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CHAPTER 2.  Specific Energy 
 
 
2.1. Water is flowing at a depth of 10 ft with a velocity of 10 ft/s in a channel of rectangular section.  

Find the depth and change in water surface elevation caused by a smooth upward step in the 
channel bottom of 1 ft.  What is the maximum allowable step size so that choking is prevented?  
(Use a head loss coefficient = 0.) 

 

 
 
 Solution. 

 
Now because E1 – ∆z > Ec, there is no choking.  So write the energy equation from 1 to 2 and find 
a subcritical solution for y2: 

 
which can be solved by trial and error or an equation solver to give y2 = 8.29 ft.   The water 
surface elevation drops by 10 – (8.29 +1) = 0.71 ft.   
 
For the limiting choking case, set the specific energy at section 2 equal to Ec: 
 

 
 so ∆zc = 11.55 – 10.16 = 1.39 ft. 
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2.2. The upstream conditions are the same as in Exercise 2.1, but there is a smooth contraction in 
width from 10 ft to 9 ft and a horizontal bottom.  Find the depth of flow and change in water 
surface elevation in the contracted section.  What is the greatest allowable contraction in width so 
that choking is prevented?  (Head loss coefficient = 0.) 

 
 
 
 
 
 
 
 

Solution.  
 

From Exercise 2.1, q1 = 100 cfs/ft; yc1 = 6.77 ft; and E1 = 11.55 ft.  Then from continuity, we have 
q2 = (10/9) q1 = (10/9)(100) = 111.1 cfs/ft and yc2 = (111.12/32.2)1/3 = 7.26 ft.  Writing the energy 
equation from 1 to 2: 

 
 from which the subcritical solution is y2 = 9.36 ft with a water surface elevation drop of (10 – 

9.36) = 0.64 ft. 
 
 For the limiting choking case, E1 = Ec2 = 1.5 yc2, so that 
 

 
 But b2 = Q/q2 = 1000/121.2 = 8.25 ft. 
 
2.3. The upstream conditions in a rectangular channel are the same as in Exercise 2.1 with a smooth 

contraction in width from 10 ft to 8 ft. How much should the channel bottom drop to maintain a 
constant water surface elevation through the transition? (Head loss coefficient = 0) 

 
Solution. 
 
From Exercise 2.1, q1 = 100 cfs/ft; yc1 = 6.77 ft; and E1 = 11.55 ft for y1 = 10 ft.  Then from 
continuity, we have q2 = (10/8) q1 = (10/8)×(100) = 125 cfs/ft and yc2 = (1252/32.2)1/3 = 7.86 ft.  
Writing the energy equation from 1 to 2 and solving for ∆z with y2 = y1 + ∆z: 

10 ft 9 ft

1 
2 

2
2

22
2

2

2

2
2

2
2

21

7.191
4.64

)1.111(
55.11

2

y
y

y
y

gy
q

yE

+=+=

+=

cfs/ft2.121)2.32()]55.11)(3/2[(

5.155.11

2/12/3
2

3/12
2

==









=

q

g
q



Sturm, T.W., Open Channel Hydraulics, 2nd Edition  CHAPTER 2 
 

 19

 
from which the solution is ∆z = 2.51 ft and y2 = 12.51 ft, which is subcritical with a water surface 
elevation drop of zero. 
 

 
2.4. Determine the downstream depth in the transition and the change in water surface elevation if the 

channel bottom rises 0.15 m and the upstream conditions are a velocity of 4.5 m/s and a depth of 
0.6 m. 

 
 Solution. 
 

Assuming a rectangular channel of constant width with negligible head loss, as in Exercise 2.1, 
check the approach conditions: 

 
The approach flow is supercritical, and the minimum specific energy, Ec = 1.5yc = (1.5)(0.906) = 
1.36 m.  Because E1 – ∆z = 1.63 – 0.15 = 1.48 m > Ec, choking is not expected.  Solve the energy 
equation for y2 in the supercritical flow regime:  

 
and the solution is y2 = 0.683 m.  The water surface elevation rises by 0.683 + 0.15 – 0.60 = 0.233 
m.  The limiting choking case is given by ∆z = E1 – Ec = 1.63 – 1.36 = 0.27 m. 
 
As in Figure 2.9 for a width contraction with a supercritical approach flow, there is a second 
mode of choking in this example with a hydraulic jump upstream of the transition and critical 
depth in the transition.  As discussed in Chapter 3, the sequent depth for an upstream  hydraulic 
jump can be calculated to be 1.30 m corresponding to a specific energy after the jump of E1 = 
1.52 m; however, in this event, E1 – ∆z = 1.37 m, which is still greater than Ec , so no choking 
occurs by this mode either. 
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2.5. Determine the downstream depth in a subcritical transition if Q=262 cfs and the channel bottom 
rises 3.279 ft in going from an upstream circular channel to a downstream rectangular channel.  
The upstream circular channel has a diameter of 9.18 ft and a depth of flow of 7.34 ft.  The 
downstream rectangular channel has a width of 6.56 ft.  Neglect the head loss. 

 
 
 
 
 
 
 
 
 
 
 
 Solution. 
 
 For the upstream circular channel, calculate the flow area and top width for the given depth of 

7.34 ft: 
 

 
 Then the approach specific energy and Froude number are given by 
 

 
 The approach flow is subcritical.  Check for choking with critical depth occurring in the 

downstream rectangular section: 
 

 
 Note that from the energy equation, E2 = E1 – ∆z = 7.67 –3.279 = 4.39 ft < Ec2.  Thus, choking 

will occur with y2 = 3.67 ft, and y1 has to be recalculated from 
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 which can be solved by assuming a value of y1; calculating for the circular cross-section,              
θ = 2 cos-1(1 – 2y1/d), and the flow area, A1 = (θ - sin θ)d 2/8; substituting to obtain E1; and 
repeating until E1 = 8.79 ft.  The result is y1 = 8.53 ft; θ = 5.2058 rad; A1 = 64.12 ft2; and E1 = 
8.789 ft.  Choking causes the upstream depth to increase by (8.53 – 7.34) = 1.19 ft. 

 
2.6. Determine the upstream depth of flow in a subcritical transition from an upstream rectangular 

flume that is 49 ft wide to a downstream trapezoidal channel with a width of 75 ft and side slopes 
of 2:1.  The transition bottom drops 1 ft from the upstream flume to the downstream trapezoidal 
channel.  The flow rate is 12,600 cfs, and the depth in the downstream trapezoidal channel is 22 
ft.  Use a head loss coefficient of 0.5. 

 
 
 
 
 
 
 
 
 
 
 
 Solution. 
 
 First, calculate the downstream conditions: 

 
 The downstream flow is subcritical, and we are looking for a subcritical depth upstream.  Writing 

the energy equation including the head loss, and assuming that V1 > V2, we have 
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 Solving, the result is y1 = 19.88 ft where yc1 = (q2/g)1/3 = [(12,600/49)2/32.2]1/3 = 12.7 ft.  The 
corresponding head loss is 1.12 ft, where E1 = 22.48 ft and V1 = 12.94 ft/s. 

 
2.7. In a horizontal rectangular flume, suppose that a smooth "bump" with a height of 0.33 ft has been 

placed on the channel bottom.  The discharge per unit width in the flume is 0.4 cfs/ft.  Determine 
the depth at the obstruction for a tailwater depth of 1.0 ft and negligible head losses.  Sketch the 
results on a specific energy diagram. 

 
 
 
 
 
 
 
 
 
 
 Solution. 
 

Calculate critical conditions and downstream specific energy: 

 
 Because E3 – ∆z = 1.0025 – 0.33 = 0.67 ft > Ec, there is no choking, and the depth at point 2 is 

subcritical.  Writing the energy equation from point 2 to point 3, we have 

 
 Solving for y2, we obtain y2 = 0.667 ft.  As a consequence, the dip in the water surface over the 

bump is barely perceptible because we are so high up on the upper limb of the specific energy 
curve.  Furthermore, because there is no energy loss, the depth at point 1 is identical to that at 
point 3.  If the tailwater (y3) is dropped to 0.6 ft, we get y2 = 0.23 ft and a dip in the water surface 
elevation of 0.04 ft over the bump.  Continuing to drop the tailwater elevation results in choking 
with passage through critical depth at the bump to supercritical flow followed by a hydraulic 
jump downstream of the bump.  The specific energy diagram follows. 
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2.8. A rectangular channel 3.6 m wide contracts to a 1.8-m wide rectangular channel and then expands 

back to the 3.6-m width.  The contraction is gradual enough that head losses can be neglected, but 
the expansion loss coefficient is 0.5.  The discharge through the transition is 10 m3/s.  If the 
downstream depth at the re-expanded section is 2.4 m, calculate the depths at the approach 
section and the contracted section.  Show the positions of the depth and specific energy for all 
three sections on a specific energy diagram. 

 
 
 
 
 
 
 
 
 

Solution. 
 
From continuity, q3  = q1 = 10/3.6 = 2.778 m2/s and q2 = 10/1.8 = 5.556 m2/s.  Check critical 
conditions and calculate downstream specific energy: 
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Now because E3 > Ec2, choking cannot occur, and we are seeking a subcritical depth at section 2. 
The energy equation from 2 to 3, including the head loss, is 
 

 
 

from which y2 = 2.28 m and E2 = y2 + (q2)2/(2gy2
2) = 2.28 + 5.5562/[(19.62)(2.28)2] =  2.583 m.  

The head loss is (E2 – E3) = 0.12 m.  The energy equation from point 1 to point 2, neglecting head 
loss, is 

 

 
The solution is y1 = 2.52 m, which is 0.12 m higher than the downstream depth of 2.4 m.  The 
increase in water surface elevation is approximately equal to the head loss because of the small 
difference in the velocity heads.  See Figure 2.11 in the text for the specific energy diagram. 

 
2.9. The head upstream of a circular culvert having a diameter of 6.0 ft is 5.0 ft above the culvert 

invert. If critical depth occurs at the culvert entrance, what is the discharge if the approach 
velocity head is negligible? Suppose that an impervious plug of mud and debris blocks the lower 
2.0 ft of the culvert entrance above the invert in the form of a horizontal sill, what will the 
discharge be for the same head of 5.0 ft above the invert? Neglect entrance energy losses. 
 
Solution. 
 
One approach is to solve Equation 2.20 (nonrectangular channel) for yc using the geometric 
relationships for a circular channel: 
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Substituting d = 6.0 ft and solving by trial and error for θc, the result is θc =3.499 rad and yc = 
3.53 ft. The area and top width are given by  
 

 
Then it must be true that F2 = 1.0 at  y = yc which can be solved for Q: 
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Alternatively, Figure 2.14 can be used with Ec/d = 5/6 = 0.833 from which Q/[g1/2d5/2] = 0.33 and 
Q = 165 cfs. 

 
For the second part of the problem, the entrance geometry is different. First, the area of the sill is 
determined from 
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in which θ is the angular measure for the depth measured from the culvert invert rather than the 
sill, and A is the sill area plus the flow area. The result is θ = 3.804 rad and A = (θ − sin θ) (d 2/8) 
= 19.87 ft2 so that Ac = (A − As) = 11.62 ft2. Also, we have Bc = d sin(θ/2) = 5.674 ft, and yc = 
(6/2)[1− cos (3.804/2)] − 2.0 = 1.976 ft. Finally, the discharge comes from setting the Froude 
number equal to one as before: 
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2.10. Determine the discharge in a circular culvert on a steep slope if the diameter is 1.0 m and the 
upstream head is 1.3 m with an unsubmerged entrance.  Also calculate the critical depth.  Neglect 
entrance losses.  Repeat for a box culvert that is 1.0-m square. 

 
Solution. 
 
The entrance depth for a steep culvert is critical depth.  Write the energy equation from a point 
just upstream of the entrance to the culvert entrance, and set the Froude number squared equal to 
one for critical conditions: 
 

 
Solve by trial by assuming a value of yc; calculating θc, Ac, and Bc from the circular channel 
geometry; solving for Q from the second equation; and substituting back into the first equation to 
determine if the upstream head is equal to 1.3 m.  The equations needed for the circular channel 
geometry are 

 
in which d = diameter = 1.0 m.  Organizing the computations in a table or a spreadsheet, we have 
 

yc, m θc Ac, m2 Bc, m Q, m3/s H, m 
0.8 4.4286 0.674 0.800 1.94 1.22 
0.9 4.9962 0.744 0.600 2.60 1.52 

0.833 4.5993 0.699 0.746 2.12 1.30 
 
The final iteration gives a discharge of 2.12 m3/s with critical depth equal to 0.833 m.  The 
solution can be obtained approximately from Figure 2.14.  In this case, Ec/d = 1.3, and from 
Figure 2.14, we read Z = Q/(g1/2 d 5/2) = 0.7; therefore, Q = (0.7)(9.81)1/2 = 2.2 m3/s, which is 
acceptable considering the graphical error. 
 
For a 1.0-m square box culvert, the channel shape is rectangular.  Then for this case, we have 
 

 
and Q = bq = 2.53 m3/s. 
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2.11. An open channel has a semicircular bottom and vertical, parallel walls.  If the diameter, d, is 3 ft, 
calculate the critical depth and the minimum specific energy for two discharges, 10 cfs and 30 
cfs. 
 
 

 
 
 

Solution. 
 
First, calculate the critical discharge for the water level just filling the semicircular portion of the 
cross section.  For this case, yc = 1.5 ft; Ac = πd2/8 = π(3)2/8 = 3.53 ft2; and Bc = 3.0 ft.  Then from 
the Froude number criterion, we have 
 

 
 

Hence, the lower discharge is for a circular geometry, and the higher discharge has a critical 
depth above the semicircular portion of the cross-section.  For the discharge of 10 cfs, set the 
Froude number squared for a circular section to unity to obtain 
 

 
from which we find θ = 2.462 rad and yc = (d/2)[1 – cos (θ /2)] = 1.00 ft.  The corresponding 
values of area and top width are Ac = 2.063 ft2 and Bc =  2.828 ft.  Then Ec = yc + Dc/2 = 1.00 + 
2.063/[(2)(2.828)] = 1.365 ft. 
 
For Q = 30 cfs, we add the value of flow area for the semicircular section (3.53 ft2) to the area for 
a rectangular section stacked on top.  The top width remains constant at 3.0 ft.  Setting the Froude 
number squared to unity results in 
 

 
and solving we obtain yc = 1.78 ft for which Ac = 4.37 ft2 and Bc = 3.0 ft.  Then Ec = 1.78 + 
4.37/[(2)(3.0)] = 2.508 ft. 
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2.12. Derive an exact solution for critical depth in a parabolic channel and place it in dimensionless 
form.  Repeat for a triangular channel. 

 
Solution. 
 
Referring to Table 2-1 for the parabolic channel, the bank-full depth and width are designated by 
y1 and B1, respectively.  Setting the Froude number squared to a value of unity, and substituting 
the expressions for flow area and top width from the table into the equation, the result for critical 
depth in a parabolic channel is obtained: 

 

 
 

For the triangular channel, refer again to Table 2-1, and repeat the procedure above using the 
triangular channel geometric expressions in which m = side-slope ratio: 
 

 
 
While yc could be nondimensionalized by the bank-full top width, for example, the only 
geometric factor needed is the side-slope ratio, so the expression is left in this form. 
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2.13. Show that the ratio of critical depth to minimum specific energy, yc/Ec, is 0.80 for a triangular 
channel and 0.75 for a parabolic channel. 

 
Solution. 
 
Substituting the geometric expressions for a triangular channel into Equation 2.20 for a 
nonrectangular channel results in 
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Then it follows directly that yc/Ec = 0.80. Repeating the substitution into (2.20) for parabolic 
geometry results in  
 

c
c

c
c

c

c
cc y

yyB
yyBy

B
AyE

3
4

)/(2
)/)(3/2(

2 2/12/1
11

2/32/1
11 =+=+=  

 
from which it follows that yc/Ec = 0.75. 

 
2.14. A parabolic-shaped irrigation canal has a top width of 10 m at a bank-full depth of 2 m.  Calculate 

the critical discharge, Qc (i.e., the discharge for which the depth of uniform flow is equal to 
critical depth) for a uniform flow depth of 1.0 m.  If Q < Qc for the uniform flow depth of 1.0 m, 
will the uniform flow be supercritical or subcritical?  

 
Solution. 
 
Calculate the flow area and top width of flow for y = 1.0 m using the geometric expressions from 
Table 2.1. 

 
 
Then from the definition of the Froude number, the critical discharge is defined for the Froude 
number equal to unity  and y = yc to give 
 

 
 
If the uniform flow depth is equal to 1.0 m for Q < Qc, then the Froude number is less than one, 
and the flow is subcritical. 
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2.15. A USGS study of natural channel shapes in the western United States reports an average ratio of 
maximum depth to hydraulic depth in the main channel (with no overflow) of y/D = 1.55 for 761 
measurements. 

 
(a) Calculate the ratio of maximum depth to hydraulic depth for a (1) triangular channel; (2) 

parabolic channel; (3) rectangular channel.  What do you conclude?   
 
(b) Calculate the discharge for a bank-full Froude number of F1 = 1.0 if y/D = 1.55 and B1 = 

100 ft for y1 = 10 ft.  What is the significance of this discharge? 
 
Solution. 

 
(a)  For each geometric shape, substitute the expressions for flow area and top width into the 

definition of hydraulic depth: 
 
 Triangular:  

 
 
 Parabolic: 
 

  
 
 Rectangular: 
 

 
 
The implication is that natural channels from this data set are more nearly parabolic in shape. 
 
 
(b)  For y/D = 1.55 at bank-full flow, we can show that  

 
 

Set the Froude number equal to unity and solve for Qc1 = critical bank-full discharge: 
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If the actual Q > Qc1, which is referred to as the upper limiting discharge QU in the text, then there 
is only one critical depth that occurs in overbank flow.  In this case, any flows in the main 
channel alone would be supercritical. 
 

2.16. A natural channel cross-section has a bank-full cross-sectional area of 45 m2 and a top width of 
37.5 m.  The maximum value of Fc/F1 has been calculated to be 1.236.  Find the discharge range, 
if any, within which multiple critical depths could be expected. 

 
Solution. 
 
From the data given, A1 = 45 m2 and B1 = 37.5 m.  First calculate the upper limiting discharge, 
QU, as 

 
 

 
 

Then the lower limiting discharge is calculated by 
 
 

 
 
So for Q in the range of 125 to 154 m3/s, there are two values of critical depth, one in main 
channel flow alone, and one in overbank flow for this cross section. 

 
2.17. The main channel of North Fork, Peachtree Creek in Atlanta can be approximated as a parabolic 

channel with a bank-full depth of 8.0 ft and a bank-full top width of 50 ft. There are symmetric 
floodplains on either side of the main channel that are perfectly flat each with a width of 150 ft. If 
the flow rate is 3500 cfs, is it possible for there to be multiple critical depths for this cross-
section? Use the computer program Ycomp on the book website to calculate the critical depth(s) 
for Q = 3500 cfs and Q = 3000 cfs. 

 
Solution. 
 
First check the upper limiting discharge for multiple critical depths from Equation 2.35: 
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So for Q = 3000 cfs, we have Q < QU and multiple critical depths are possible, but only if it is 
also true that Q > QL. An analysis using the computer program Ycomp on the book website is 
necessary. The input geometry file is generated using a finite discretization of the parabolic main 
channel and the floodplains. It is given by  
 
"Csparab" 31 3 
0 15  
0 8  
150 8  
152 6.771  
154 5.645  
156 4.621  
158 3.699  
160 2.880  
162 2.163  
164 1.549  
166 1.037  
168 0.627  
170 0.320  
172 0.115  
174 0.013  
175 0.000 
176 0.013 
178 0.115 
180 0.320 
182 0.627 
184 1.037 
186 1.549 
188 2.163 
190 2.880 
192 3.699 
194 4.621 
196 5.645 
198 6.771 
200 8.000 
350 8.000 
350 15 
150 0.08 200 0.03 350 0.08 
 
The initial line gives the name of the cross-section, the number of boundary points, and the 
number of subsections. The following data in two columns represent the transverse station and 
the ground elevation. The right boundary station of the subsections and the Manning’s n values to 
the left of the boundary station are given in the last line of the data file. The data were entered 
into an Excel spreadsheet and then saved as a tab delimited text file which was read by Ycomp. 
 
The screen output is shown below. The calculated upper limiting Q is 3486 cfs instead of 3495 
cfs because of the discretization of the parabolic portion of the cross-section. Note that the lower 
limiting discharge exists and is 2922 cfs so that discharges between these limits will have two 
critical depths. The critical depths for 3000 cfs are given in the output as 7.42 ft and 8.52 ft. At 
3500 cfs there is only one upper critical depth and it is 9.02 ft (program output not shown). 
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2.18. Design a broad-crested weir for a laboratory flume with a width of 15 in.  The discharge range is 

0.1 to 1.0 cfs.  The maximum approach flow depth is 18 in.  Determine the height of the weir and 
the weir length in the flow direction.  Plot the expected head-discharge relationship. 

 
Solution. 
 
With reference to Figure 2.25, we require H/(H + P) ≤ 0.35 and 0.08 ≤ H/l ≤ 0.33 for broad-
crested behavior.  The head-discharge relationship is solved for Hmax when Q = Qmax = 1.0 cfs to 
produce 

 
 
in which the coefficient of discharge has been taken to be 0.848, and the crest length is 1.25 ft.  
Similarly, the minimum head is determined to be 0.098 ft for Q = 0.1 cfs.  For broad-crested 
behavior, set Hmax/l = 0.33, and calculate l = 0.454/0.33 = 1.38 ft, which is the length of the weir 
in the flow direction.  For the minimum head this gives Hmin/l =0.071, which is only slightly less 
than the allowable value.  In addition, set H/(H + P) = 0.35 for H = Hmax and solve for the weir 
height, P = (Hmax/0.35) – Hmax = (0.454/0.35) – 0.454 = 0.843 ft.  So the weir should have a length 
in the flow direction, l = 1.4 ft, and a height, P = 0.84 ft.   
 
To plot the head-discharge relationship, use Equation 2.47 with Cd = 0.848; L = 1.25 ft; and Cv 
from Equation 2.48, which has to be solved for a calculated value of CdA*/A1 for each head.  The 
result is shown in the following figure: 
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2.19. Plot and compare the head-discharge relationships for a rectangular sharp-crested weir having a 

crest length of 1.0 ft in a 5-ft wide channel with that for a 90o V-notch, sharp-crested weir if both 
weir crests are 1 ft above the channel bottom.  Consider a head range of 0–0.5 ft. 

 
Solution. 
 
For the rectangular, sharp-crested weir, P = 1.0 ft; L = 1.0 ft; and b = 5 ft.  Then L/b = 0.2 and 
from Table 2-3, Cde = 0.589 – 0.0018 H/P.  In addition, kL = 0.0082 ft (0.0025 m) from Figure 
2.23 and kh = 0.003 ft.  The head-discharge relationship is given by 
 

 
 The triangular weir has θ = 90o and P = 1.0 ft.  From Figure 2.24, Cde = 0.58 and kh = 0.0033 ft (1 

mm).   The head-discharge relationship is given by 
 

 
The head-discharge relationships are compared in the following figure. 
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2.20. Derive the head-discharge relationship for a triangular, broad-crested weir and a corresponding 

relationship for Cv analogous to Equation 2.48. 
 
 Solution. 
 

The shape of the weir cross section is triangular with a notch angle of θ as shown in Figure 2.24.  
(The head H is measured from the crest to the free surface upstream of the weir plate.)   As a 
broad-crested weir, however, the crest width is long enough in the flow direction that the 
theoretical value of critical depth occurs on the crest.  The energy equation is written from the 
approach section to the critical section at the crest to yield 

 
in which He = total energy head; V1 = approach velocity;  Dc = hydraulic depth; Ac = flow area at 
the crest; and Bc = flow top width at the crest.  In Exercise 2.12, it was shown that critical depth 
for the triangular cross section is given by 
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in which the side-slope ratio, m = tan(θ/2).  This expression for critical depth is substituted back 
into the equation, He = (5/4)yc; and the approach velocity coefficient, Cv = (He/H)5/2 , and 
discharge coefficient, Cd, are incorporated to obtain the solution for Q: 
 

 
Write the definition of the total energy head, He; substitute the solution for Q into the equation; 
and solve to give 

 
in which A* = flow area in the control section for a depth equal to H, and A1 = flow area in the 
approach cross section. 

 
2.21. Derive the head-discharge relationship for a truncated, triangular, sharp-crested weir with notch 

angle θ and vertical walls that begin at a height of h1 above the triangular crest.  Assume that H > 
h1. 

 
 
 
 
 
 
 

Solution. 
 

To obtain the theoretical discharge , Qt, integrate the velocity distribution over the uncontracted 
flow area: 

 
Neglecting the approach velocity head and assuming atmospheric pressure across the 
uncontracted nappe at the weir section, the velocity, v = (2gη)1/2.  Substituting into the previous 
equation, we have 
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Integrating, the result is 

 
Evaluating the limits and collecting terms, and introducing the coefficient of discharge, Cd, to 
compensate for the earlier assumptions, the final result for the actual discharge, Q, is 

 
2.22. A trapezoidal flume has a bottom width of 1.0 m and side slopes of 1:1. A sill with a height of 0.5 

m is placed in the flume forming a trapezoidal critical control section. The length of the sill is 1.5 
m in the flow direction. Calculate the discharge if the approach flow head is measured to be 0.60 
m above the sill. 

 
Solution. 
 
The coefficient of discharge is determined first from Equation 2.51: 
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in which the approach velocity head has been ignored for now. The discharge Q is given by 
Equation 2.50, but the value of yc in that equation depends on the unknown Q. An additional 
equation is obtained by using F2 = 1.0, or equivalently, Equation 2.20, which incorporates F2 = 
1.0. Then the solution involves a trial and error procedure to obtain yc after which Equation 2.50 
is solved for Q. If we begin with Equation 2.20, the bottom width of the trapezoidal crest is 
(1.0+2×0.5) = 2.0 m, and the value of Ec = 0.6 m so that (2.20) becomes 
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from which yc = 0.421 m and Ac = 0.421(2.0+1×0.421) = 1.019 m2. Then substituting into (2.50), 
we have 
 

syHgACQ cecd /m87.1)421.06.0(62.19019.198.0)(2 3=−×=−=  
 
Alternatively, from Figure 2.28, mHe/b = 1.0×0.6/2.0 = 0.3 and yc/He = 0.7 to give yc = 0.42 m 
which can be substituted into Equation 2.50 to obtain the discharge. The approach flow area for a 
depth of y1 = (0.5 + 0.6) = 1.1 m is A1 = y1(1.0+my1) = 1.1(1.0+1.0×1.1) =2.31 m2. The approach 
flow velocity is V1 = Q/A1 = 1.87/2.31 = 0.810 m/s and the velocity head is 0.033 m. Iterating 
twice more produces He = 0.642 m and yc = 0.451 m, and a final value of Q = 2.10 m3/s. 
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2.23. Find the upstream head in the long-throated rectangular flume of Example 2.5 for the minimum 
discharge of 0.02 m3/s which has a tailwater depth of 0.225 m. The sill length in the flow 
direction is 0.54 m and the height is 0.15 m as in Example 2.5. Also check if submergence will 
occur. 
 
Solution. 
 
Assume that Cd = 0.96, so the head becomes 
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Checking Equation 2.51 for He/l = 0.118/0.54 = 0.218, the result is Cd = 0.966. Repeating one 
more time with Cd = 0.966, the value of He = 0.118 m as before so this is the final answer. The 
approach flow energy head E0 = (0.118+0.15) = 0.226 m, so the approach flow depth is obtained 
from: 
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The result is y0 = 0.2256 m which means that the approach velocity head is negligible, and H = 
He = 0.118 m.  
 
From Example 2.5, ld = 0.9 m and lt = 3.3 m. The velocity in the critical section on the sill is Vc = 
Q/Ac = 0.02/(0.3 yc ) = 0.847 m/s in which yc = (2/3) He = 0.0787 m. For the downstream tailwater 
section, assume that the maximum tailwater is equal to the actual tailwater for the first iteration. 
Then the velocity for a depth of 0.225 m is Vt = Q/At = 0.02/[0.225(0.75+ 0.225)] = 0.0912 m/s. 
The hydraulic radius in the critical section is  
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while the hydraulic radius of the tailwater section is given by 
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Now for the friction loss, we have by substituting into Equation 2.54 with f ≅ 0.018 for a smooth 
surface over this Reynolds number range: 
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The expansion loss comes from substituting into Equation 2.57 to produce 
 

m 019.0
62.19

)0912.0847.0(66.0
2

=
−

×=∆ exH  

 
Finally, we check the possibility of submergence from Equation 2.58 to give 
 

095.0019.00015.0)118.0)(966.01(118.0 5.1/1 =−−−−=∆−∆−∆− exfae HHHH  
 
The energy loss through the structure gives a tailwater energy head of 0.095 m, which is 
acceptable because it is greater than the actual tailwater head of 0.075 m relative to the sill (not 
including the velocity head, which is very small for this example). 
 

2.24. A rectangular canal has a bottom width of 6.0 ft. A circular broad-crested weir is placed in the 
canal by constructing a headwall across the canal through which a 3.0 ft diameter circular pipe is 
placed. The pipe is horizontal with the invert located 0.5 ft above the bottom of the canal, and it 
has a length of 7.5 ft. If the upstream head on the weir is measured to be 1.5 ft relative to the 
invert of the pipe, calculate the discharge in the canal. 

 
Solution. 
 
The coefficient of discharge is determined first from Equation 2.51: 
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in which the approach velocity head has been ignored for now. The discharge Q is given by 
Equation 2.50, but the value of yc in that equation depends on the unknown Q. Use the graphical 
solution method of Figure 2.28 as suggested in Exercise 2.22. The value of He/d = 1.5/3.0 = 0.5 
and Figure 2.28 gives yc/He =0.73. Then yc = 0.73×1.5 = 1.095 ft. The corresponding circular area 
comes from θc = 2cos-1(1 – 2(yc/d)) = 2.595 rad and Ac = (θc – sinθc)d2/8 = 2.335 ft2. Substituting 
into Equation 2.50 we have 
 

syHgACQ cecd /ft5.11)095.15.1(4.64335.2964.0)(2 3=−×=−=  
 

The approach flow velocity is Q/A1 = 11.5/(6×2) = 0.96 ft/s and the velocity head is 0.014 ft 
which is negligible compared with the head of 1.5 ft so He = 1.5 ft is satisfactory and Q = 11.5 
cfs. 

 
2.25. Modify the computer program Y0YC in Appendix B to calculate the critical depth in a circular 

channel. 
 

Solution. 
 
The primary change to be made to Y0YC is the reformulation of the geometric elements of area, 
top width, and hydraulic radius for a circular section as given in Table 2-1.  However, the 
relationship between θ and y/d requires the cos–1 function, which is not available in Visual Basic, 
but the tan–1 function is available.   Hence, the following trigonometric identity is utilized: 
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in which x = (1 – 2y/d).  This is shown in the following program listing in the function procedure 
F.  In addition, upper limits must be placed on the root search for both critical and normal depth 
in the circular cross section.  In the case of critical depth, the top width approaches zero as y/d 
approaches 1.0, so Q approaches infinity.  In addition, the tan–1 argument goes to infinity as y/d 
approaches 1.0, so the upper limit Y2 is set equal to 0.9999d.  For the normal depth function, it is 
clear from Figure 4.9 that there is a maximum in AR 2/3/d 8/3 above which there are two possible 
solutions, so the upper limit Y2 is set equal to 0.938d at which this maximum occurs.  Finally, the 
initial test for the existence of a root in Sub BISECTION requires an indication of when the 
normal depth exceeds the maximum, and this is indicated by setting it equal to a very large 
number such 1.0E6.  The program listing for the Sub procedure follows.  The form module is 
similar to that shown for the program Y0YC in Appendix B except that the diameter d is entered 
for the circular section instead of b and m for the trapezoidal section. 
 
Option Explicit 
Dim Q As Single, S As Single, d As Single 
Dim n As Single, Y0 As Single, YC As Single 
Sub Y0YC(Q, S, d, n, Y0, YC) 
Dim Y1 As Single, Y2 As Single, ER As Single 
Dim NF As Integer 
Y1 = 0.0001 
Y2 = 0.9999 * d 
ER = 0.0001 
NF = 1 
Call BISECTION(Y1, Y2, NF, ER, Q, S, d, n, YC) 
Y1 = 0.0001 
Y2 = 0.938 * d 
NF = 2 
Call BISECTION(Y1, Y2, NF, ER, Q, S, d, n, Y0) 
End Sub 
 
Sub BISECTION(Y1, Y2, NFUNC, ER, Q, S, d, n, Y3) 
Dim FY1 As Single, FY2 As Single, FY3 As Single, FZ As Single 
Dim I As Integer 
        FY1 = F(Y1, NFUNC, Q, S, d, n) 
        FY2 = F(Y2, NFUNC, Q, S, d, n) 
        If FY1 * FY2 > 0 Then 
            Y3 = 1000000# 
            Exit Sub 
            End If 
For I = 1 To 50 
        Y3 = (Y1 + Y2) / 2 
        FY3 = F(Y3, NFUNC, Q, S, d, n) 
        FZ = FY1 * FY3 
        If FZ = 0 Then Exit Sub 
        If FZ < 0 Then Y2 = Y3 Else Y1 = Y3 
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        If Abs((Y2 - Y1) / Y3) < ER Then Exit Sub 
Next I 
End Sub 
 
Function F(Y, NFUNC, Q, S, d, n) As Single 
Dim A As Single, P As Single, R As Single, T As Single 
Dim PI As Double, THETA As Double, X As Double 
        X = 1 - 2 * Y / d 
        PI = 3.141592654 
        THETA = 2 * (PI / 2 - Atn(X / (1 - X ^ 2) ^ 0.5)) 
        A = (THETA - Sin(THETA)) * d ^ 2 / 8 
        P = THETA * d / 2 
        R = A / P 
        T = d * Sin(THETA / 2) 
        If NFUNC = 1 Then 
             F = Q - Sqr(32.2) * A ^ 1.5 / T ^ 0.5 
        Else 
             F = Q - (1.486 / n) * A * R ^ (2 / 3) * S ^ (1 / 2) 
        End If 
End Function 

 
 
2.26. Write a computer program that computes the depth in a width contraction and the upstream depth 

given a subcritical tailwater depth as in Figure 2.11.  Assume that the channel is rectangular at all 
three sections and make provision for a head-loss coefficient that is nonzero; include a check for 
possible choking. 

 
Solution. 
 
Referring to Fig. 2.11, the downstream depth, y3; channel widths, b3 and b2; discharge, Q; and the 
expansion and contraction loss coefficients, KLexp and KLcont, respectively, must be entered in the 
form module.  It is assumed that b1 = b3.  In the program listing that follows, the Sub procedure 
YTRANS is called from the form module.  First in YTRANS, the possibility of choking is 
checked from the following inequality: 

 
   
in which E3 = the known specific energy at the downstream section; Ec2 = minimum specific 
energy at the contracted section 2; and hL(2c-3) = head loss from section 2 to 3 assuming that 
critical depth occurs in the contracted section.  If this inequality is true, then choking does not 
occur and computations for the depth at section 2 can proceed by calling the BISECTION 
procedure.  If it is true, on the other hand, then choking occurs and the depth at section 2 is set 
equal to the critical depth for the contracted section.  For the nonchoking case, the equation to be 
solved is the energy equation written from section 2 to 3 as 
 
 

)32(32 −+< cLc hEE
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in which y2 is unknown while E3 and A3 are known from the specified downstream depth, y3.  The 
solution to this equation is obtained from Sub BISECTION used with the function subprocedure 
F, which is defined by the right hand side of the equation above minus the left hand side as shown 
in the program listing.  The correspondence between the variables in the equation and the variable 
names in the program listing is given by: Y = y2; Eds = E3; Yds = y3; and HL = the head loss term.  
Once this equation has been solved for y2, control returns to the calling procedure, YTRANS, 
which calls BISECTION again with section 2 as the downstream section and section 1 as the 
upstream section where the depth is unknown.  Then a solution is obtained for y1.  The program 
listing is given below. 
 
Option Explicit 
Dim Q As Single, KLEXP As Single, KLCONT As Single 
Dim B3 As Single, B2 As Single, G As Single, YC3 As Single 
Dim Y3 As Single, Y2 As Single, Y1 As Single, YC2 As Single 
Private Sub cmdCalculate_Click() 
Q = Val(txtQ.Text) 
KLEXP = Val(txtHlexp.Text) 
KLCONT = Val(txtHlcont.Text) 
B3 = Val(txtB3.Text) 
B2 = Val(txtB2.Text) 
Y3 = Val(txtY3.Text) 
G = 32.2 
YC3 = ((Q / B3) ^ 2 / G) ^ (1 / 3) 
YC2 = ((Q / B2) ^ 2 / G) ^ (1 / 3) 
txtYC3.Text = Format(YC3, "###.000") 
txtYC2.Text = Format(YC2, "###.000") 
Call YTRANS(Q, KLEXP, KLCONT, B3, B2, Y3, Y2, Y1) 
If Y2 = 0 Then 
    txtY2.Text = "Enter y3 > YC3" 
    txtY1.Text = "0" 
Else 
    txtY2.Text = Format(Y2, "###.000") 
    txtY1.Text = Format(Y1, "###.000") 
End If 
End Sub 
Private Sub cmdExit_Click() 
End 
End Sub 
 
Option Explicit 
Dim Q As Single, KLEXP As Single, KLCONT As Single 
Dim BE As Single, BC As Single 
Dim Y3 As Single, Y2 As Single, Y1 As Single 
Sub YTRANS(Q, KLEXP, KLCONT, BE, BC, Y3, Y2, Y1) 
Dim YL As Single, YR As Single, ER As Single 
Dim YC3 As Single, YC2 As Single, EC2 As Single 
Dim G As Single, HLC As Single, E3 As Single 
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G = 32.2 
ER = 0.0001 
YC3 = ((Q / BE) ^ 2 / G) ^ (1 / 3) 
If Y3 <= YC3 Then Y2 = 0: Exit Sub 
YC2 = ((Q / BC) ^ 2 / G) ^ (1 / 3) 
EC2 = 1.5 * YC2 
E3 = Y3 + Q ^ 2 / (2 * G * BE ^ 2 * Y3 ^ 2) 
HLC = KLEXP * Abs(Q ^ 2 / (2 * G * (BE * Y3) ^ 2) _ 
 - Q ^ 2 / (2 * G * (BC * YC2) ^ 2)) 
If EC2 < (E3 + HLC) Then 
    YL = YC2 
    YR = 50 
    Call BISECTION(YL, YR, ER, Q, KLEXP, BE, BC, Y3, Y2) 
Else 
    Y2 = YC2 
End If 
YL = YC3 
YR = 50 
Call BISECTION(YL, YR, ER, Q, KLCONT, BC, BE, Y2, Y1) 
End Sub 
 
Sub BISECTION(YL, YR, ER, Q, KL, Bds, Bus, Yds, Y) 
Dim FYL As Single, FYR As Single, FY As Single, FZ As Single 
Dim I As Integer 
        FYL = F(YL, Q, KL, Bds, Bus, Yds) 
        FYR = F(YR, Q, KL, Bds, Bus, Yds) 
        If FYL * FYR > 0 Then 
            Y = 1000000# 
            Exit Sub 
            End If 
For I = 1 To 50 
        Y = (YL + YR) / 2 
        FY = F(Y, Q, KL, Bds, Bus, Yds) 
        FZ = FYL * FY 
        If FZ = 0 Then Exit Sub 
        If FZ < 0 Then YR = Y Else YL = Y 
        If Abs((YR - YL) / Y) < ER Then Exit Sub 
Next I 
End Sub 
 
Function F(Y, Q, KL, Bds, Bus, Yds) As Single 
Dim Eds As Single, CQ As Single, HL As Single, G As Single 
        G = 32.2 
        CQ = Q ^ 2 / (2 * G) 
        Eds = Yds + CQ / (Bds * Yds) ^ 2 
        HL = KL * Abs(CQ / (Bus * Y) ^ 2 - CQ / (Bds * Yds) ^ 2) 
        F = Eds + HL - (Y + CQ / (Bus * Y) ^ 2) 
End Function 
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2.27. A laboratory experiment has been conducted in a horizontal flume in which a sharp-crested weir 
plate has been installed to determine the head-discharge relationship for a rectangular, sharp-
crested weir.  With reference to Figure 2.23, P = 0.506 ft, L = 0.25 ft, and b = 1.25 ft.  The 
discharge was measured by a bend meter for which the calibration is given by Q = 0.075 ∆h0.523, 
in which Q = discharge in cubic feet per second; ∆h = manometer deflection in inches of water; 
and the uncertainty in the calibration is +0.003 cfs.  The head on the crest of the weir was 
measured by a point gauge and is given in the data table that follows.  An upstream view of the 
weir nappe can be seen in Figure 2.28. 
 

∆h, in. H, ft 
13.2 0.498 
11.5 0.476 
11.2 0.474 
8.3 0.425 
8.0 0.421 
6.2 0.384 
6.1 0.386 
4.3 0.333 
4.2 0.334 
2.4 0.272 
2.0 0.257 

 
 

(a) Plot the head on the vertical scale and the discharge on the horizontal scale of log-log 
axes and obtain a least-squares regression fit forcing the inverse slope to be the 
theoretical value of 3/2.  What are the single best-fit value of Cd and the standard error in 
Cd?  Compare the standard error of the "Q estimate" with the uncertainty in the bend-
meter calibration. 

(b) Calculate the discharge using the Kindsvater-Carter relationship and using the single 
best-fit value of Cd.  Compare both sets of results with the measured discharges by 
calculating the percent differences and also plotting the measured vs. calculated 
discharges. 

 
 Solution. 
 

(a)  The spreadsheet calculations are given next in which the Q values are calculated from the 
values of ∆h using the calibration equation for the bend meter.  Linear regression analysis 
between the Q values and H 3/2 is performed to force the exponent on the head to be equal to its 
theoretical value of 3/2.  The best fit value of C = Q/H 3/2 = 0.819 ± 0.002.  The standard error of 
estimate of the Q values is ± 0.0019 cfs, which is slightly smaller than the estimate of uncertainty 
in the bend meter calibration.  The coefficient of determination, R2 = 0.999.  The coefficient C = 
(2/3)(2g)1/2Cd L from which we can solve for Cd to obtain Cd = 0.612 ± 0.003. (The standard error 
also has to be converted from its value on C to the value on Cd.) 
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∆h, in. H,ft Q, cfs H^3/2 Q, Best Fit Q, K.-C. % Dif.: K.-C. 
13.2 0.498 0.289 0.351 0.288 0.288 -0.52%
11.5 0.476 0.269 0.328 0.269 0.269 -0.03%
11.2 0.474 0.265 0.326 0.267 0.267 0.73%

8.3 0.425 0.227 0.277 0.227 0.227 0.17%
8.0 0.421 0.223 0.273 0.224 0.224 0.69%
6.2 0.384 0.195 0.238 0.195 0.195 0.35%
6.1 0.386 0.193 0.240 0.196 0.197 1.99%
4.3 0.333 0.161 0.192 0.157 0.158 -1.67%
4.2 0.334 0.159 0.193 0.158 0.159 -0.01%
2.4 0.272 0.119 0.142 0.116 0.117 -1.19%
2.0 0.257 0.108 0.130 0.107 0.108 -0.07%

   
SUMMARY OUTPUT  

   
Regression Statistics  

Multiple R 0.99949325  
R Square 0.99898676  
Adjusted R Sq. 0.89898676  
Standard Error 0.00192701  
Observations 11  

   
ANOVA   

 df SS MS F Significance F 
Regression 1 0.03661108 0.03661108 9859.31359 5.4068E-15 
Residual 10 3.71335E-05 3.7133E-06  
Total 11 0.036648214  

   
 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A 
X Variable 1 0.8189643 0.002279472 359.278001 6.865E-22 0.81388531 0.82404328
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The plot of H vs. Q on log-log scales is shown in the following figure. 

 
 

 
 

 
 
 
(b)  The values of Q predicted by the Kindsvater-Carter relationship are determined from a 
coefficient of discharge obtained from Table 2-3 for L/b = 0.2 and given by 
 

 
The correction on H is kH = 0.003 ft, and the crest length correction from Figure 2.23c is kL = 
0.0082 ft.  The Kindsvater-Carter values of Q along with the Q values obtained from a single 
best-fit Cd value of 0.612 are shown in the spreadsheet given previously.  The best-fit relationship 
and the Kindsvater-Carter formula give virtually identical results.  The percent difference 
between the Q values predicted by the Kindsvater-Carter formula and the measured Q values are 
also shown in the spreadsheet.  The maximum difference is 2.0 percent.  The same comparison is 
shown graphically in the following figure. 
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