1.102 My Uncle Ben was born in Pogrebishte, a village near Kiev, and he claimed that his birthday was February 29, 1900. I told him that this could not be, for 1900 was not a leap year. Why was I wrong?
Solution. Even though 1900 was not a leap year in America, it was a leap year in Russia, which did not adopt the Gregorian calendar until after the Russian Revolution.

Exercises for Chapter 2

- **2.1** True or false with reasons.
 - (i) If $S \subseteq T$ and $T \subseteq X$, then $S \subseteq X$. Solution. True.
 - (ii) Any two functions f: X → Y and g: Y → Z have a composite f ∘ g: X → Z.
 Solution. False.
 - (iii) Any two functions f: X → Y and g: Y → Z have a composite g ∘ f: X → Z.
 Solution. True.
 - (iv) For every set X, we have $X \times \emptyset = \emptyset$. Solution. True.
 - (v) If $f: X \to Y$ and $j: \text{ im } f \to Y$ is the inclusion, then there is a surjection $g: X \to \text{ im } f$ with $f = j \circ g$. Solution. True.
 - (vi) If $f: X \to Y$ is a function for which there is a function $g: Y \to X$ with $f \circ g = 1_Y$, then f is a bijection. Solution. False.
 - (vii) The formula $f(\frac{a}{b}) = (a+b)(a-b)$ is a well-defined function $\mathbb{Q} \to \mathbb{Z}$. Solution. False.
 - (viii) If $f: \mathbb{N} \to \mathbb{N}$ is given by f(n) = n + 1 and $g: \mathbb{N} \to \mathbb{N}$ is given by $g(n) = n^2$, then the composite $g \circ f$ is $n \mapsto n^2(n+1)$. Solution. False.
 - (ix) Complex conjugation $z = a + ib \mapsto \overline{z} = a ib$ is a bijection $\mathbb{C} \to \mathbb{C}$. Solution. True.

38

2.2 If A and B are subsets of a set X, prove that $A - B = A \cap B'$, where B' = X - B is the complement of B.

Solution. This is one of the beginning set theory exercises that is so easy it is difficult; the difficulty is that the whole proof turns on the meaning of the words "and" and "not." For example, let us prove that $A - B \subseteq A \cap B'$. If $x \in A - B$, then $x \in A$ and $x \notin B$; hence, $x \in A$ and $x \in B'$, and so $x \in A \cap B'$. The proof is completed by proving the reverse inclusion.

2.3 Let A and B be subsets of a set X. Prove the *de Morgan laws*

 $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$,

where A' = X - A denotes the complement of *A*. Solution. Absent.

2.4 If A and B are subsets of a set X, define their *symmetric difference* (see Figure 2.5) by

$$A + B = (A - B) \cup (B - A).$$

- (i) Prove that $A + B = (A \cup B) (A \cap B)$. Solution. Absent.
- (ii) Prove that $A + A = \emptyset$. Solution. Absent.
- (iii) Prove that $A + \emptyset = A$. Solution. Absent.
- (iv) Prove that A + (B + C) = (A + B) + C (see Figure 2.6). Solution. Show that each of A + (B + C) and (A + B) + C is described by Figure 2.6.

A

(v) Prove that $A \cap (B + C) = (A \cap B) + (A \cap C)$. Solution. Absent.

Figure 2.5 Symmetric Difference

Figure 2.6 Associativity

2.5 Let A and B be sets, and let $a \in A$ and $b \in B$. Define their *ordered pair* as follows:

$$(a, b) = \{a, \{a, b\}\}.$$

If $a' \in A$ and $b' \in B$, prove that (a', b') = (a, b) if and only if a' = a and b' = b.

Solution. The result is obviously true if a' = a and b' = b.

For the converse, assume that

$$\{a\{a,b\}\} = \{a'\{a',b'\}\}$$

There are two cases:

$$a = a'$$
 and $\{a, b\} = \{a', b'\};$
 $a = \{a', b'\}$ and $\{a, b\} = a'.$

If a = a', we have $\{a, b\} = \{a', b'\} = \{a, b'\}$. Therefore,

$$\{a, b\} - \{a\} = \{a, b'\} - \{a\}.$$

If a = b, the left side is empty, hence the right side is also empty, and so a = b'; therefore, b = b'. If $a \neq b$, the the left side is $\{b\}$, and so the right side is nonempty and is equal to $\{b'\}$. Therefore, b = b', as desired.

In the second case, $a = \{a', b'\} = \{\{a, b\}b'\}$. Hence,

$$a \in \{a, b\}$$

and

$$\{a, b\} \in \{\{a, b\}, b'\} = a,$$

contradicting the axiom $a \in x \in a$ being false. Therefore, this case cannot occur.

- **2.6** Let $\Delta = \{(x, x) : x \in \mathbb{R}\}$; thus, Δ is the line in the plane which passes through the origin and which makes an angle of 45° with the *x*-axis.
 - (i) If P = (a, b) is a point in the plane with $a \neq b$, prove that Δ is the perpendicular bisector of the segment PP' having endpoints P = (a, b) and P' = (b, a).

Solution. The slope of Δ is 1, and the slope of PP' is (b-a)/(a-b) = -1. Hence, the product of the slopes is -1, and so Δ is perpendicular to the PP'. The midpoint of PP' is $M = (\frac{1}{2}(a+b), \frac{1}{2}(a+b))$, which lies on Δ , and

$$|PM| = \sqrt{[a - \frac{1}{2}(a+b)]^2 + [b - \frac{1}{2}(a+b)]^2} = |MP'|.$$

40

(ii) If $f : \mathbb{R} \to \mathbb{R}$ is a bijection whose graph consists of certain points (a, b) [of course, b = f(a)], prove that the graph of f^{-1} is

$$\{(b, a) : (a, b) \in f\}.$$

Solution. By definition, $f^{-1}(b) = a$ if and only if b = f(a). Hence, the graph of f^{-1} consists of all ordered pairs

$$(b, f^{-1}(b)) = (b, a) = (f(a), a).$$

- **2.7** Let *X* and *Y* be sets, and let $f: X \to Y$ be a function.
 - (i) If S is a subset of X, prove that the restriction f |S is equal to the composite f ∘ i, where i: S → X is the inclusion map.
 Solution. Both f |S and f ∘ i have domain S and target Y. If s ∈ S, then (f ∘ i)(s) = f(s) = (f|S)(s). Therefore, f |S = f ∘ i, by Proposition 2.2.
 - (ii) If im $f = A \subseteq Y$, prove that there exists a surjection $f': X \to A$ with $f = j \circ f'$, where $j: A \to Y$ is the inclusion. Solution. For each $x \in X$, define f'(x) = f(x). Thus, f' differs from f only in its target.
- **2.8** If $f: X \to Y$ has an inverse g, show that g is a bijection. **Solution.** We are told that $f \circ g = 1_Y$ and $g \circ f = 1_X$. Therefore, g has an inverse, namely, f, and so g is a bijection.
- **2.9** Show that if $f: X \to Y$ is a bijection, then it has exactly one inverse. **Solution.** Let $g: Y \to X$ and $h: Y \to X$ both be inverses of f. Then

$$h = h1_Y = h(fg) = (hf)g = 1_Xg = g.$$

2.10 Show that $f : \mathbb{R} \to \mathbb{R}$, defined by f(x) = 3x + 5, is a bijection, and find its inverse.

Solution. The function g, defined by $g(x) = \frac{1}{3}(x-5)$, is the inverse of f, and so f is a bijection. (Alternatively, one could prove that f is a bijection by showing directly that it is injective and surjective.)

2.11 Determine whether $f : \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$, given by

$$f(a/b, c/d) = (a+c)/(b+d)$$

is a function.

Solution. f is not a function: $\frac{1}{2} = \frac{2}{4}$ and $\frac{2}{6} = \frac{1}{3}$, but

$$f(\frac{1}{2}, \frac{2}{6}) = \frac{3}{8} \neq \frac{3}{7} = f(\frac{2}{4}, \frac{1}{3}).$$

2.12 Let $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ be finite sets, where the x_i are distinct and the y_j are distinct. Show that there is a bijection $f : X \to Y$ if and only if |X| = |Y|; that is, m = n.

Solution. The hint is essentially the solution. If f is a bijection, there are m distinct elements $f(x_1), \ldots, f(x_m)$ in Y, and so $m \le n$; using the bijection f^{-1} in place of f gives the reverse inequality $n \le m$.

- 2.13 (Pigeonhole Principle)
 - (i) If X and Y are finite sets with the same number of elements, show that the following conditions are equivalent for a function $f: X \to Y$:
 - (i) f is injective;
 - (ii) *f* is bijective;
 - (iii) f is surjective.

Solution. Assume that *X* and *Y* have *n* elements. If *f* is injective, then there is a bijection from *X* to im $f \subseteq Y$. Exercise 2.12 gives $|\operatorname{im} f| = n$. It follows that im f = Y, for there can be no elements in *Y* outside of im *f*, lest *Y* have more than *n* elements. Any bijection is surjective, and so it remains to show that if *f* is surjective, then it is injective. If $Y = \{y_1, \ldots, y_n\}$, then for each *i*, there exists $x_i \in X$ with $f(x_i) = y_i$. Were *f* not injective, there would be *i* and $x \in X$ with $x \neq x_i$ and $f(x) = f(x_i)$. This gives n + 1 elements in *X*, a contradiction.

(ii) Suppose there are 11 pigeons, each sitting in some pigeonhole. If there are only 10 pigeonholes, prove that there is a hole containing more than one pigeon.

Solution. Suppose each hole has at most one pigeon in it. If *P* is the set of pigeons and *H* is the set of holes, define $f: P \rightarrow H$ by $f: pigeon \mapsto h$, where *h* is the hole containing it. Since each hole contains at most one pigeon, $f(p_1) = f(p_2)$ implies $p_1 = p_2$, where p_1, p_2 are pigeons. Thus, *f* is an injection. By part (1), *f* is a bijection, giving the contradiction 11 = 10.

- **2.14** Let $f: X \to Y$ and $g: Y \to Z$ be functions.
 - (i) If both f and g are injective, prove that g ∘ f is injective.
 Solution. If (g ∘ f)(x) = (g ∘ f)(x'), then g(f(x)) = g(f(x')). Since g is injective, f(x) = f(x'); since f is injective, x = x'. Hence, g ∘ f is injective.
 - (ii) If both f and g are surjective, prove that $g \circ f$ is surjective.

42

Solution. Let $z \in Z$. Since g is surjective, there is $y \in Y$ with g(y) = z; since f is surjective, there is $x \in X$ with f(x) = y. It follows that $(g \circ f)(x) = g(f(x)) = g(y) = z$, and so $g \circ f$ is surjective.

- (iii) If both f and g are bijective, prove that $g \circ f$ is bijective. Solution. By the first two parts, $g \circ f$ is both injective and surjective
- (iv) If $g \circ f$ is a bijection, prove that f is an injection and g is a surjection.

Solution. If $h = (gf)^{-1}$, then (hg)f = 1 and g(fh) = 1. By Lemma 2.9, the first equation gives f an injection while the second equation gives g a surjection.

- 2.15 (i) If f: (-π/2, π/2) → ℝ is defined by a → tan a, then f has an inverse function g; indeed, g = arctan.
 Solution. By calculus, arctan(tan a) = a and tan(arctan x) = x.
 - (ii) Show that each of arcsin x and arccos x is an inverse function (of sin x and cos x, respectively) as defined in this section.
 Solution. Each of the other inverse trig functions satisfies equations analogous to sin(arcsin x) = x and arcsin(sin x) = x, which shows that they are inverse functions as defined in this section.
- **2.16** (i) Let $f: X \to Y$ be a function, and let $\{S_i : i \in I\}$ be a family of subsets of X. Prove that

$$f\left(\bigcup_{i\in I}S_i\right) = \bigcup_{i\in I}f(S_i).$$

Solution. Absent.

- (ii) If S_1 and S_2 are subsets of a set X, and if $f: X \to Y$ is a function, prove that $f(S_1 \cap S_2) \subseteq f(S_1) \cap f(S_2)$. Give an example in which $f(S_1 \cap S_2) \neq f(S_1) \cap f(S_2)$. Solution. Absent.
- (iii) If S_1 and S_2 are subsets of a set X, and if $f: X \to Y$ is an injection, prove that $f(S_1 \cap S_2) = f(S_1) \cap f(S_2)$. Solution. Absent.
- **2.17** Let $f: X \to Y$ be a function.
 - (i) If $B_i \subseteq Y$ is a family of subsets of *Y*, prove that

$$f^{-1}\left(\bigcup_{i} B_{i}\right) = \bigcup_{i} f^{-1}(B_{i}) \text{ and } f^{-1}\left(\bigcap_{i} B_{i}\right) = \bigcap_{i} f^{-1}(B_{i}).$$

Solution. Absent.

(ii) If $B \subseteq Y$, prove that $f^{-1}(B') = f^{-1}(B)'$, where B' denotes the complement of B.

Solution. Absent.

- **2.18** Let $f: X \to Y$ be a function. Define a relation on X by $x \equiv x'$ if f(x) = f(x'). Prove that \equiv is an equivalence relation. If $x \in X$ and f(x) = y, the equivalence class [x] is denoted by $f^{-1}(y)$; it is called the *fiber* over y. **Solution.** Absent.
- **2.19** Let $X = \{\text{rock, paper, scissors}\}$. Recall the game whose rules are: paper dominates rock, rock dominates scissors, and scissors dominates paper. Draw a subset of $X \times X$ showing that domination is a relation on X. **Solution.** Absent.
- 2.20 (i) Find the error in the following argument which claims to prove that a symmetric and transitive relation R on a set X must be reflexive; that is, R is an equivalence relation on X. If x ∈ X and x R y, then symmetry gives y R x and transitivity gives x R x. Solution. There may not exist y ∈ X with x ~ y.
 - (ii) Give an example of a symmetric and transitive relation on the closed unit interval X = [0, 1] which is not reflexive.

Solution. Define

$$R = \{ (x, x) : 0 \le x \le \frac{1}{2} \}.$$

Now *R* is the identity on $Y = [0, \frac{1}{2}]$, so that it is symmetric and transitive. However, *R* does not contain the diagonal of the big square $X \times X$, and so *R* is not a reflexive relation on *X*. For example, $1 \neq 1$.

- **2.21** True or false with reasons.
 - (i) The symmetric group on *n* letters is a set of *n* elements. Solution. False.
 - (ii) If $\sigma \in S_6$, then $\sigma^n = 1$ for some $n \ge 1$. Solution. True.
 - (iii) If $\alpha, \beta \in S_n$, then $\alpha\beta$ is an abbreviation for $\alpha \circ \beta$. Solution. True.
 - (iv) If α , β are cycles in S_n , then $\alpha\beta = \beta\alpha$. Solution. False.
 - (v) If σ , τ are *r*-cycles in S_n , then $\sigma \tau$ is an *r*-cycle. Solution. False.
 - (vi) If $\sigma \in S_n$ is an *r*-cycle, then $\alpha \sigma \alpha^{-1}$ is an *r*-cycle for every $\alpha \in S_n$. Solution. True.

- (vii) Every transposition is an even permutation. Solution. False.
- (viii) If a permutation α is a product of 3 transpositions, then it cannot be a product of 4 transpositions.Solution. True.
- (ix) If a permutation α is a product of 3 transpositions, then it cannot be a product of 5 transpositions.Solution. False.
- (x) If $\sigma \alpha \sigma^{-1} = \omega \alpha \omega^{-1}$, then $\sigma = \omega$. Solution. False.
- **2.22** Find sgn(α) and α^{-1} , where

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

Solution. In cycle notation, $\alpha = (19)(28)(37)(46)$. Thus, α is even, being the product of four transpositions. Moreover, being a product of disjoint transpositions, $\alpha = \alpha^{-1}$.

2.23 If $\sigma \in S_n$ fixes some j, where $1 \leq j \leq n$ (that is, $\sigma(j) = j$), define $\sigma' \in S_X$, where $X = \{1, \ldots, \hat{j}, \ldots, n\}$, by $\sigma'(i) = \sigma(i)$ for all $i \neq j$. Prove that

$$\operatorname{sgn}(\sigma') = \operatorname{sgn}(\sigma).$$

Solution. One of the cycles in the complete factorization of σ is the 1-cycle (*j*). Hence, if there are *t* cycles in the complete factorization of σ , then there are t - 1 cycles in the complete factorization of σ' . Therefore,

$$\operatorname{sgn}(\sigma') = (-1)^{[n-1]-[t-1]} = (-1)^{n-t} = \operatorname{sgn}(\sigma).$$

2.24 (i) If $1 < r \le n$, prove that there are

$$\frac{1}{r}[n(n-1)\cdots(n-r+1)]$$

r-cycles in S_n .

Solution. In the notation $(i_1 \ i_2 \ \dots \ i_r)$, there are *n* choices for i_1 , n-1 choices for $i_2, \dots, n-(r-1) = n-r+1$ choices for i_r . We conclude that there are $n(n-1) \cdots (n-r+1)$ such notations. However, *r* such notations describe the same cycle:

$$(i_1 \ i_2 \ \dots \ i_r) = (i_2 \ i_3 \ \dots \ i_1) = \dots = (i_r \ i_1 \ \dots \ i_{r-1}).$$

Therefore, there are $\frac{1}{r}[n(n-1)\cdots(n-r+1)]$ *r*-cycles in S_n .

(ii) If $kr \le n$, where $1 < r \le n$, prove that the number of permutations $\alpha \in S_n$, where α is a product of k disjoint r-cycles, is

$$\frac{1}{k!} \frac{1}{r^k} [n(n-1)\cdots(n-kr+1)]$$

Solution. Absent.

- **2.25** (i) If α is an *r*-cycle, show that $\alpha^r = (1)$. **Solution.** If $\alpha = (i_0 \dots i_{r-1})$, then the proof of Lemma 2.25(ii) shows that $\alpha^k(i_0) = i_k$, where the subscript is read mod *r*. Hence, $\alpha^r(i_0) = i_0$. But the same is true if we choose the notation for α having any of the other i_j as the first entry.
 - (ii) If α is an *r*-cycle, show that *r* is the least positive integer *k* such that $\alpha^k = (1)$. Solution. Use Proposition 2.24. If k < r, then $\alpha^k(i_0) = i_k \neq i_0$,

Solution. Use Proposition 2.24. If k < r, then $\alpha^{*}(l_0) = l_k \neq l_0$, so that $\alpha^k \neq 1$.

- **2.26** Show that an *r*-cycle is an even permutation if and only if *r* is odd. **Solution.** In the proof of Proposition 2.35, we showed that any *r*-cycle α is a product of r - 1 transpositions. The result now follows from Proposition 2.39, for sgn(α) = $(-1)^{r-1} = -1$.
- **2.27** Given $X = \{1, 2, ..., n\}$, let us call a permutation τ of X an *adjacency* if it is a transposition of the form $(i \ i + 1)$ for i < n. If i < j, prove that $(i \ j)$ is a product of an odd number of adjacencies.

Solution. We prove the result by induction on $j - i \ge 1$. The base step is clear, for then τ is already an adjacency, and so it is a product of 1 adjacency. For the inductive step, we have

$$\tau = (i \ j) = (i \ i + 1)(i + 1 \ j)(i \ i + 1),$$

by Proposition 2.32, for $j - i \ge 2$ implies $j \ne i + 1$. By induction, $(i + 1 \ j)$ is a product of an odd number of adjacencies, and so τ is also such a product.

2.28 Define $f: \{0, 1, 2, \dots, 10\} \rightarrow \{0, 1, 2, \dots, 10\}$ by

f(n) = the remainder after dividing $4n^2 - 3n^7$ by 11.

(i) Show that f is a permutation.Solution. Here is the two-rowed notation for f:

 $\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 0 & 1 & 6 & 9 & 5 & 3 & 10 & 2 & 8 & 4 & 7 \end{pmatrix}.$

It follows that f is a permutation. (The reader is expected to use his knowledge of congruences to facilitate the calculations.)

- (ii) Compute the parity of f. Solution. $f = (2 \ 6 \ 10 \ 7)(3 \ 9 \ 4 \ 5)$. Since 4-cycles are odd, f is even.
- (iii) Compute the inverse of f. Solution. $f^{-1} = (7 \ 10 \ 6 \ 2)(5 \ 4 \ 9 \ 3)$.

2.29 (i) Prove that α is regular if and only if α is a power of an *n*-cycle. **Solution.** If $\alpha = (a_1 \ a_2 \cdots a_k)(b_1 \ b_2 \cdots b_k) \cdots (c_1 \ c_2 \cdots c_k)$ is a product of disjoint *k*-cycles involving all the numbers between 1 and *n*, show that $\alpha = \beta^k$, where

$$\beta = (a_1 \ b_1 \cdots z_1 \ a_2 \ b_2 \cdots z_2 \ \dots a_k \ b_k \cdots z_k).$$

- (ii) Prove that if α is an *r*-cycle, then α^k is a product of (r, k) disjoint cycles, each of length r/(r, k).
 Solution. Absent.
- (iii) If p is a prime, prove that every power of a p-cycle is either a p-cycle or (1).Solution. Absent.
- (iv) How many regular permutations are there in S_5 ? How many regular permutations are there in S_8 ? Solution. Absent.

2.30 (i) Prove that if α and β are (not necessarily disjoint) permutations that commute, then $(\alpha\beta)^k = \alpha^k \beta^k$ for all $k \ge 1$. **Solution.** We prove first, by induction on $k \ge 1$, that $\beta\alpha^k = \alpha^k \beta$. The base step is true because α and β commute. For the inductive step,

$$\beta \alpha^{k+1} = \beta \alpha^k \alpha$$

= $\alpha^k \beta \alpha$ (inductive hypothesis)
= $\alpha^k \alpha \beta$
= $\alpha^{k+1} \beta$.

We now prove the result by induction on $k \ge 1$. The base step is obviously true. For the inductive step,

$$(\alpha\beta)^{k+1} = \alpha\beta(\alpha\beta)^k$$

= $\alpha\beta\alpha^k\beta^k$ (inductive hypothesis)
= $\alpha\alpha^k\beta\beta^k$ (proof above)
= $\alpha^{k+1}\beta^{k+1}$.

(ii) Give an example of two permutations α and β for which $(\alpha\beta)^2 \neq \alpha^2\beta^2$.

Solution. There are many examples. One is $\alpha = (1 \ 2)$ and $\beta = (1 \ 3)$. Since both α and β are transpositions, $\alpha^2 = (1) = \beta^2$, and so $\alpha^2 \beta^2 = (1)$. On the other hand, $\alpha \beta = (1 \ 3 \ 2)$, and $(\alpha \beta)^2 = (1 \ 3 \ 2)^2 = (1 \ 2 \ 3) \neq (1)$.

- **2.31** (i) Prove, for all *i*, that $\alpha \in S_n$ moves *i* if and only if α^{-1} moves *i*. **Solution.** Since α is surjective, there is *k* with $\alpha k = i$. If k = i, then $\alpha i = i$ and $\alpha i = j \neq i$, a contradiction; hence, $k \neq i$. But $\alpha^{-1}i = k$, and so α^{-1} moves *i*. The converse follows by replacing α by α^{-1} , for $(\alpha^{-1})^{-1} = \alpha$.
 - (ii) Prove that if $\alpha, \beta \in S_n$ are disjoint and if $\alpha\beta = (1)$, then $\alpha = (1)$ and $\beta = (1)$. Solution. By (i), if α and β are disjoint, then α^{-1} and β are disjoint: if β moves some *i*, then α^{-1} must fix *i*. But $\alpha\beta = (1)$ implies $\alpha^{-1} = \beta$, so that there can be no *i* moved by β . Therefore, $\beta = (1) = \alpha$.
- **2.32** If $n \ge 2$, prove that the number of even permutations in S_n is $\frac{1}{2}n!$. **Solution.** Let $\tau = (1 \ 2)$, and define $f : A_n \to O_n$, where A_n is the set of all even permutations in S_n and O_n is the set of all odd permutations, by

 $f: \alpha \mapsto \tau \alpha.$

If σ is even, then $\tau\sigma$ is odd, so that the target of f is, indeed, O_n . The function f is a bijection, for its inverse is $g: O_n \to A_n$, which is given by $g: \alpha \mapsto \tau \alpha$.

- **2.33** Give an example of α , β , $\gamma \in S_5$, none of which is the identity (1), with $\alpha\beta = \beta\alpha$ and $\alpha\gamma = \gamma\alpha$, but with $\beta\gamma \neq \gamma\beta$. **Solution.** Set $\alpha = (1 \ 2)$, $\beta = (3 \ 4)$, and $\gamma = (3 \ 5)$. Then $\alpha\beta = \beta\alpha$, $\alpha\gamma = \gamma\alpha$, and $\beta\gamma \neq \gamma\beta$.
- **2.34** If $n \ge 3$, show that if $\alpha \in S_n$ commutes with every $\beta \in S_n$, then $\alpha = (1)$. **Solution.** If $\alpha \ne (1)$, then it moves some *i*; say, $\alpha i = j \ne i$. There is β with $\beta j = j$ and $\beta i = k \ne i$. Then $\beta \alpha i = \beta j = j$, while $\alpha \beta i = \alpha k \ne j$ (for α is injective, and so $k \ne i$ implies $\alpha k \ne \alpha i = j$).
- 2.35 Can the following 15-puzzle be won?

4	10	9	1
8	2	15	6
12	5	11	3
7	14	13	#

Solution. No, because the associated permutation is odd.