comparison of exponentials e−0.5t and e−t for t ≥ 0 and 0 otherwise.

(c) Sampling x(t) = eat using Ts = 1, we get

x(t)|t=n = ean = αn
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