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1.102 My Uncle Ben was born in Pogrebishte, a village near Kiev, and he claimed
that his birthday was February 29, 1900. I told him that this could not be,
for 1900 was not a leap year. Why was I wrong?
Solution. Even though 1900 was not a leap year in America, it was a leap
year in Russia, which did not adopt the Gregorian calendar until after the
Russian Revolution.

Exercises for Chapter 2

2.1 True or false with reasons.
(i) If S ⊆ T and T ⊆ X , then S ⊆ X .

Solution. True.

(ii) Any two functions f : X → Y and g : Y → Z have a composite
f ◦ g : X → Z .

Solution. False.

(iii) Any two functions f : X → Y and g : Y → Z have a composite
g ◦ f : X → Z .

Solution. True.

(iv) For every set X , we have X × ∅ = ∅.

Solution. True.

(v) If f : X → Y and j : im f → Y is the inclusion, then there is a
surjection g : X → im f with f = j ◦ g.

Solution. True.

(vi) If f : X → Y is a function for which there is a function g : Y → X
with f ◦ g = 1Y , then f is a bijection.

Solution. False.

(vii) The formula f (a
b ) = (a + b)(a − b) is a well-defined function

Q → Z.

Solution. False.

(viii) If f : N → N is given by f (n) = n + 1 and g : N → N is given
by g(n) = n2, then the composite g ◦ f is n �→ n2(n + 1).

Solution. False.

(ix) Complex conjugation z = a + ib �→ z = a − ib is a bijection
C → C.

Solution. True.
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2.2 If A and B are subsets of a set X , prove that A − B = A ∩ B ′, where
B ′ = X − B is the complement of B.
Solution. This is one of the beginning set theory exercises that is so easy
it is difficult; the difficulty is that the whole proof turns on the meaning of
the words “and” and “not.” For example, let us prove that A− B ⊆ A∩ B ′.
If x ∈ A − B, then x ∈ A and x /∈ B; hence, x ∈ A and x ∈ B ′, and so
x ∈ A ∩ B ′. The proof is completed by proving the reverse inclusion.

2.3 Let A and B be subsets of a set X . Prove the de Morgan laws

(A ∪ B)′ = A′ ∩ B ′ and (A ∩ B)′ = A′ ∪ B ′,

where A′ = X − A denotes the complement of A.
Solution. Absent.

2.4 If A and B are subsets of a set X , define their symmetric difference (see
Figure 2.5) by

A + B = (A − B) ∪ (B − A).

(i) Prove that A + B = (A ∪ B)− (A ∩ B).
Solution. Absent.

(ii) Prove that A + A = ∅.
Solution. Absent.

(iii) Prove that A +∅ = A.
Solution. Absent.

(iv) Prove that A + (B + C) = (A + B)+ C (see Figure 2.6).
Solution. Show that each of A + (B + C) and (A + B) + C is
described by Figure 2.6.

(v) Prove that A ∩ (B + C) = (A ∩ B)+ (A ∩ C).
Solution. Absent.

A B

Figure 2.5 Symmetric Difference

A B

C

Figure 2.6 Associativity
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2.5 Let A and B be sets, and let a ∈ A and b ∈ B. Define their ordered pair
as follows:

(a, b) = {a, {a, b}}.
If a′ ∈ A and b′ ∈ B, prove that (a′, b′) = (a, b) if and only if a′ = a and
b′ = b.
Solution. The result is obviously true if a′ = a and b′ = b.

For the converse, assume that

{a{a, b}} = {a′{a′, b′}}
There are two cases:

a = a′ and {a, b} = {a′, b′};
a = {a′, b′} and {a, b} = a′.

If a = a′, we have {a, b} = {a′, b′} = {a, b′}. Therefore,

{a, b} − {a} = {a, b′} − {a}.
If a = b, the left side is empty, hence the right side is also empty, and so
a = b′; therefore, b = b′. If a 
= b, the the left side is {b}, and so the right
side is nonempty and is equal to {b′}. Therefore, b = b′, as desired.

In the second case, a = {a′, b′} = {{a, b}b′}. Hence,

a ∈ {a, b}
and

{a, b} ∈ {{a, b}, b′} = a,

contradicting the axiom a ∈ x ∈ a being false. Therefore, this case cannot
occur.

2.6 Let � = {(x, x) : x ∈ R}; thus, � is the line in the plane which passes
through the origin and which makes an angle of 45◦ with the x-axis.

(i) If P = (a, b) is a point in the plane with a 
= b, prove that � is
the perpendicular bisector of the segment P P ′ having endpoints
P = (a, b) and P ′ = (b, a).
Solution. The slope of � is 1, and the slope of P P ′ is
(b − a)/(a − b) = −1. Hence, the product of the slopes is −1,
and so � is perpendicular to the P P ′. The midpoint of P P ′ is
M = ( 1

2 (a + b), 1
2 (a + b)), which lies on �, and

|P M | =
√
[a − 1

2 (a + b)]2 + [b − 1
2 (a + b)]2 = |M P ′|.
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(ii) If f : R → R is a bijection whose graph consists of certain points
(a, b) [of course, b = f (a)], prove that the graph of f −1 is

{(b, a) : (a, b) ∈ f }.
Solution. By definition, f −1(b) = a if and only if b = f (a).
Hence, the graph of f −1 consists of all ordered pairs

(b, f −1(b)) = (b, a) = ( f (a), a).

2.7 Let X and Y be sets, and let f : X → Y be a function.
(i) If S is a subset of X , prove that the restriction f |S is equal to the

composite f ◦ i , where i : S → X is the inclusion map.
Solution. Both f |S and f ◦i have domain S and target Y . If s ∈ S,
then ( f ◦ i)(s) = f (s) = ( f |S)(s). Therefore, f |S = f ◦ i , by
Proposition 2.2.

(ii) If im f = A ⊆ Y , prove that there exists a surjection f ′ : X → A
with f = j ◦ f ′, where j : A → Y is the inclusion.
Solution. For each x ∈ X , define f ′(x) = f (x). Thus, f ′ differs
from f only in its target.

2.8 If f : X → Y has an inverse g, show that g is a bijection.
Solution. We are told that f ◦ g = 1Y and g ◦ f = 1X . Therefore, g has
an inverse, namely, f , and so g is a bijection.

2.9 Show that if f : X → Y is a bijection, then it has exactly one inverse.
Solution. Let g : Y → X and h : Y → X both be inverses of f . Then

h = h1Y = h( f g) = (h f )g = 1X g = g.

2.10 Show that f : R → R, defined by f (x) = 3x + 5, is a bijection, and find
its inverse.
Solution. The function g, defined by g(x) = 1

3 (x − 5), is the inverse of f ,
and so f is a bijection. (Alternatively, one could prove that f is a bijection
by showing directly that it is injective and surjective.)

2.11 Determine whether f : Q×Q → Q, given by

f (a/b, c/d) = (a + c)/(b + d)

is a function.
Solution. f is not a function: 1

2 = 2
4 and 2

6 = 1
3 , but

f ( 1
2 ,

2
6 ) = 3

8 
= 3
7 = f ( 2

4 ,
1
3 ).
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2.12 Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be finite sets, where the xi are
distinct and the y j are distinct. Show that there is a bijection f : X → Y if
and only if |X | = |Y |; that is, m = n.
Solution. The hint is essentially the solution. If f is a bijection, there
are m distinct elements f (x1), . . . , f (xm) in Y , and so m ≤ n; using the
bijection f −1 in place of f gives the reverse inequality n ≤ m.

2.13 (Pigeonhole Principle)
(i) If X and Y are finite sets with the same number of elements,

show that the following conditions are equivalent for a function
f : X → Y :

(i) f is injective;

(ii) f is bijective;

(iii) f is surjective.

Solution. Assume that X and Y have n elements. If f is injec-
tive, then there is a bijection from X to im f ⊆ Y . Exercise 2.12
gives | im f | = n. It follows that im f = Y , for there can be no
elements in Y outside of im f , lest Y have more than n elements.
Any bijection is surjective, and so it remains to show that if f is
surjective, then it is injective. If Y = {y1, . . . , yn}, then for each
i , there exists xi ∈ X with f (xi ) = yi . Were f not injective, there
would be i and x ∈ X with x 
= xi and f (x) = f (xi ). This gives
n + 1 elements in X , a contradiction.

(ii) Suppose there are 11 pigeons, each sitting in some pigeonhole. If
there are only 10 pigeonholes, prove that there is a hole containing
more than one pigeon.

Solution. Suppose each hole has at most one pigeon in it. If P is
the set of pigeons and H is the set of holes, define f : P → H by
f : pigeon �→ h, where h is the hole containing it. Since each hole
contains at most one pigeon, f (p1) = f (p2) implies p1 = p2,
where p1, p2 are pigeons. Thus, f is an injection. By part (1), f
is a bijection, giving the contradiction 11 = 10.

2.14 Let f : X → Y and g : Y → Z be functions.
(i) If both f and g are injective, prove that g ◦ f is injective.

Solution. If (g ◦ f )(x) = (g ◦ f )(x ′), then g( f (x)) = g( f (x ′)).
Since g is injective, f (x) = f (x ′); since f is injective, x = x ′.
Hence, g ◦ f is injective.

(ii) If both f and g are surjective, prove that g ◦ f is surjective.
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Solution. Let z ∈ Z . Since g is surjective, there is y ∈ Y with
g(y) = z; since f is surjective, there is x ∈ X with f (x) = y. It
follows that (g ◦ f )(x) = g( f (x)) = g(y) = z, and so g ◦ f is
surjective.

(iii) If both f and g are bijective, prove that g ◦ f is bijective.
Solution. By the first two parts, g ◦ f is both injective and surjec-
tive

(iv) If g ◦ f is a bijection, prove that f is an injection and g is a sur-
jection.
Solution. If h = (g f )−1, then (hg) f = 1 and g( f h) = 1. By
Lemma 2.9, the first equation gives f an injection while the sec-
ond equation gives g a surjection.

2.15 (i) If f : (−π/2, π/2) → R is defined by a �→ tan a, then f has an
inverse function g; indeed, g = arctan.
Solution. By calculus, arctan(tan a) = a and tan(arctan x) = x .

(ii) Show that each of arcsin x and arccos x is an inverse function (of
sin x and cos x , respectively) as defined in this section.
Solution. Each of the other inverse trig functions satisfies equa-
tions analogous to sin(arcsin x) = x and arcsin(sin x) = x , which
shows that they are inverse functions as defined in this section.

2.16 (i) Let f : X → Y be a function, and let {Si : i ∈ I } be a family of
subsets of X . Prove that

f
(⋃

i∈I

Si

)
=
⋃
i∈I

f (Si ).

Solution. Absent.

(ii) If S1 and S2 are subsets of a set X , and if f : X → Y is a function,
prove that f (S1∩S2) ⊆ f (S1)∩ f (S2). Give an example in which
f (S1 ∩ S2) 
= f (S1) ∩ f (S2).
Solution. Absent.

(iii) If S1 and S2 are subsets of a set X , and if f : X → Y is an injec-
tion, prove that f (S1 ∩ S2) = f (S1) ∩ f (S2).
Solution. Absent.

2.17 Let f : X → Y be a function.
(i) If Bi ⊆ Y is a family of subsets of Y , prove that

f −1
(⋃

i

Bi

)
=
⋃

i

f −1(Bi ) and f −1
(⋂

i

Bi

)
=
⋂

i

f −1(Bi ).

Solution. Absent.
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(ii) If B ⊆ Y , prove that f −1(B ′) = f −1(B)′, where B ′ denotes the
complement of B.
Solution. Absent.

2.18 Let f : X → Y be a function. Define a relation on X by x ≡ x ′ if f (x) =
f (x ′). Prove that ≡ is an equivalence relation. If x ∈ X and f (x) = y, the
equivalence class [x] is denoted by f −1(y); it is called the fiber over y.
Solution. Absent.

2.19 Let X = {rock, paper, scissors}. Recall the game whose rules are: paper
dominates rock, rock dominates scissors, and scissors dominates paper.
Draw a subset of X × X showing that domination is a relation on X .
Solution. Absent.

2.20 (i) Find the error in the following argument which claims to prove
that a symmetric and transitive relation R on a set X must be re-
flexive; that is, R is an equivalence relation on X . If x ∈ X and
x R y, then symmetry gives y R x and transitivity gives x R x .
Solution. There may not exist y ∈ X with x ∼ y.

(ii) Give an example of a symmetric and transitive relation on the
closed unit interval X = [0, 1] which is not reflexive.

Solution. Define
R = {(x, x) : 0 ≤ x ≤ 1

2 }.
Now R is the identity on Y = [0, 1

2 ], so that it is symmetric and transitive.
However, R does not contain the diagonal of the big square X × X , and so
R is not a reflexive relation on X . For example, 1 
∼ 1.

2.21 True or false with reasons.
(i) The symmetric group on n letters is a set of n elements.

Solution. False.

(ii) If σ ∈ S6, then σ n = 1 for some n ≥ 1.
Solution. True.

(iii) If α, β ∈ Sn , then αβ is an abbreviation for α ◦ β.
Solution. True.

(iv) If α, β are cycles in Sn , then αβ = βα.
Solution. False.

(v) If σ, τ are r -cycles in Sn , then στ is an r -cycle.
Solution. False.

(vi) If σ ∈ Sn is an r -cycle, then ασα−1 is an r -cycle for every α ∈ Sn .
Solution. True.
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(vii) Every transposition is an even permutation.
Solution. False.

(viii) If a permutation α is a product of 3 transpositions, then it cannot
be a product of 4 transpositions.
Solution. True.

(ix) If a permutation α is a product of 3 transpositions, then it cannot
be a product of 5 transpositions.
Solution. False.

(x) If σασ−1 = ωαω−1, then σ = ω.
Solution. False.

2.22 Find sgn(α) and α−1, where

α =
(

1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
.

Solution. In cycle notation, α = (19)(28)(37)(46). Thus, α is even, being
the product of four transpositions. Moreover, being a product of disjoint
transpositions, α = α−1.

2.23 If σ ∈ Sn fixes some j , where 1 ≤ j ≤ n (that is, σ( j) = j), define
σ ′ ∈ SX , where X = {1, . . . , ĵ, . . . , n}, by σ ′(i) = σ(i) for all i 
= j .
Prove that

sgn(σ ′) = sgn(σ ).

Solution. One of the cycles in the complete factorization of σ is the 1-
cycle ( j). Hence, if there are t cycles in the complete factorization of σ ,
then there are t − 1 cycles in the complete factorization of σ ′. Therefore,

sgn(σ ′) = (−1)[n−1]−[t−1] = (−1)n−t = sgn(σ ).

2.24 (i) If 1 < r ≤ n, prove that there are

1
r [n(n − 1) · · · (n − r + 1)]

r -cycles in Sn .
Solution. In the notation (i1 i2 . . . ir ), there are n choices for i1,
n − 1 choices for i2, . . ., n − (r − 1) = n − r + 1 choices for ir .
We conclude that there are n(n−1) · · · (n− r +1) such notations.
However, r such notations describe the same cycle:

(i1 i2 . . . ir ) = (i2 i3 . . . i1) = · · · = (ir i1 . . . ir−1).

Therefore, there are 1
r [n(n − 1) · · · (n − r + 1)] r -cycles in Sn .
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(ii) If kr ≤ n, where 1 < r ≤ n, prove that the number of permuta-
tions α ∈ Sn , where α is a product of k disjoint r -cycles, is

1
k!

1
rk [n(n − 1) · · · (n − kr + 1).]

Solution. Absent.

2.25 (i) If α is an r -cycle, show that αr = (1).
Solution. If α = (i0 . . . ir−1), then the proof of Lemma 2.25(ii)
shows that αk(i0) = ik , where the subscript is read mod r . Hence,
αr (i0) = i0. But the same is true if we choose the notation for α
having any of the other i j as the first entry.

(ii) If α is an r -cycle, show that r is the least positive integer k such
that αk = (1).
Solution. Use Proposition 2.24. If k < r , then αk(i0) = ik 
= i0,
so that αk 
= 1.

2.26 Show that an r -cycle is an even permutation if and only if r is odd.
Solution. In the proof of Proposition 2.35, we showed that any r -cycle α
is a product of r − 1 transpositions. The result now follows from Proposi-
tion 2.39, for sgn(α) = (−1)r−1 = −1.

2.27 Given X = {1, 2, . . . , n}, let us call a permutation τ of X an adjacency if
it is a transposition of the form (i i + 1) for i < n. If i < j , prove that
(i j) is a product of an odd number of adjacencies.
Solution. We prove the result by induction on j − i ≥ 1. The base step
is clear, for then τ is already an adjacency, and so it is a product of 1
adjacency. For the inductive step, we have

τ = (i j) = (i i + 1)(i + 1 j)(i i + 1),

by Proposition 2.32, for j − i ≥ 2 implies j 
= i + 1. By induction,
(i + 1 j) is a product of an odd number of adjacencies, and so τ is also
such a product.

2.28 Define f : {0, 1, 2, . . . , 10} → {0, 1, 2, . . . , 10} by

f (n) = the remainder after dividing 4n2 − 3n7 by 11.

(i) Show that f is a permutation.
Solution. Here is the two-rowed notation for f :(

0 1 2 3 4 5 6 7 8 9 10
0 1 6 9 5 3 10 2 8 4 7

)
.

It follows that f is a permutation. (The reader is expected to use
his knowledge of congruences to facilitate the calculations.)
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(ii) Compute the parity of f .
Solution. f = (2 6 10 7)(3 9 4 5). Since 4-cycles are odd, f is
even.

(iii) Compute the inverse of f .
Solution. f −1 = (7 10 6 2)(5 4 9 3).

2.29 (i) Prove that α is regular if and only if α is a power of an n-cycle.
Solution. If α = (a1 a2 · · · ak)(b1 b2 · · · bk) · · · (c1 c2 · · · ck) is a
product of disjoint k-cycles involving all the numbers between 1
and n, show that α = βk , where

β = (a1 b1 · · · z1 a2 b2 · · · z2 . . . ak bk · · · zk).

(ii) Prove that if α is an r -cycle, then αk is a product of (r, k) disjoint
cycles, each of length r/(r, k).
Solution. Absent.

(iii) If p is a prime, prove that every power of a p-cycle is either a
p-cycle or (1).
Solution. Absent.

(iv) How many regular permutations are there in S5? How many regu-
lar permutations are there in S8?
Solution. Absent.

2.30 (i) Prove that if α and β are (not necessarily disjoint) permutations
that commute, then (αβ)k = αkβk for all k ≥ 1.
Solution. We prove first, by induction on k ≥ 1, that βαk = αkβ.
The base step is true because α and β commute. For the inductive
step,

βαk+1 = βαkα

= αkβα (inductive hypothesis)

= αkαβ

= αk+1β.

We now prove the result by induction on k ≥ 1. The base step is
obviously true. For the inductive step,

(αβ)k+1 = αβ(αβ)k
= αβαkβk (inductive hypothesis)

= ααkββk (proof above)

= αk+1βk+1.
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(ii) Give an example of two permutations α and β for which (αβ)2 
=
α2β2.
Solution. There are many examples. One is α = (1 2) and β =
(1 3). Since both α and β are transpositions, α2 = (1) = β2, and
so α2β2 = (1). On the other hand, αβ = (1 3 2), and (αβ)2 =
(1 3 2)2 = (1 2 3) 
= (1).

2.31 (i) Prove, for all i , that α ∈ Sn moves i if and only if α−1 moves i .
Solution. Since α is surjective, there is k with αk = i . If k = i ,
then αi = i and αi = j 
= i , a contradiction; hence, k 
= i . But
α−1i = k, and so α−1 moves i . The converse follows by replacing
α by α−1, for (α−1)−1 = α.

(ii) Prove that if α, β ∈ Sn are disjoint and if αβ = (1), then α = (1)
and β = (1).
Solution. By (i), if α and β are disjoint, then α−1 and β are dis-
joint: if β moves some i , then α−1 must fix i . But αβ = (1)
implies α−1 = β, so that there can be no i moved by β. There-
fore, β = (1) = α.

2.32 If n ≥ 2, prove that the number of even permutations in Sn is 1
2 n!.

Solution. Let τ = (1 2), and define f : An → On , where An is the set of
all even permutations in Sn and On is the set of all odd permutations, by

f : α �→ τα.

If σ is even, then τσ is odd, so that the target of f is, indeed, On . The
function f is a bijection, for its inverse is g : On → An , which is given by
g : α �→ τα.

2.33 Give an example of α, β, γ ∈ S5, none of which is the identity (1), with
αβ = βα and αγ = γα, but with βγ 
= γβ.
Solution. Set α = (1 2), β = (3 4), and γ = (3 5). Then αβ = βα,
αγ = γα, and βγ 
= γβ.

2.34 If n ≥ 3, show that if α ∈ Sn commutes with every β ∈ Sn , then α = (1).
Solution. If α 
= (1), then it moves some i ; say, αi = j 
= i . There is β
with β j = j and βi = k 
= i . Then βαi = β j = j , while αβi = αk 
= j
(for α is injective, and so k 
= i implies αk 
= αi = j).

2.35 Can the following 15-puzzle be won?

4 10 9 1
8 2 15 6

12 5 11 3
7 14 13 #

Solution. No, because the associated permutation is odd.


