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1.102 My Uncle Ben was born in Pogrebishte, a village near Kiev, and he claimed
that his birthday was February 29, 1900. I told him that this could not be,
for 1900 was not a leap year. Why was I wrong?

Solution. Even though 1900 was not a leap year in America, it was a leap
year in Russia, which did not adopt the Gregorian calendar until after the
Russian Revolution.

Exercises for Chapter 2

2.1 True or false with reasons.

@

(ii)

(iii)

(iv)

(v)

(vi)

IfSCTandT C X, then S C X.

Solution. True.

Any two functions f: X — Y and g: Y — Z have a composite
fog: X — Z

Solution. False.

Any two functions f: X — Y and g: Y — Z have a composite
gof:X— Z.

Solution. True.

For every set X, we have X x & = &.

Solution. True.

If f: X - Yand j: im f — Y is the inclusion, then there is a
surjection g: X — im f with f = j o g.

Solution. True.

If f: X — Y isafunction for which there is a functiong: ¥ — X
with f o g = 1y, then f is a bijection.

Solution. False.

(vii) The formula f (%) = (a + b)(a — b) is a well-defined function

Q— Z.
Solution. False.

(viii) If f: N — Nisgivenby f(n) =n+1and g: N — Nis given

(ix)

by g(n) = n?, then the composite g o f isn > n*(n+1).
Solution. False.

Complex conjugation z = a + ib +— 7z = a — ib is a bijection
C— C.

Solution. True.
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If A and B are subsets of a set X, prove that A — B = A N B’, where
B’ = X — B is the complement of B.

Solution. This is one of the beginning set theory exercises that is so easy
it is difficult; the difficulty is that the whole proof turns on the meaning of
the words “and” and “not.” For example, let us prove that A— B C ANB’.
Ifx € A— B,thenx € Aand x ¢ B; hence, x € A and x € B/, and so
x € AN B’. The proof is completed by proving the reverse inclusion.

Let A and B be subsets of a set X. Prove the de Morgan laws
(AUBY =A'NB" and (ANB) =A"UB,
where A’ = X — A denotes the complement of A.

Solution. Absent.
If A and B are subsets of a set X, define their symmetric difference (see
Figure 2.5) by
A+B=(A—B)U(B—A).
(i) Provethat A+ B =(AUB)—(ANB).
Solution. Absent.
(ii) Provethat A+ A = &.
Solution. Absent.
(iii) Prove that A + @ = A.
Solution. Absent.
(iv) Provethat A + (B + C) = (A 4+ B) + C (see Figure 2.6).

Solution. Show that each of A + (B + C) and (A + B) + C is
described by Figure 2.6.

(v) Provethat AN(B+C)=(ANB)+(ANC).
Solution. Absent.

A B C

Figure 2.5 Symmetric Difference Figure 2.6 Associativity
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2.5

2.6

Let A and B be sets, and let a € A and b € B. Define their ordered pair
as follows:
(a,b) ={a,{a, b}}.
Ifa’ € Aand b’ € B, prove that (a’, ') = (a, b) if and only if a’ = a and
b =b.
Solution. The result is obviously true if a’ = a and b’ = b.
For the converse, assume that

{a{a, b}} = {d'{d’, '}
There are two cases:

a=d and {a, b} ={d’, b'});
a={d,b'Yand {a,b} =d'.

If a = a’, we have {a, b} = {a’, b’} = {a, b'}. Therefore,
{a, b} — {a} = {a, b’} — {a}.

If a = b, the left side is empty, hence the right side is also empty, and so
a = b'; therefore, b = b’. If a # b, the the left side is {b}, and so the right
side is nonempty and is equal to {b'}. Therefore, b = b’, as desired.

In the second case, a = {d’, b’} = {{a, b}b’}. Hence,

a € {a, b}

and

{a, b} € {{a, b}, b} = a,

contradicting the axiom a € x € a being false. Therefore, this case cannot
occur.

Let A = {(x,x) : x € R}; thus, A is the line in the plane which passes
through the origin and which makes an angle of 45° with the x-axis.
(i) If P = (a,b) is a point in the plane with a # b, prove that A is

the perpendicular bisector of the segment P P’ having endpoints
P =(a,b)and P' = (b, a).
Solution. The slope of A is 1, and the slope of PP’ is
(b — a)/(a — b) = —1. Hence, the product of the slopes is —1,
and so A is perpendicular to the PP’. The midpoint of PP’ is
M = (%(a +b), %(a + b)), which lies on A, and

PM| = \Jla—La+b)P +[b—La+b)P = MP.
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(i) If f: R — Ris abijection whose graph consists of certain points
(a, b) [of course, b = f(a)], prove that the graph of f —lig

{(b,a):(a,b) e f}.

Solution. By definition, f~'(b) = a if and only if b = f(a).
Hence, the graph of f~! consists of all ordered pairs

b, f71b) = (b,a) = (f(a), a).

2.7 Let X and Y be sets, and let f: X — Y be a function.

(i) If Sis asubset of X, prove that the restriction f|S is equal to the
composite f oi, where i: S — X is the inclusion map.
Solution. Both f|S and f oi have domain S and target Y. If s € S,
then (f o i)(s) = f(s) = (f|S)(s). Therefore, f|S = f oi, by
Proposition 2.2.

(i) Ifim f = A C Y, prove that there exists a surjection f': X — A
with f = j o f’, where j: A — Y is the inclusion.
Solution. For each x € X, define f'(x) = f(x). Thus, f’ differs
from f only in its target.

2.8 If f: X — Y has an inverse g, show that g is a bijection.
Solution. We are told that f o g = 1y and g o f = 1x. Therefore, g has
an inverse, namely, f, and so g is a bijection.

2.9 Show thatif f: X — Y is a bijection, then it has exactly one inverse.
Solution. Let g: ¥ — X and #: Y — X both be inverses of f. Then

h=hly =h(fg) =(hf)g=1xg=g.

2.10 Show that f: R — R, defined by f(x) = 3x + 5, is a bijection, and find
its inverse.
Solution. The function g, defined by g(x) = %(x —5), is the inverse of f,
and so f is a bijection. (Alternatively, one could prove that f is a bijection
by showing directly that it is injective and surjective.)

2.11 Determine whether f: Q x Q — @Q, given by
fla/b,c/d) =(a+c)/(b+d)

is a function.
Solution. f is not a function: % = % a

5
o
A
I
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212 Let X = {x1,...,xp}and Y = {yq, ..., y,} be finite sets, where the x; are
distinct and the y; are distinct. Show that there is a bijection f: X — Y if
and only if | X| = |Y|; that is, m = n.
Solution. The hint is essentially the solution. If f is a bijection, there
are m distinct elements f(x1),..., f(xy) in Y, and so m < n; using the
bijection ! in place of f gives the reverse inequality n < m.

2.13 (Pigeonhole Principle)

(@

(ii)

If X and Y are finite sets with the same number of elements,
show that the following conditions are equivalent for a function
f:X—->Y:

(1) f isinjective;
(i) f is bijective;
(iii) f is surjective.

Solution. Assume that X and Y have n elements. If f is injec-
tive, then there is a bijection from X to im f C Y. Exercise 2.12
gives |im f| = n. It follows that im f = Y, for there can be no
elements in Y outside of im f, lest Y have more than n elements.
Any bijection is surjective, and so it remains to show that if f is
surjective, then it is injective. If Y = {y1, ..., y,}, then for each
i, there exists x; € X with f(x;) = y;. Were f not injective, there
would be i and x € X with x # x; and f(x) = f(x;). This gives
n + 1 elements in X, a contradiction.

Suppose there are 11 pigeons, each sitting in some pigeonhole. If
there are only 10 pigeonholes, prove that there is a hole containing
more than one pigeon.

Solution. Suppose each hole has at most one pigeon in it. If P is
the set of pigeons and H is the set of holes, define f: P — H by
f : pigeon — h, where h is the hole containing it. Since each hole
contains at most one pigeon, f(p1) = f(p2) implies p; = pa,
where pp, p» are pigeons. Thus, f is an injection. By part (1), f
is a bijection, giving the contradiction 11 = 10.

214 Let f: X — Y and g: Y — Z be functions.

()

(ii)

If both f and g are injective, prove that g o f is injective.
Solution. If (g o f)(x) = (g o f)(x), then g(f(x)) = g(f(x)).

Since g is injective, f(x) = f(x'); since f is injective, x = x'.

Hence, g o f is injective.

If both f and g are surjective, prove that g o f is surjective.
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@iv)

2.15 ()

(ii)

2.16 i)

(ii)

(iii)
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Solution. Let z € Z. Since g is surjective, there is y € Y with
g(y) = z; since f is surjective, there is x € X with f(x) = y. It
follows that (g o f)(x) = g(f(x)) = g(y) = z,andso g o f is
surjective.
If both f and g are bijective, prove that g o f is bijective.
Solution. By the first two parts, g o f is both injective and surjec-
tive
If g o f is a bijection, prove that f is an injection and g is a sur-
jection.
Solution. If 4 = (gf)~!, then (hg)f = 1 and g(fh) = 1. By
Lemma 2.9, the first equation gives f an injection while the sec-
ond equation gives g a surjection.
If f: (—7/2,7/2) — Ris defined by a +— tana, then f has an
inverse function g; indeed, g = arctan.
Solution. By calculus, arctan(tana) = a and tan(arctan x) = x.
Show that each of arcsin x and arccos x is an inverse function (of
sin x and cos x, respectively) as defined in this section.
Solution. Each of the other inverse trig functions satisfies equa-
tions analogous to sin(arcsin x) = x and arcsin(sin x) = x, which
shows that they are inverse functions as defined in this section.
Let f: X — Y be a function, and let {S; : i € I} be a family of
subsets of X. Prove that

F(Us) =Ureso.

iel iel

Solution. Absent.
If 1 and §; are subsets of a set X, and if f: X — Y is a function,
prove that f£(S1NS2) € f(S1)N f(S2). Give an example in which
FS1N8) # f(S)N f(S2).
Solution. Absent.
If S7 and S, are subsets of a set X, and if f: X — Y is an injec-
tion, prove that f(S; N S2) = f(S1) N f(S2).
Solution. Absent.

2.17 Let f: X — Y be a function.

()

If B; C Y is a family of subsets of Y, prove that

r(Us) =Us @ and () 8:) = ()57 B0,

1

Solution. Absent.
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2.18

2.19

2.20

2.21

(i) If B C Y, prove that f~!(B’) = f~!(B)’, where B’ denotes the
complement of B.
Solution. Absent.
Let f: X — Y be a function. Define a relation on X by x = x’ if f(x) =
f(x"). Prove that = is an equivalence relation. If x € X and f(x) = y, the
equivalence class [x] is denoted by f~!(y); it is called the fiber over y.
Solution. Absent.

Let X = {rock, paper, scissors}. Recall the game whose rules are: paper
dominates rock, rock dominates scissors, and scissors dominates paper.
Draw a subset of X x X showing that domination is a relation on X.
Solution. Absent.

(i) Find the error in the following argument which claims to prove
that a symmetric and transitive relation R on a set X must be re-
flexive; that is, R is an equivalence relation on X. If x € X and
x R y, then symmetry gives y R x and transitivity gives x R x.

Solution. There may not exist y € X with x ~ y.
(ii) Give an example of a symmetric and transitive relation on the
closed unit interval X = [0, 1] which is not reflexive.

Solution. Define
R={(x,x):0<x< %}

Now R is the identity on ¥ = [0, %], so that it is symmetric and transitive.
However, R does not contain the diagonal of the big square X x X, and so
R is not a reflexive relation on X. For example, 1 # 1.
True or false with reasons.
(i) The symmetric group on #n letters is a set of n elements.
Solution. False.

(ii) Ifo € Sg, then o™ = 1 for some n > 1.
Solution. True.

(iii) If o, B € S, then B is an abbreviation for « o S.
Solution. True.

(iv) If «, B are cycles in S, then o = Ba.
Solution. False.

(v) Ifo,tarer-cyclesin S,, then ot is an r-cycle.
Solution. False.

(vi) Ifo € §, is anr-cycle, then aca”!

Solution. True.

is an r-cycle for every o € Sj,.
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(vii) Every transposition is an even permutation.
Solution. False.

(viii) If a permutation « is a product of 3 transpositions, then it cannot
be a product of 4 transpositions.
Solution. True.

(ix) If a permutation « is a product of 3 transpositions, then it cannot
be a product of 5 transpositions.
Solution. False.

(x) Ifoao™! =waw™!, theno = w.
Solution. False.

Find sgn(«) and a~!, where

(123456789
“=\o 876 5 432 1)

Solution. In cycle notation, « = (19)(28)(37)(46). Thus, « is even, being
the product of four transpositions. Moreover, being a product of disjoint
transpositions, o = a L.
If o € §, fixes some j, wherq\l < j < n (thatis, o(j) = j), define
o' € Sx,where X = {1,...,j,...,n},byo’(i) = o(i) forall i # j.
Prove that

sgn(o’) = sgn(o).
Solution. One of the cycles in the complete factorization of o is the 1-
cycle (j). Hence, if there are ¢ cycles in the complete factorization of o,
then there are r — 1 cycles in the complete factorization of o’. Therefore,

sgn(o) = (=" = (1) = sgn(o).
(i) If1 <r < n, prove that there are
nm =1 (n—r+1)]

r-cycles in Sj,.

Solution. In the notation (i| i» ... i,), there are n choices for iy,
n — 1 choices for is, ..., n — (r — 1) = n — r + 1 choices for i,.
We conclude that there are n(n — 1) - - - (n — r 4 1) such notations.
However, r such notations describe the same cycle:

(12 o ip) = (203 oo i) = =iy ] +.. ir_1).

Therefore, there are %[n(n —1)---(m—r+ 1] r-cyclesin Sj,.
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(ii) If kr < n, where 1 < r < n, prove that the number of permuta-
tions @ € S,, where « is a product of k disjoint r-cycles, is

gl =1 (n—kr 4+ 1).]

Solution. Absent.

2.25 (i) If « is an r-cycle, show that o = (1).
Solution. If « = (ig...i,—1), then the proof of Lemma 2.25(ii)
shows that o* (iy) = ix, where the subscriptis read mod r. Hence,
o (ig) = ip. But the same is true if we choose the notation for o
having any of the other i; as the first entry.

(i) If o is an r-cycle, show that r is the least positive integer k such
that of = (1).
Solution. Use Proposition 2.24. If k < r, then o (ip) = ix # io,
so that o # 1.

2.26 Show that an r-cycle is an even permutation if and only if r is odd.
Solution. In the proof of Proposition 2.35, we showed that any r-cycle «
is a product of r — 1 transpositions. The result now follows from Proposi-
tion 2.39, for sgn(a) = (—1)""! = —1.

2.27 Given X = {1,2, ..., n}, let us call a permutation 7 of X an adjacency if
it is a transposition of the form (i i + 1) fori < n. If i < j, prove that
(i j) is a product of an odd number of adjacencies.

Solution. We prove the result by induction on j — i > 1. The base step
is clear, for then 7 is already an adjacency, and so it is a product of 1
adjacency. For the inductive step, we have

T=>0/)=>014+D0E+1/))ii+1),

by Proposition 2.32, for j — i > 2 implies j # i + 1. By induction,
(i + 1 j) is a product of an odd number of adjacencies, and so 7 is also
such a product.

2.28 Define f: {0,1,2,...,10} - {0,1,2,...,10} by
f(n) = the remainder after dividing 4n> — 3n” by 11.

(i) Show that f is a permutation.
Solution. Here is the two-rowed notation for f:

012345 6 7289 10
016 953 10284 7)°

It follows that f is a permutation. (The reader is expected to use
his knowledge of congruences to facilitate the calculations.)
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Compute the parity of f.

Solution. f = (2 6 10 7)(3 9 4 5). Since 4-cycles are odd, f is
even.

Compute the inverse of f.

Solution. f~! = (71062)(549 3).

Prove that « is regular if and only if « is a power of an n-cycle.
Solution. If « = (ay ax---ax)(by1 ba---by)---(c1 c2---cp)is a
product of disjoint k-cycles involving all the numbers between 1
and n, show that o = ,Bk, where

B=(a1br---z1a3by---22 ...ak bg---zk).

Prove that if « is an r-cycle, then o is a product of (r, k) disjoint
cycles, each of length r/(r, k).

Solution. Absent.

If p is a prime, prove that every power of a p-cycle is either a
p-cycle or (1).
Solution. Absent.

How many regular permutations are there in S5? How many regu-
lar permutations are there in Sg?

Solution. Absent.

Prove that if « and B are (not necessarily disjoint) permutations
that commute, then (a,B)k = af ﬂk forall k > 1.

Solution. We prove first, by induction on k > 1, that fa* = o*B.
The base step is true because « and 8 commute. For the inductive
step,

B ot = B oFa
= afBa  (inductive hypothesis)
= akot,B
— Otk+1,8.

We now prove the result by induction on k > 1. The base step is
obviously true. For the inductive step,

(@) = ap(ap)*
= a,Bak ,Bk (inductive hypothesis)

= aak ,Bﬂk (proof above)
— okl ght,
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231

2.32

2.33

2.34

2.35

(i) Give an example of two permutations « and 8 for which (¢ )2 +£

o?B2.
Solution. There are many examples. One is « = (1 2) and 8 =
(1 3). Since both « and § are transpositions, =)= /32, and
so a2 = (1). On the other hand, «f = (1 3 2), and (¢B)? =
(132)2=(123)# ().

(i) Prove, for all i, that ¢ € §,, moves i if and only if o~ ! moves i.
Solution. Since « is surjective, there is k with ek = i. If k = i,
then i = i and wi = j # i, a contradiction; hence, k # i. But
o~ 'i = k, and so @~ ! moves i. The converse follows by replacing
o by a bl for (@ H ! =a.

(i) Prove thatif o, B € S, are disjoint and if «8 = (1), then o = (1)
and 8 = (1).

Solution. By (i), if  and g are disjoint, then «~! and g are dis-
joint: if B moves some i, then ! must fix i. But af = (1)
implies o ~! = B, so that there can be no i moved by 8. There-
fore, = (1) = «.
If n > 2, prove that the number of even permutations in S, is %n!.
Solution. Let t = (1 2), and define f: A, — O, where A,, is the set of
all even permutations in S, and O, is the set of all odd permutations, by

fiamP— ta.

If o is even, then to is odd, so that the target of f is, indeed, O,. The
function f is a bijection, for its inverse is g: O, — A,, which is given by
g o Ta.

Give an example of «, B, y € Ss, none of which is the identity (1), with
off = Ba and ay = y«a, but with 8y # y8.

Solution. Set o = (1 2),8 = 3 4),and y = (3 5). Then o = Ba,
ay = ya,and By # yB.

If n > 3, show that if ¢ € §,, commutes with every 8 € S, then o = (1).
Solution. If ¢ # (1), then it moves some i; say, «i = j # i. There is B
with 8j = j and Bi = k # i. Then fai = Bj = j, while afi = ak # j
(for « is injective, and so k # i implies ak # ai = j).

Can the following 15-puzzle be won?
4 1109 |1
8 |2 |15]|6
12| 5 113
7 14|13 | #

Solution. No, because the associated permutation is odd.



