Instructor's Manual

for

Structural Steel Design: A Practice - Oriented Approach Second Edition

Abi O. Aghayere
Jason Vigil

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken

> This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

[^0]Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

TABLE OF CONTENTS

Chapter 1 1
Chapter 2 9
Chapter 3 45
Chapter 4 72
Chapter 5 94
Chapter 6 108
Chapter 7 135
Chapter 8 151
Chapter 9 176
Chapter 10 194
Chapter 11 209
Chapter 12 229
Appendix B 248

Problem 1-4

The size and cross-sectional areas are obtained from Part 1 of the AISCM as follows:

Size	Self-weight (lb/ft.)	Cross-sectional area (in ${ }^{2}$)
W14x22	22	6.49
W21x44	44	13.0
HSS $6 \times 6 \times 1 / 2$	35.11	9.74
L6x4x $1 / 2$	16.2	4.75
C12x30	30	8.81
WT18x128	128	37.7

Problem 1-5

a)

Element	\mathbf{A}	\mathbf{y}	$\mathbf{A y}$	\mathbf{I}	$\mathbf{d = y}-\bar{y}$	$\mathbf{I}+\mathbf{A d}^{\mathbf{2}}$
top flange	21	26.25	551.25	3.94	-12.75	3418
web	21	13.5	283.5	1008	0	1008
bot flange	21	0.75	15.75	3.94	12.75	3418
$\boldsymbol{\Sigma}=$	$\mathbf{6 3}$ in. $^{\mathbf{2}}$		$\mathbf{8 5 0 . 5}$		$\mathbf{I}=\mathbf{7 8 4 4}$ in. $^{\mathbf{4}}$	

$$
\overline{\mathrm{y}}=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{~A}}=\frac{850.5}{63}=13.5 \mathrm{in} .
$$

Self weight $=(63 / 144)\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)=214 \mathrm{lb} / \mathrm{ft}$.
b)

Element	\mathbf{A}	\mathbf{y}	$\mathbf{A y}$	\mathbf{I}	$\mathbf{d}=\mathbf{y}-\overline{\mathrm{y}}$	$\mathbf{I}+\mathbf{A d}^{\mathbf{2}}$
top plate	2.63	18.26	47.93	0.03	-9.04	214.3
beam	10.3	9.23	95.02	510	0	510
bot plate	2.63	0.188	0.49	0.03	9.04	214.3
$\boldsymbol{\Sigma}=$	$\mathbf{1 5 . 5 5}$ in. $^{\mathbf{2}}$		$\mathbf{1 4 3 . 4}$			$\mathbf{I}=\mathbf{9 3 9}$ in. $^{\mathbf{4}}$

$\overline{\mathrm{y}}=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{A}}=\frac{143.4}{15.55}=9.23 \mathrm{in}$.
Self weight $=(15.55 / 144)\left(490 \mathrm{lb} / \mathrm{ft}^{3}\right)=52.9 \mathrm{lb} / \mathrm{ft}$.
c) From AISCM Table 1-20, $\mathrm{I}_{\mathrm{x}}=314 \mathrm{in} .{ }^{4}$

Area $=13.8$ in 2
Self weight $=47.1 \mathrm{lb} / \mathrm{ft}$.

Problem 1-7

Determine the most economical layout of the roof framing (joists and girders) and the gage (thickness) of the roof deck for a building with a 25 ft $x 35$ ft typical bay size. The total roof dead load is 25 psf and the snow load is 35 psf. Assume a $11 / 2$ " deep galvanized wide rib deck and an estimated weight of roof framing of 6 psf.
*Assume beams (or joists) span the 35^{\prime} direction

* Assume 3-span condition
*Total roof load $=(25 \mathrm{psf}+35 \mathrm{psf})-6 \mathrm{psf}=\mathbf{5 4 p s f}$

\# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr. span	Deck Load capacity*
2	12.5	none	-	-
3	8.33	16	$10^{\prime}-3 "$	85 psf
$\mathbf{4}$	$\mathbf{6 . 2 5}$	$\mathbf{2 2}$	$\mathbf{6}^{\prime}-\mathbf{1 1 "}$	$\mathbf{7 6 p s f}$
5	5	24	$5^{\prime}-10^{\prime \prime}$	130 psf

*Vulcraft deck assumed

1-10 Determine the most economical layout of the floor framing (beams and girders), the total depth of the floor slab, and the gage (thickness) of the floor deck for a building with a $30 \mathrm{ft} x 47 \mathrm{ft}$ typical bay size. The total floor dead load is 110 psf and the floor live load is 250 psf. Assume normal weight concrete, a 3" deep galvanized composite wide rib.
*Assume beams span the 47^{\prime} direction

* Assume 3-span condition
* Assume weight of the framing $=10 \mathrm{psf}$
$*$ Total floor load $=(110 \mathrm{psf}+250 \mathrm{psf})-10 \mathrm{psf}=350 \mathrm{psf}$
$\mathrm{t}=2.5 "($ superimposed load $=350 p s f-50 p s f-2 p s f)=298 p s f)$

\# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr. span	Deck Load capacity*		
2	15	16	$15^{\prime}-5^{\prime \prime}$	none		
N.G.						
3	10	16	$15^{\prime}-5^{\prime \prime}$	218 psf		
N.G.						
4	7.5	18	$13^{\prime}-11^{\prime \prime}$	298 psf		- select
:---:						

$\mathrm{t}=3 "($ superimposed load $=350 p s f-57 p s f-2 p s f)=291 p s f)$

\# of beam spaces	beam spacing (ft.)	Selected deck gage	max. constr. span	Deck Load capacity*
2	15	none	-	-
3	10	16	$14^{\prime}-11^{\prime \prime}$	245 psf
N.G. \leftarrow	select			

*Vulcraft deck assumed

Problem 1-11

From Equation 1-1, the carbon content is
$\mathrm{CE}=0.16+(0.20+0.25) / 15+(0.10+0.15+0.06) / 5+(0.80+0.20) / 6=0.419<0.5$
Therefore, the steel member is weldable.

Problem 1-12

Anticipated expansion or contraction $=\left(6.5 \times 10^{-6} \mathrm{in} . / \mathrm{in}.\right)(300 \mathrm{ft}).(12 \mathrm{in} . / \mathrm{ft}).\left(70^{\circ} \mathrm{F}\right)=1.64 \mathrm{in}$.
Expansion joint width $=(2)(1.64 \mathrm{in})=.3.28 \mathrm{in}$.
Therefore, use a $31 / 4 \mathrm{in}$. wide expansion joint.
The width of the required expansion joint appears large, and one way to reduce this width is to reduce the length between expansion joints from 300 ft to say 200 ft . That will bring the required expansion joint width down to $(200 / 300)(3.28 \mathrm{in}$. $)=2.2 \mathrm{in}$. (i.e. $2^{1 ⁄ 1} 4 \mathrm{in}$. expansion joint)

Problems 1-17

B1-1a

Problem B1-1a

Angle Properties - L2x2x1/4:

$$
\begin{aligned}
& \text { Angle Properties - L2x2xl/4: } \\
& \mathrm{A}_{\mathrm{a}}:=0.944 \mathrm{in}^{2} \quad \mathrm{wt}_{\mathrm{a}}:=3.19 \mathrm{plf} \quad \mathrm{x}_{\mathrm{bar}}:=0.609 \mathrm{in} \\
& \mathrm{~h}:=20 \mathrm{in} \\
& \mathrm{~d}:=\mathrm{h}-(2) \cdot\left(\mathrm{x}_{\mathrm{bar}}\right)=18.782 \mathrm{in} \\
& \mathrm{wt}_{\mathrm{comp}}:=4 \cdot \mathrm{~A}_{\mathrm{a}} \cdot 490 \mathrm{pcf}=12.346 \mathrm{in}^{4} \\
& \mathrm{I}_{\mathrm{comp}}:=(4)\left(\mathrm{I}_{\mathrm{a}}\right)+\left[4 \cdot \mathrm{~A}_{\mathrm{a}} \cdot\left[\left(\frac{\mathrm{~d}}{2}\right)^{2}\right]=334.4 \mathrm{in}^{4}\right.
\end{aligned}
$$

B1-1b

Problem B1-1b

```
beam := "W12X26"
```

四-Beam Properties

$$
\begin{aligned}
& \mathrm{A}=7.65 \cdot \mathrm{in}^{2} \quad \frac{\text { Round Bars }}{\mathrm{d}_{\mathrm{b}}:=0.875 \mathrm{in}} \begin{array}{l}
\mathrm{Ix}=204 \cdot \mathrm{in}^{4} \quad \mathrm{I}_{\mathrm{b}}:=\frac{\pi \cdot \mathrm{d}_{\mathrm{b}}^{4}}{64}=0.029 \cdot \mathrm{in}^{4} \\
\mathrm{~d}=12.2 \cdot \mathrm{in} \\
\mathrm{~A}_{\mathrm{b}}:=\frac{\pi \cdot \mathrm{d}_{\mathrm{b}}^{2}}{4}=0.601 \cdot \mathrm{in}^{2} \\
\mathrm{I}_{\mathrm{comp}}:=\mathrm{Ix}+4 \cdot\left[\mathrm{~A}_{\mathrm{b}}\left(\frac{\mathrm{~d}}{2}-\mathrm{h}_{\mathrm{b}}\right)^{2}\right]=254.9 \cdot \mathrm{in}^{4} \\
\mathrm{y}_{\mathrm{bar}}:=\frac{\mathrm{d}}{2}=6.1 \cdot \mathrm{in} \\
\mathrm{~S}_{\mathrm{comp}}:=\frac{\mathrm{I}_{\mathrm{comp}}}{\mathrm{y}_{\mathrm{bar}}}=41.8 \cdot \mathrm{in}^{3}
\end{array} \quad \mathrm{~A}_{\mathrm{comp}}:=\mathrm{A}+\left(4 \cdot \mathrm{~A}_{\mathrm{b}}\right)=10.1 \cdot \mathrm{in}^{2} \quad \mathrm{wt}_{\mathrm{comp}}:=\mathrm{A}_{\mathrm{comp}} 490 \mathrm{pcf}=34.2 \cdot \mathrm{plf}
\end{aligned}
$$

B1-1c

Problem B1-1c

column := "W8X24"

風- Column Properties

$$
\begin{aligned}
& \mathrm{A}=7.08 \cdot \mathrm{in}^{2} \\
& \mathrm{Iy}=18.3 \cdot \mathrm{in}^{4} \\
& \mathrm{bf}=6.5 \cdot \mathrm{in}
\end{aligned}
$$

Cover Plates

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{p}}:=0.5 \mathrm{in} \quad \mathrm{~b}_{\mathrm{p}}:=9 \mathrm{in} \\
& \mathrm{~A}_{\mathrm{p}}:=\mathrm{t}_{\mathrm{p}} \cdot \mathrm{~b}_{\mathrm{p}}=4.5 \cdot \mathrm{in}^{2} \\
& \mathrm{I}_{\mathrm{yp}}:=\frac{\mathrm{b}_{\mathrm{p}} \cdot \mathrm{t}_{\mathrm{p}}^{3}}{12}=0.094 \cdot \mathrm{in}^{4}
\end{aligned}
$$

Composite Section Properties

$$
\begin{aligned}
& \mathrm{y}_{\text {bar }}:=\frac{\mathrm{bf}}{2}+\mathrm{t}_{\mathrm{p}}=3.75 \cdot \mathrm{in} \quad \mathrm{~A}_{\text {comp }}:=\mathrm{A}+(2) \cdot \mathrm{A}_{\mathrm{p}}=16.08 \cdot \mathrm{in}^{2} \quad \mathrm{wt}_{\mathrm{comp}}:=\mathrm{A}_{\mathrm{comp}} \cdot 490 \mathrm{pcf}=54.7 \cdot \mathrm{plf} \\
& \mathrm{I}_{\text {comp }}:=\mathrm{Iy}+\left(2 \cdot \mathrm{I}_{\mathrm{yp}}\right)+2 \cdot\left[\mathrm{~A}_{\mathrm{p}} \cdot\left[\left(\frac{\mathrm{t}_{\mathrm{p}}}{2}+\frac{\mathrm{bf}}{2}\right)^{2}\right]=128.7 \cdot \mathrm{in}^{4}\right. \\
& \mathrm{S}_{\text {comp }}:=\frac{\mathrm{I}_{\text {comp }}}{\mathrm{y}_{\text {bar }}}=34.3 \cdot \mathrm{in}^{3}
\end{aligned}
$$

Problem 1-18

S-1

ONE-BEAM-2-8

50	2.8	ONE	BEAM			170			
5.1	. 19	1	$W 16 \times 36$	3	7.	-	129.	\varnothing	
52	20	4	庄. 2×3	1	10^{12}		38.		
53	21	1	㶡. ${ }^{3} \times 4^{1} 2$	0	61.		3		

Element	\mathbf{A}	\mathbf{y}	$\mathbf{A y}$	\mathbf{I}	$\mathbf{d}=\mathbf{y}-\overline{\mathbf{y}}$	$\mathbf{A d}^{\mathbf{2}}$
beam	10.6	7.93	84.06	448	-0.02	0
hole	-2.36	7.86	-18.55	-12.587	0.05	0
upper pls.	3	12.61	37.83	0.063	-4.7	66.21
lower pls.	3	3.11	9.33	0.063	4.8	69.18
$\boldsymbol{\Sigma}=$	$\mathbf{1 4 . 2 4}$		$\mathbf{1 1 2 . 6 7}$	$\mathbf{4 3 5 . 5 4}$		$\mathbf{1 3 5 . 4}$

$$
\overline{\mathrm{y}}=\frac{\Sigma \mathrm{Ay}}{\Sigma \mathrm{~A}}=\frac{112.67}{14.24}=7.91 \mathrm{in} .
$$

$$
\Sigma \mathrm{I}+\mathrm{Ad}^{2}=435.54+135.4=571 \mathrm{in} .^{4}
$$

$\mathrm{Wt}=(14.24)(490 \mathrm{pcf}) / 144=48.5 \mathrm{plf}$

Problem 2-3

(a) Determine the factored axial load or the required axial strength, P_{u} of a column in an office building with a regular roof configuration. The service axial loads on the column are as follows
$\mathrm{P}_{\mathrm{D}} \quad=\quad 200 \mathrm{kips}$ (dead load)
$\mathrm{P}_{\mathrm{L}}=300 \mathrm{kips}$ (floor live load)
$\mathrm{P}_{\mathrm{S}} \quad=\quad 150 \mathrm{kips}$ (snow load)
$\mathrm{P}_{\mathrm{W}} \quad=\quad \pm 60$ kips (wind load)
$\mathrm{P}_{\mathrm{E}} \quad=\quad \pm 40 \mathrm{kips}$ (seismic load)
(b) Calculate the required nominal axial compression strength, P_{n} of the column.

$$
\begin{array}{lll}
\text { 1: } & & \mathrm{P}_{\mathrm{u}} \\
& =1.4 \mathrm{P}_{\mathrm{D}}=1.4(200 \mathrm{k})=280 \mathrm{kips} \\
2: & & \mathrm{P}_{\mathrm{u}} \\
& & =1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{L}}+0.5 \mathrm{P}_{\mathrm{S}} \\
& & 1.2(200)+1.6(300)+0.5(150)=795 \mathrm{kips} \quad \text { (governs) } \\
3(\mathrm{a}): & & \mathrm{P}_{\mathrm{u}} \\
& & =1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{S}}+0.5 \mathrm{P}_{\mathrm{L}} \\
& & 1.2(200)+1.6(150)+0.5(300)=630 \mathrm{kips} \\
3(\mathrm{~b}): & & \mathrm{P}_{\mathrm{u}} \\
& & =1.2 \mathrm{P}_{\mathrm{D}}+1.6 \mathrm{P}_{\mathrm{S}}+0.5 \mathrm{P}_{\mathrm{W}} \\
& & =1.2(200)+1.6(150)+0.5(60)=510 \mathrm{kips} \\
4: & & \mathrm{P}_{\mathrm{u}} \\
& & =1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{W}}+0.5 \mathrm{P}_{\mathrm{L}}+0.5 \mathrm{P}_{\mathrm{S}} \\
& & =1.2(200)+1.0(60)+0.5(300)+0.5(150)=525 \mathrm{kips} \\
5: & & \mathrm{P}_{\mathrm{u}} \\
& & =1.2 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{E}}+0.5 \mathrm{P}_{\mathrm{L}}+0.2 \mathrm{P}_{\mathrm{S}} \\
& & \\
& & 1.2(200)+1.0(40)+0.5(300)+0.2(150)=460 \mathrm{kips}
\end{array}
$$

Note that P_{D} must always oppose P_{W} and P_{E} in load combination 6
$6:$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{u}} & =0.9 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{w}} \\
& =0.9(200)+1.0(-60)=120 \mathrm{kips} \text { (no net uplift) }
\end{aligned}
$$

7: $\quad \mathrm{P}_{\mathrm{u}}=0.9 \mathrm{P}_{\mathrm{D}}+1.0 \mathrm{P}_{\mathrm{E}}$
$=0.9(200)+1.0(-40)=140 \mathrm{kips}($ no net uplift)
$\phi \mathrm{P}_{\mathrm{n}}>\mathrm{P}_{\mathrm{u}}$
$\phi_{c}=0.9$
$(0.9)\left(\mathrm{P}_{\mathrm{n}}\right)=(795 \mathrm{kips})$
$P_{n}=884$ kips
(a) Determine the ultimate or factored load for a roof beam subjected to the following service loads:

Dead Load $=29 \mathrm{psf}$ (dead load)
Snow Load $=35 \mathrm{psf}$ (snow load)
Roof live load $=\quad 20 \mathrm{psf}$
Wind Load $=25$ psf upwards / 15 psf downwards
(b) Assuming the roof beam span is 30 ft and tributary width of 6 ft , determine the factored moment and shear.

Since, $S=35 p s f>L_{r}=20 p s f$, use S in equations and ignore L_{r}.

downward	No net uplift
$V_{u}=\frac{w_{u} L}{2}=\frac{(590)(30)}{2}=8850 \mathrm{lb}$.	.
$M_{u}=\frac{w_{u} L^{2}}{8}=\frac{(590)(30)^{2}}{8}=66375 \mathrm{ft}-\mathrm{Ib}$ $=66.4 \mathrm{ft}-\mathrm{kips}$	

Occupancy	Uniform Load (psf)	Concentrated Load (lb)*
Library stack rooms	150	1000
Classrooms	40	1000
Heavy storage	250	-
Light Manufacturing	125	2000
Offices	50	2000

*Note: Generally, the uniform live loads (in psf) are usually more critical for design than the concentrated loads

Problem 2-6

Determine the tributary widths and tributary areas of the joists, beams, girders and columns in the roof framing plan shown below.

Assuming a roof dead load of 30 psf and an essentially flat roof with a roof slope of $1 / 4$ " per foot for drainage, determine the following loads using the ASCE 7 load combinations. Neglect the rain load, R and assume the snow load, S is zero:
a. The uniform dead and roof live load on the typical roof beam in $\mathrm{Ib} / \mathrm{ft}$
b. The concentrated dead and roof live loads on the typical roof girder in Ib/ft
c. The total factored axial load on the typical interior column, in Ib.
d. The total factored axial load on the typical corner column, in Ib

Member	Tributary width (TW)	Tributary area (Aт)
Interior Beam	$24 \mathrm{ft} / 4$ spaces $=6 \mathrm{ft}$	$6 \mathrm{ft} \times 32 \mathrm{ft}=192 \mathrm{ft}^{2}$
Spandrel Beam	$(24 \mathrm{ft} / 4$ spaces $) / 2+0.75$ $=3.75 \mathrm{ft}$	$3.75 \mathrm{ft} \mathrm{x} 32 \mathrm{ft}=120 \mathrm{ft}^{2}$
Interior Girder	$32 \mathrm{ft} / 2+32 \mathrm{ft} / 2=32 \mathrm{ft}$	$32 \mathrm{ft} \times 24 \mathrm{ft}=768 \mathrm{ft}^{2}$
Spandrel Girder	$32 \mathrm{ft} / 2+0.75 \mathrm{ft}=16.75 \mathrm{ft}$	$16.75 \mathrm{ft} \mathrm{x} 24 \mathrm{ft}=402 \mathrm{ft}^{2}$
Interior Column	-	$32 \mathrm{ft} \mathrm{x} 24 \mathrm{ft}=768 \mathrm{ft}^{2}$
Corner Column	-	$(32 \mathrm{ft} / 2+0.75)(24 \mathrm{ft} / 2+0.75) \mathrm{ft}=214 \mathrm{ft}^{2}$

$\mathbf{R}_{2}=1.0$ (flat roof)

Member	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{L r}$
Interior Beam	1.0	20 psf
Spandrel Beam	1.0	20 psf
Interior Girder	0.6	$(0.6)(20)=12 \mathrm{psf}$
Spandrel Girder	$1.2-0.001(402)$ $=0.798$	$(0.798)(20)=15.96 \mathrm{psf}$
Interior Column	0.6	$(0.6)(20)=12 \mathrm{psf}$
Corner Column	$1.2-0.001(214)$ $=0.986$	$(0.798)(20)=19.72 \mathrm{psf}$

Member	$\mathrm{p}_{\mathrm{u}}=1.2 \mathrm{D}+1.6 \mathrm{Lr}$	Wu (plf)	P_{u} (kips)
Interior Beam	$(1.2)(30)+(1.6)(20)=$ 68psf	(68psf)(6ft) $=$ 408plf	-
Spandrel Beam	$(1.2)(30)+(1.6)(20)=$ 68psf	$\begin{aligned} & (68 \mathrm{psf})(3.75 \mathrm{ft})= \\ & \text { 255plf } \end{aligned}$	-
Interior Girder	$\begin{aligned} & (1.2)(30)+(1.6)(12)= \\ & \text { 55.2psf } \end{aligned}$	-	$\begin{aligned} & (55.2 \mathrm{psf})(6 \mathrm{ft})(32 \mathrm{ft})=\mathbf{1 0 . 6} \\ & \text { kips } \end{aligned}$
Spandrel Girder	$\begin{aligned} & (1.2)(30)+(1.6)(15.96) \\ & =\mathbf{6 1 . 5 p s f} \end{aligned}$	-	$\begin{aligned} & (61.5 \mathrm{psf})(6 \mathrm{ft})(32 / 2 \mathrm{ft})=\mathbf{5 . 9} \\ & \text { kips } \end{aligned}$
Interior Column	$\begin{aligned} & (1.2)(30)+(1.6)(12)= \\ & \text { 55.2psf } \end{aligned}$	-	$(55.2 \mathrm{psf})\left(768 \mathrm{ft}{ }^{2}\right)=42.4 \mathrm{kips}$
Corner Column	$\begin{aligned} & (1.2)(30)+(1.6)(19.72) \\ & =67.6 \mathrm{psf} \end{aligned}$	-	$(67.6 \mathrm{psf})\left(214 \mathrm{ft}{ }^{2}\right)=\mathbf{1 4 . 5} \mathbf{~ k i p s}$

Problem 2-7

A 3-story building has columns spaced at 18 ft in both orthogonal directions, and is subjected to the roof and floor loads shown below. Using a column load summation table, calculate the cumulative axial loads on a typical interior column with and without live load reduction. Assume a roof slope of $1 / 4>$ per foot for drainage.

Roof Loads:		$\frac{2^{\text {nd }} \text { and 3 }{ }^{\text {rd }} \text { Floor Loads: }}{}$
Dead Load, $D_{\text {roof }}$ $=20 \mathrm{psf}$ Snow Load, S $=40 \mathrm{psf}$	Dead Load, D floor $=40 \mathrm{psf}$	
	Floor Live Load, L $=50 \mathrm{psf}$	

Member	$\mathbf{A}_{\mathbf{T}}\left(\mathbf{f t .}{ }^{\mathbf{2}}\right)$	$\mathbf{K}_{\mathbf{L L}}$	$\mathbf{L}_{\mathbf{0}}(\mathbf{p s f})$	Live Load Red. Factor $\mathbf{0 . 2 5}+\mathbf{1 5} / \sqrt{ }\left(\mathbf{K}_{\mathbf{L L}} \mathbf{A}_{\mathbf{T}}\right)$	Design live load, \mathbf{L} $\mathbf{o r} \mathbf{S}$
$\mathbf{3}^{\text {rd }}$ floor	N / A	-	-	-	$\mathbf{4 0} \mathbf{~ p s f}$ (Snow load)
$\mathbf{2}^{\text {nd }} \mathbf{\text { floor }}$	$(18)(18)=$ $324 \mathrm{ft}^{2}$	4	40 psf	$\left[0.25+\frac{15}{\sqrt{(4)(324)}}\right]=0.667$	$(0.667)(50)$ $=\mathbf{3 4} \mathbf{~ p s f}$ $\geq 0.50 \mathrm{~L}_{\mathrm{o}}=25 \mathrm{psf}$
Ground Flr.	2 floors x $(18)(18)=$ $648 \mathrm{ft}^{2}$	4	40 psf	$\left[0.25+\frac{15}{\sqrt{(4)(648)}}\right]=0.545$	$(0.545)(50)$ $=\mathbf{2 8} \mathbf{~ p s f}$ $\geq 0.40 \mathrm{~L}_{\mathrm{o}}=20 \mathrm{psf}$

$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overparen{E} \\ & \underset{\leftarrow}{\leftrightarrows} \end{aligned}$	禺		鹍							
	With Floor Live Load Reduction										
Roof	324	20	40	1	40	44	88	14.3 or 28.5	14.3	28.5	28.5
$3{ }^{\text {rd }}$ Flr	324	40	50	0.666	33.3	101	65	32.8 or 21	47.1	495	49.5
$2^{\text {nd }} \mathrm{Flr}$	324	40	50	0.544	27.2	92	62	29.7 or 20	74	68	74
	Without Floor Live Load Reduction										
Roof	324	20	40	1	40	44	88	14.3 or 28.5	14.3	28.5	28.5
$3{ }^{\text {rd }} \mathrm{Flr}$	324	40	50	1	50	128	73	41.5 or 23.7	55.7	52.2	55.7
$2^{\text {nd }} \mathrm{Flr}$	324	40	50	1	50	128	73	41.5 or 23.7	97.2	75.9	97

(a) Determine the dead load (with and without partitions) in psf of floor area for a steel building floor system with W24x55 beams (weighs $55 \mathrm{Ib} / \mathrm{ft}$) spaced at $6^{\prime}-0$ " o.c. and W30x116 girders (weighs 116 $\mathrm{Ib} / \mathrm{ft}$) spaced at 35^{\prime} o.c. The floor deck is $3.5^{\prime \prime}$ normal weight concrete on $1.5^{\prime \prime}$ x 20 gage composite steel deck.

- Include the weights of 1" light-wt floor finish, suspended acoustical tile ceiling, Mechanical and Electrical (assume an industrial building), and partitions.
- Since the beam and girder sizes are known, you must calculate the ACTUAL WEIGHT in psf of the beam and girder by dividing their weights in Ib/ft by their tributary widths)
(b) Determine the dead loads in kips/ft for a typical INTERIOR BEAM and a typical INTERIOR GIRDER. Assume the girder load is uniformly distributed because there are 4 or more beams framing into the girder.
(c) If the floor system in (a) is to be used as a heavy manufacturing plant, determine the controlling factored loads in kips/ft for the design of the typical beam and the typical girder.
- Use the Limit States (LSD) load combinations
- Note that partition loads need not be included in the dead load calculations when the floor live load is greater than 80 psf .
(d) Determine the factored, V_{u} and the factored moment, M_{u} for a typical beam and a typical girder.
- Assume the beams and girders are simply supported
- The span of the beam is 35 ft (i.e. the girder spacing)
- The span of the girder is 30 ft .

Part (a): Dead Loads

$\mathrm{W} 24 \times 55$	$55 \mathrm{plf} / 6 \mathrm{ft}$	$=$	9 psf
$\mathrm{W} 30 \times 116$	$116 \mathrm{plf} / 35 \mathrm{ft}$	$=$	3 psf

Floor deck
$(4.25 " / 12)(145 \mathrm{pcf}) \quad=\quad 51 \mathrm{psf}$
metal deck $=3 \mathrm{psf}$
light wt. floor finish $=8 \mathrm{psf}$
susp. ceiling $=2 \mathrm{psf}$
M / E (industrial) $=20 \mathrm{psf}$
Partitions $=20 \mathrm{psf}$
$\Sigma_{\mathrm{DL}}=116 \mathrm{psf}($ with partitions $)$
$\Sigma_{\mathrm{DL}}=96 \mathrm{psf}$ (without partitions)

Part (b):

dead load on interior beam:
$(116 \mathrm{psf})\left(6^{\prime}\right)=696 \mathrm{plf}=\mathbf{0 . 7 0} \mathbf{~ k i p s} / \mathbf{f t}$. (with partitions)
$(96 \mathrm{psf})\left(6^{\prime}\right)=576 \mathrm{plf}=\mathbf{0 . 5 8} \mathbf{~ k i p s} / \mathrm{ft}$. (without partitions)
dead load on interior girder:
$(116 \mathrm{psf})\left(35^{\prime}\right)=4060 \mathrm{plf}=4.1 \mathrm{kips} / \mathrm{ft}$. (with partitions)
$(96 \mathrm{psf})\left(35^{\prime}\right)=3360 \mathrm{plf}=\mathbf{3 . 4}$ kips/ft. (without partitions)
Part (c): Heavy Mfr.: Live Load = 250psf

$$
1.4 \mathrm{D}=(1.4)(96)=134.4 \mathrm{psf}
$$

$$
1.2 \mathrm{D}+1.6 \mathrm{~L}=(1.2)(96)+(1.6)(250)=\mathbf{5 1 5 p s f} \leftarrow \text { controls }
$$

Design Load on Beam:
$(515 \mathrm{psf})(6 \mathrm{ft})=3091 \mathrm{plf}=3.1 \mathbf{k i p s} / \mathbf{f t}$
Part (d)
Design Load on Girder (assuming uniformly distributed load):
$(515 \mathrm{psf})(35 \mathrm{ft})=18032 \mathrm{plf}=\mathbf{1 8 . 0} \mathbf{~ k i p s} / \mathbf{f t}$
Factored concentrated load from a beam on a typical interior girder:
$(3.1 \mathrm{kips} / \mathrm{ft})\left(35^{\prime} / 2+35^{\prime} / 2\right)=\mathbf{1 0 8 . 5} \mathbf{k i p s}$

Part (d):

Beam: $\quad V_{u}=\frac{w_{u} L}{2}=\frac{(3.1)(35)}{2}=\mathbf{5 4 . 3} \mathbf{~ k i p s}$

$$
M_{u}=\frac{w_{u} L^{2}}{8}=\frac{(3.1)(35)^{2}}{8}=\mathbf{4 7 4 . 7} \mathbf{~ f t - k i p s}
$$

Girder: $\quad \mathrm{V}_{\mathrm{u}}=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{L}}{2}=\frac{(18.0)(30)}{2}=\mathbf{2 7 0}$ kips

$$
\mathrm{M}_{\mathrm{u}}=\frac{\mathrm{w}_{\mathrm{u}} \mathrm{~L}^{2}}{8}=\frac{(18.0)(30)^{2}}{8}=\mathbf{2 0 2 5} \mathbf{f t} \text {-kips }
$$

Problem 2-9

The building with the steel roof framing shown in Figure 2-16 is located in Rochester, New York. Assuming terrain category \mathbf{C} and a partially exposed roof, determine the following:
a) The balanced snow load on the lower roof, P_{f}
b) The balanced snow load on the upper roof, P_{f}
c) The design snow load on the upper roof, P_{s}
d) The snow load distribution on the lower roof considering sliding snow from the upper pitched roof
e) The snow load distribution on the lower roof considering drifting snow
f) The factored dead plus snow load in $\mathrm{Ib} / \mathrm{ft}$ for the low roof Beam A shown on plan. Assume a steel framed roof and assuming a typical dead load of 29 psf for the steel roof
g) The factored moment, M_{u} and factored shear, V_{u} for Beam A Note that the beam is simply supported
h) For the typical interior roof girder nearest the taller building (i.e. the interior girder supporting beam "A", in addition to other beams), draw the dead load and snow load diagrams, showing all the numerical values of the loads in $\mathrm{Ib} / \mathrm{ft}$ for:
a. Dead load and snow drift loads
b. Dead load and sliding snow load
i) For each of the two cases in part (h), determine the unfactored reactions at both supports of the simply supported interior girder due to dead load, snow load, and the factored reactions. Indicate which of the two snow loads (snow drift or sliding snow) will control the design of this girder.

HINT: Note that for the girder, the dead load is a uniform load, whereas the snow load may be uniformly distributed or trapezoidal in shape depending on whether sliding or drifting snow is being considered.

Solution:

(a) Lower Roof: Balanced Snow Load, P_{f}

Ground snow load for Rochester, New York, $\mathrm{P}_{\mathrm{g}}=40 \mathrm{psf}$ (Building Code of New York State, Figure 1608.2)

Assume:
Category I building
Terrain Category C \& Partially exposed roof Slope factor ($\theta \approx 0$ degrees for a flat roof)

Temperature factor,
Flat roof snow load or Balanced Snow load on lower roof is, P_{f} lower $=0.7 \mathrm{C}_{\mathrm{e}} \mathrm{C}_{\mathrm{t}} \mathrm{I}_{\mathrm{s}} \mathrm{P}_{\mathrm{g}}=0.7 \times 1.0 \times 1.0 \times 1.0 \times 40 \mathrm{psf}=\mathbf{2 8} \mathbf{~ p s f}$
(b) Design snow load for lower roof, P_{s} lower $=\mathrm{P}_{\mathrm{f}} \mathrm{C}_{\mathrm{s}}=28 \mathrm{psf} \times 1.0=\mathbf{2 8} \mathbf{~ p s f}$

[^0]: Copyright © 2015 Pearson Education, Inc., publishing as Prentice Hall, Hoboken, New Jersey and Columbus, Ohio. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 221 River Street, Hoboken, New Jersey.

