1.102 My Uncle Ben was born in Pogrebishte, a village near Kiev, and he claimed that his birthday was February 29, 1900. I told him that this could not be, for 1900 was not a leap year. Why was I wrong?
Solution. Even though 1900 was not a leap year in America, it was a leap year in Russia, which did not adopt the Gregorian calendar until after the Russian Revolution.

Exercises for Chapter 2

2.1 True or false with reasons.
(i) If $S \subseteq T$ and $T \subseteq X$, then $S \subseteq X$.

Solution. True.
(ii) Any two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ have a composite $f \circ g: X \rightarrow Z$.
Solution. False.
(iii) Any two functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ have a composite $g \circ f: X \rightarrow Z$.
Solution. True.
(iv) For every set X, we have $X \times \varnothing=\varnothing$.

Solution. True.
(v) If $f: X \rightarrow Y$ and $j: \operatorname{im} f \rightarrow Y$ is the inclusion, then there is a surjection $g: X \rightarrow \operatorname{im} f$ with $f=j \circ g$.
Solution. True.
(vi) If $f: X \rightarrow Y$ is a function for which there is a function $g: Y \rightarrow X$ with $f \circ g=1_{Y}$, then f is a bijection.
Solution. False.
(vii) The formula $f\left(\frac{a}{b}\right)=(a+b)(a-b)$ is a well-defined function $\mathbb{Q} \rightarrow \mathbb{Z}$.
Solution. False.
(viii) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is given by $f(n)=n+1$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ is given by $g(n)=n^{2}$, then the composite $g \circ f$ is $n \mapsto n^{2}(n+1)$.
Solution. False.
(ix) Complex conjugation $z=a+i b \mapsto \bar{z}=a-i b$ is a bijection $\mathbb{C} \rightarrow \mathbb{C}$.
Solution. True.
2.2 If A and B are subsets of a set X, prove that $A-B=A \cap B^{\prime}$, where $B^{\prime}=X-B$ is the complement of B.
Solution. This is one of the beginning set theory exercises that is so easy it is difficult; the difficulty is that the whole proof turns on the meaning of the words "and" and "not." For example, let us prove that $A-B \subseteq A \cap B^{\prime}$. If $x \in A-B$, then $x \in A$ and $x \notin B$; hence, $x \in A$ and $x \in B^{\prime}$, and so $x \in A \cap B^{\prime}$. The proof is completed by proving the reverse inclusion.
2.3 Let A and B be subsets of a set X. Prove the de Morgan laws

$$
(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime} \quad \text { and } \quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime},
$$

where $A^{\prime}=X-A$ denotes the complement of A.
Solution. Absent.
2.4 If A and B are subsets of a set X, define their symmetric difference (see Figure 2.5) by

$$
A+B=(A-B) \cup(B-A) .
$$

(i) Prove that $A+B=(A \cup B)-(A \cap B)$.

Solution. Absent.
(ii) Prove that $A+A=\varnothing$.

Solution. Absent.
(iii) Prove that $A+\varnothing=A$.

Solution. Absent.
(iv) Prove that $A+(B+C)=(A+B)+C$ (see Figure 2.6).

Solution. Show that each of $A+(B+C)$ and $(A+B)+C$ is described by Figure 2.6.
(v) Prove that $A \cap(B+C)=(A \cap B)+(A \cap C)$.

Solution. Absent.

Figure 2.5 Symmetric Difference

Figure 2.6 Associativity
2.5 Let A and B be sets, and let $a \in A$ and $b \in B$. Define their ordered pair as follows:

$$
(a, b)=\{a,\{a, b\}\}
$$

If $a^{\prime} \in A$ and $b^{\prime} \in B$, prove that $\left(a^{\prime}, b^{\prime}\right)=(a, b)$ if and only if $a^{\prime}=a$ and $b^{\prime}=b$.
Solution. The result is obviously true if $a^{\prime}=a$ and $b^{\prime}=b$.
For the converse, assume that

$$
\{a\{a, b\}\}=\left\{a^{\prime}\left\{a^{\prime}, b^{\prime}\right\}\right\}
$$

There are two cases:

$$
\begin{aligned}
\quad a=a^{\prime} \text { and }\{a, b\} & =\left\{a^{\prime}, b^{\prime}\right\} \\
a=\left\{a^{\prime}, b^{\prime}\right\} \text { and }\{a, b\} & =a^{\prime} .
\end{aligned}
$$

If $a=a^{\prime}$, we have $\{a, b\}=\left\{a^{\prime}, b^{\prime}\right\}=\left\{a, b^{\prime}\right\}$. Therefore,

$$
\{a, b\}-\{a\}=\left\{a, b^{\prime}\right\}-\{a\}
$$

If $a=b$, the left side is empty, hence the right side is also empty, and so $a=b^{\prime}$; therefore, $b=b^{\prime}$. If $a \neq b$, the the left side is $\{b\}$, and so the right side is nonempty and is equal to $\left\{b^{\prime}\right\}$. Therefore, $b=b^{\prime}$, as desired.

In the second case, $a=\left\{a^{\prime}, b^{\prime}\right\}=\left\{\{a, b\} b^{\prime}\right\}$. Hence,

$$
a \in\{a, b\}
$$

and

$$
\{a, b\} \in\left\{\{a, b\}, b^{\prime}\right\}=a
$$

contradicting the axiom $a \in x \in a$ being false. Therefore, this case cannot occur.
2.6 Let $\Delta=\{(x, x): x \in \mathbb{R}\}$; thus, Δ is the line in the plane which passes through the origin and which makes an angle of 45° with the x-axis.
(i) If $P=(a, b)$ is a point in the plane with $a \neq b$, prove that Δ is the perpendicular bisector of the segment $P P^{\prime}$ having endpoints $P=(a, b)$ and $P^{\prime}=(b, a)$.
Solution. The slope of Δ is 1 , and the slope of $P P^{\prime}$ is $(b-a) /(a-b)=-1$. Hence, the product of the slopes is -1 , and so Δ is perpendicular to the $P P^{\prime}$. The midpoint of $P P^{\prime}$ is $M=\left(\frac{1}{2}(a+b), \frac{1}{2}(a+b)\right)$, which lies on Δ, and

$$
|P M|=\sqrt{\left[a-\frac{1}{2}(a+b)\right]^{2}+\left[b-\frac{1}{2}(a+b)\right]^{2}}=\left|M P^{\prime}\right|
$$

(ii) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a bijection whose graph consists of certain points (a, b) [of course, $b=f(a)]$, prove that the graph of f^{-1} is

$$
\{(b, a):(a, b) \in f\} .
$$

Solution. By definition, $f^{-1}(b)=a$ if and only if $b=f(a)$. Hence, the graph of f^{-1} consists of all ordered pairs

$$
\left(b, f^{-1}(b)\right)=(b, a)=(f(a), a)
$$

2.7 Let X and Y be sets, and let $f: X \rightarrow Y$ be a function.
(i) If S is a subset of X, prove that the restriction $f \mid S$ is equal to the composite $f \circ i$, where $i: S \rightarrow X$ is the inclusion map.
Solution. Both $f \mid S$ and $f \circ i$ have domain S and $\operatorname{target} Y$. If $s \in S$, then $(f \circ i)(s)=f(s)=(f \mid S)(s)$. Therefore, $f \mid S=f \circ i$, by Proposition 2.2.
(ii) If im $f=A \subseteq Y$, prove that there exists a surjection $f^{\prime}: X \rightarrow A$ with $f=j \circ f^{\prime}$, where $j: A \rightarrow Y$ is the inclusion.
Solution. For each $x \in X$, define $f^{\prime}(x)=f(x)$. Thus, f^{\prime} differs from f only in its target.
2.8 If $f: X \rightarrow Y$ has an inverse g, show that g is a bijection.

Solution. We are told that $f \circ g=1_{Y}$ and $g \circ f=1_{X}$. Therefore, g has an inverse, namely, f, and so g is a bijection.
2.9 Show that if $f: X \rightarrow Y$ is a bijection, then it has exactly one inverse.

Solution. Let $g: Y \rightarrow X$ and $h: Y \rightarrow X$ both be inverses of f. Then

$$
h=h 1_{Y}=h(f g)=(h f) g=1_{X} g=g .
$$

2.10 Show that $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=3 x+5$, is a bijection, and find its inverse.
Solution. The function g, defined by $g(x)=\frac{1}{3}(x-5)$, is the inverse of f, and so f is a bijection. (Alternatively, one could prove that f is a bijection by showing directly that it is injective and surjective.)
2.11 Determine whether $f: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$, given by

$$
f(a / b, c / d)=(a+c) /(b+d)
$$

is a function.
Solution. f is not a function: $\frac{1}{2}=\frac{2}{4}$ and $\frac{2}{6}=\frac{1}{3}$, but

$$
f\left(\frac{1}{2}, \frac{2}{6}\right)=\frac{3}{8} \neq \frac{3}{7}=f\left(\frac{2}{4}, \frac{1}{3}\right) .
$$

2.12 Let $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$ be finite sets, where the x_{i} are distinct and the y_{j} are distinct. Show that there is a bijection $f: X \rightarrow Y$ if and only if $|X|=|Y|$; that is, $m=n$.
Solution. The hint is essentially the solution. If f is a bijection, there are m distinct elements $f\left(x_{1}\right), \ldots, f\left(x_{m}\right)$ in Y, and so $m \leq n$; using the bijection f^{-1} in place of f gives the reverse inequality $n \leq m$.

2.13 (Pigeonhole Principle)

(i) If X and Y are finite sets with the same number of elements, show that the following conditions are equivalent for a function $f: X \rightarrow Y$:
(i) f is injective;
(ii) f is bijective;
(iii) f is surjective.

Solution. Assume that X and Y have n elements. If f is injective, then there is a bijection from X to im $f \subseteq Y$. Exercise 2.12 gives $|\operatorname{im} f|=n$. It follows that $\operatorname{im} f=Y$, for there can be no elements in Y outside of $\operatorname{im} f$, lest Y have more than n elements. Any bijection is surjective, and so it remains to show that if f is surjective, then it is injective. If $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, then for each i, there exists $x_{i} \in X$ with $f\left(x_{i}\right)=y_{i}$. Were f not injective, there would be i and $x \in X$ with $x \neq x_{i}$ and $f(x)=f\left(x_{i}\right)$. This gives $n+1$ elements in X, a contradiction.
(ii) Suppose there are 11 pigeons, each sitting in some pigeonhole. If there are only 10 pigeonholes, prove that there is a hole containing more than one pigeon.
Solution. Suppose each hole has at most one pigeon in it. If P is the set of pigeons and H is the set of holes, define $f: P \rightarrow H$ by $f:$ pigeon $\mapsto h$, where h is the hole containing it. Since each hole contains at most one pigeon, $f\left(p_{1}\right)=f\left(p_{2}\right)$ implies $p_{1}=p_{2}$, where p_{1}, p_{2} are pigeons. Thus, f is an injection. By part (1), f is a bijection, giving the contradiction $11=10$.
2.14 Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions.
(i) If both f and g are injective, prove that $g \circ f$ is injective.

Solution. If $(g \circ f)(x)=(g \circ f)\left(x^{\prime}\right)$, then $g(f(x))=g\left(f\left(x^{\prime}\right)\right)$. Since g is injective, $f(x)=f\left(x^{\prime}\right)$; since f is injective, $x=x^{\prime}$. Hence, $g \circ f$ is injective.
(ii) If both f and g are surjective, prove that $g \circ f$ is surjective.

Solution. Let $z \in Z$. Since g is surjective, there is $y \in Y$ with $g(y)=z$; since f is surjective, there is $x \in X$ with $f(x)=y$. It follows that $(g \circ f)(x)=g(f(x))=g(y)=z$, and so $g \circ f$ is surjective.
(iii) If both f and g are bijective, prove that $g \circ f$ is bijective.

Solution. By the first two parts, $g \circ f$ is both injective and surjective
(iv) If $g \circ f$ is a bijection, prove that f is an injection and g is a surjection.
Solution. If $h=(g f)^{-1}$, then $(h g) f=1$ and $g(f h)=1$. By Lemma 2.9, the first equation gives f an injection while the second equation gives g a surjection.
2.15 (i) If $f:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}$ is defined by $a \mapsto \tan a$, then f has an inverse function g; indeed, $g=$ arctan.
Solution. By calculus, $\arctan (\tan a)=a$ and $\tan (\arctan x)=x$.
(ii) Show that each of $\arcsin x$ and $\arccos x$ is an inverse function (of $\sin x$ and $\cos x$, respectively) as defined in this section.
Solution. Each of the other inverse trig functions satisfies equations analogous to $\sin (\arcsin x)=x$ and $\arcsin (\sin x)=x$, which shows that they are inverse functions as defined in this section.
2.16 (i) Let $f: X \rightarrow Y$ be a function, and let $\left\{S_{i}: i \in I\right\}$ be a family of subsets of X. Prove that

$$
f\left(\bigcup_{i \in I} S_{i}\right)=\bigcup_{i \in I} f\left(S_{i}\right) .
$$

Solution. Absent.
(ii) If S_{1} and S_{2} are subsets of a set X, and if $f: X \rightarrow Y$ is a function, prove that $f\left(S_{1} \cap S_{2}\right) \subseteq f\left(S_{1}\right) \cap f\left(S_{2}\right)$. Give an example in which $f\left(S_{1} \cap S_{2}\right) \neq f\left(S_{1}\right) \cap f\left(S_{2}\right)$.
Solution. Absent.
(iii) If S_{1} and S_{2} are subsets of a set X, and if $f: X \rightarrow Y$ is an injection, prove that $f\left(S_{1} \cap S_{2}\right)=f\left(S_{1}\right) \cap f\left(S_{2}\right)$.
Solution. Absent.
2.17 Let $f: X \rightarrow Y$ be a function.
(i) If $B_{i} \subseteq Y$ is a family of subsets of Y, prove that

$$
f^{-1}\left(\bigcup_{i} B_{i}\right)=\bigcup_{i} f^{-1}\left(B_{i}\right) \text { and } f^{-1}\left(\bigcap_{i} B_{i}\right)=\bigcap_{i} f^{-1}\left(B_{i}\right) .
$$

Solution. Absent.
(ii) If $B \subseteq Y$, prove that $f^{-1}\left(B^{\prime}\right)=f^{-1}(B)^{\prime}$, where B^{\prime} denotes the complement of B.
Solution. Absent.
2.18 Let $f: X \rightarrow Y$ be a function. Define a relation on X by $x \equiv x^{\prime}$ if $f(x)=$ $f\left(x^{\prime}\right)$. Prove that \equiv is an equivalence relation. If $x \in X$ and $f(x)=y$, the equivalence class $[x]$ is denoted by $f^{-1}(y)$; it is called the fiber over y. Solution. Absent.
2.19 Let $X=$ \{rock, paper, scissors\}. Recall the game whose rules are: paper dominates rock, rock dominates scissors, and scissors dominates paper. Draw a subset of $X \times X$ showing that domination is a relation on X.
Solution. Absent.
2.20 (i) Find the error in the following argument which claims to prove that a symmetric and transitive relation R on a set X must be reflexive; that is, R is an equivalence relation on X. If $x \in X$ and $x R y$, then symmetry gives $y R x$ and transitivity gives $x R x$.
Solution. There may not exist $y \in X$ with $x \sim y$.
(ii) Give an example of a symmetric and transitive relation on the closed unit interval $X=[0,1]$ which is not reflexive.
Solution. Define

$$
R=\left\{(x, x): 0 \leq x \leq \frac{1}{2}\right\} .
$$

Now R is the identity on $Y=\left[0, \frac{1}{2}\right]$, so that it is symmetric and transitive. However, R does not contain the diagonal of the big square $X \times X$, and so R is not a reflexive relation on X. For example, $1 \nsucc 1$.
2.21 True or false with reasons.
(i) The symmetric group on n letters is a set of n elements.

Solution. False.
(ii) If $\sigma \in S_{6}$, then $\sigma^{n}=1$ for some $n \geq 1$.

Solution. True.
(iii) If $\alpha, \beta \in S_{n}$, then $\alpha \beta$ is an abbreviation for $\alpha \circ \beta$.

Solution. True.
(iv) If α, β are cycles in S_{n}, then $\alpha \beta=\beta \alpha$.

Solution. False.
(v) If σ, τ are r-cycles in S_{n}, then $\sigma \tau$ is an r-cycle.

Solution. False.
(vi) If $\sigma \in S_{n}$ is an r-cycle, then $\alpha \sigma \alpha^{-1}$ is an r-cycle for every $\alpha \in S_{n}$.

Solution. True.
(vii) Every transposition is an even permutation.

Solution. False.
(viii) If a permutation α is a product of 3 transpositions, then it cannot be a product of 4 transpositions.
Solution. True.
(ix) If a permutation α is a product of 3 transpositions, then it cannot be a product of 5 transpositions.
Solution. False.
(x) If $\sigma \alpha \sigma^{-1}=\omega \alpha \omega^{-1}$, then $\sigma=\omega$.

Solution. False.
2.22 Find $\operatorname{sgn}(\alpha)$ and α^{-1}, where

$$
\alpha=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)
$$

Solution. In cycle notation, $\alpha=(19)(28)(37)(46)$. Thus, α is even, being the product of four transpositions. Moreover, being a product of disjoint transpositions, $\alpha=\alpha^{-1}$.
2.23 If $\sigma \in S_{n}$ fixes some j, where $1 \leq j \leq n$ (that is, $\sigma(j)=j$), define $\sigma^{\prime} \in S_{X}$, where $X=\{1, \ldots, \widehat{j}, \ldots, n\}$, by $\sigma^{\prime}(i)=\sigma(i)$ for all $i \neq j$. Prove that

$$
\operatorname{sgn}\left(\sigma^{\prime}\right)=\operatorname{sgn}(\sigma)
$$

Solution. One of the cycles in the complete factorization of σ is the 1 cycle (j). Hence, if there are t cycles in the complete factorization of σ, then there are $t-1$ cycles in the complete factorization of σ^{\prime}. Therefore,

$$
\operatorname{sgn}\left(\sigma^{\prime}\right)=(-1)^{[n-1]-[t-1]}=(-1)^{n-t}=\operatorname{sgn}(\sigma)
$$

2.24 (i) If $1<r \leq n$, prove that there are

$$
\frac{1}{r}[n(n-1) \cdots(n-r+1)]
$$

r-cycles in S_{n}.
Solution. In the notation $\left(i_{1} i_{2} \ldots i_{r}\right)$, there are n choices for i_{1}, $n-1$ choices for $i_{2}, \ldots, n-(r-1)=n-r+1$ choices for i_{r}. We conclude that there are $n(n-1) \cdots(n-r+1)$ such notations. However, r such notations describe the same cycle:

$$
\left(i_{1} i_{2} \ldots i_{r}\right)=\left(i_{2} i_{3} \ldots i_{1}\right)=\cdots=\left(i_{r} i_{1} \ldots i_{r-1}\right)
$$

Therefore, there are $\frac{1}{r}[n(n-1) \cdots(n-r+1)] r$-cycles in S_{n}.
(ii) If $k r \leq n$, where $1<r \leq n$, prove that the number of permutations $\alpha \in S_{n}$, where α is a product of k disjoint r-cycles, is

$$
\frac{1}{k^{\prime}!} \frac{1}{r^{k}}[n(n-1) \cdots(n-k r+1) .]
$$

Solution. Absent.
2.25 (i) If α is an r-cycle, show that $\alpha^{r}=(1)$.

Solution. If $\alpha=\left(i_{0} \ldots i_{r-1}\right)$, then the proof of Lemma 2.25(ii) shows that $\alpha^{k}\left(i_{0}\right)=i_{k}$, where the subscript is read mod r. Hence, $\alpha^{r}\left(i_{0}\right)=i_{0}$. But the same is true if we choose the notation for α having any of the other i_{j} as the first entry.
(ii) If α is an r-cycle, show that r is the least positive integer k such that $\alpha^{k}=(1)$.
Solution. Use Proposition 2.24. If $k<r$, then $\alpha^{k}\left(i_{0}\right)=i_{k} \neq i_{0}$, so that $\alpha^{k} \neq 1$.
2.26 Show that an r-cycle is an even permutation if and only if r is odd.

Solution. In the proof of Proposition 2.35, we showed that any r-cycle α is a product of $r-1$ transpositions. The result now follows from Proposition 2.39 , for $\operatorname{sgn}(\alpha)=(-1)^{r-1}=-1$.
2.27 Given $X=\{1,2, \ldots, n\}$, let us call a permutation τ of X an adjacency if it is a transposition of the form $(i i+1)$ for $i<n$. If $i<j$, prove that ($i j$) is a product of an odd number of adjacencies.
Solution. We prove the result by induction on $j-i \geq 1$. The base step is clear, for then τ is already an adjacency, and so it is a product of 1 adjacency. For the inductive step, we have

$$
\tau=(i j)=(i i+1)(i+1 j)(i i+1),
$$

by Proposition 2.32, for $j-i \geq 2$ implies $j \neq i+1$. By induction, $(i+1 j)$ is a product of an odd number of adjacencies, and so τ is also such a product.
2.28 Define $f:\{0,1,2, \ldots, 10\} \rightarrow\{0,1,2, \ldots, 10\}$ by

$$
f(n)=\text { the remainder after dividing } 4 n^{2}-3 n^{7} \text { by } 11 .
$$

(i) Show that f is a permutation.

Solution. Here is the two-rowed notation for f :

$$
\left(\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & 1 & 6 & 9 & 5 & 3 & 10 & 2 & 8 & 4 & 7
\end{array}\right) .
$$

It follows that f is a permutation. (The reader is expected to use his knowledge of congruences to facilitate the calculations.)
(ii) Compute the parity of f.

Solution. $f=\left(\begin{array}{ll}2 & 6107\end{array}\right)(3945)$. Since 4-cycles are odd, f is even.
(iii) Compute the inverse of f.

Solution. $f^{-1}=(71062)(5493)$.
2.29 (i) Prove that α is regular if and only if α is a power of an n-cycle.

Solution. If $\alpha=\left(a_{1} a_{2} \cdots a_{k}\right)\left(b_{1} b_{2} \cdots b_{k}\right) \cdots\left(c_{1} c_{2} \cdots c_{k}\right)$ is a product of disjoint k-cycles involving all the numbers between 1 and n, show that $\alpha=\beta^{k}$, where

$$
\beta=\left(a_{1} b_{1} \cdots z_{1} a_{2} b_{2} \cdots z_{2} \ldots a_{k} b_{k} \cdots z_{k}\right)
$$

(ii) Prove that if α is an r-cycle, then α^{k} is a product of (r, k) disjoint cycles, each of length $r /(r, k)$.
Solution. Absent.
(iii) If p is a prime, prove that every power of a p-cycle is either a p-cycle or (1).
Solution. Absent.
(iv) How many regular permutations are there in S_{5} ? How many regular permutations are there in S_{8} ?
Solution. Absent.
2.30 (i) Prove that if α and β are (not necessarily disjoint) permutations that commute, then $(\alpha \beta)^{k}=\alpha^{k} \beta^{k}$ for all $k \geq 1$.
Solution. We prove first, by induction on $k \geq 1$, that $\beta \alpha^{k}=\alpha^{k} \beta$. The base step is true because α and β commute. For the inductive step,

$$
\begin{aligned}
\beta \alpha^{k+1} & =\beta \alpha^{k} \alpha \\
& =\alpha^{k} \beta \alpha \quad \text { (inductive hypothesis) } \\
& =\alpha^{k} \alpha \beta \\
& =\alpha^{k+1} \beta
\end{aligned}
$$

We now prove the result by induction on $k \geq 1$. The base step is obviously true. For the inductive step,

$$
\begin{aligned}
(\alpha \beta)^{k+1} & =\alpha \beta(\alpha \beta)^{k} \\
& =\alpha \beta \alpha^{k} \beta^{k} \quad \text { (inductive hypothesis) } \\
& =\alpha \alpha^{k} \beta \beta^{k} \quad(\text { proof above) } \\
& =\alpha^{k+1} \beta^{k+1}
\end{aligned}
$$

(ii) Give an example of two permutations α and β for which $(\alpha \beta)^{2} \neq$ $\alpha^{2} \beta^{2}$.
Solution. There are many examples. One is $\alpha=(12)$ and $\beta=$ (13). Since both α and β are transpositions, $\alpha^{2}=(1)=\beta^{2}$, and so $\alpha^{2} \beta^{2}=(1)$. On the other hand, $\alpha \beta=\left(\begin{array}{ll}1 & 3\end{array} 2\right.$), and $(\alpha \beta)^{2}=$ $\left(\begin{array}{ll}1 & 3\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 2\end{array}\right) \neq(1)$.
2.31 (i) Prove, for all i, that $\alpha \in S_{n}$ moves i if and only if α^{-1} moves i.

Solution. Since α is surjective, there is k with $\alpha k=i$. If $k=i$, then $\alpha i=i$ and $\alpha i=j \neq i$, a contradiction; hence, $k \neq i$. But $\alpha^{-1} i=k$, and so α^{-1} moves i. The converse follows by replacing α by α^{-1}, for $\left(\alpha^{-1}\right)^{-1}=\alpha$.
(ii) Prove that if $\alpha, \beta \in S_{n}$ are disjoint and if $\alpha \beta=(1)$, then $\alpha=(1)$ and $\beta=$ (1).
Solution. By (i), if α and β are disjoint, then α^{-1} and β are disjoint: if β moves some i, then α^{-1} must fix i. But $\alpha \beta=$ (1) implies $\alpha^{-1}=\beta$, so that there can be no i moved by β. Therefore, $\beta=(1)=\alpha$.
2.32 If $n \geq 2$, prove that the number of even permutations in S_{n} is $\frac{1}{2} n$!.

Solution. Let $\tau=(12)$, and define $f: A_{n} \rightarrow O_{n}$, where A_{n} is the set of all even permutations in S_{n} and O_{n} is the set of all odd permutations, by

$$
f: \alpha \mapsto \tau \alpha
$$

If σ is even, then $\tau \sigma$ is odd, so that the target of f is, indeed, O_{n}. The function f is a bijection, for its inverse is $g: O_{n} \rightarrow A_{n}$, which is given by $g: \alpha \mapsto \tau \alpha$.
2.33 Give an example of $\alpha, \beta, \gamma \in S_{5}$, none of which is the identity (1), with $\alpha \beta=\beta \alpha$ and $\alpha \gamma=\gamma \alpha$, but with $\beta \gamma \neq \gamma \beta$.
Solution. Set $\alpha=\binom{1}{2}, \beta=(34)$, and $\gamma=(3$ 5). Then $\alpha \beta=\beta \alpha$, $\alpha \gamma=\gamma \alpha$, and $\beta \gamma \neq \gamma \beta$.
2.34 If $n \geq 3$, show that if $\alpha \in S_{n}$ commutes with every $\beta \in S_{n}$, then $\alpha=(1)$.

Solution. If $\alpha \neq(1)$, then it moves some i; say, $\alpha i=j \neq i$. There is β with $\beta j=j$ and $\beta i=k \neq i$. Then $\beta \alpha i=\beta j=j$, while $\alpha \beta i=\alpha k \neq j$ (for α is injective, and so $k \neq i$ implies $\alpha k \neq \alpha i=j$).
2.35 Can the following 15 -puzzle be won?

4	10	9	1
8	2	15	6
12	5	11	3
7	14	13	$\#$

Solution. No, because the associated permutation is odd.

