
6 PROBLEM SOLUTIONS FOR CHAPTER 2

SOLUTIONS TO CHAPTER 2 PROBLEMS

1. The transition from blocked to running is conceivable. Suppose that a process
is blocked on I/O and the I/O finishes. If the CPU is otherwise idle, the proc-
ess could go directly from blocked to running. The other missing transition,
from ready to blocked, is impossible. A ready process cannot do I/O or any-
thing else that might block it. Only a running process can block.

2. You could have a register containing a pointer to the current process-table
entry. When I/O completed, the CPU would store the current machine state in
the current process-table entry. Then it would go to the interrupt vector for the
interrupting device and fetch a pointer to another process-table entry (the ser-
vice procedure). This process would then be started up.

3. Generally, high-level languages do not allow the kind of access to CPU hard-
ware that is required. For instance, an interrupt handler may be required to
enable and disable the interrupt servicing a particular device, or to manipulate
data within a process’ stack area. Also, interrupt service routines must execute
as rapidly as possible.

4. There are several reasons for using a separate stack for the kernel. Two of
them are as follows. First, you do not want the operating system to crash be-
cause a poorly written user program does not allow for enough stack space.
Second, if the kernel leaves stack data in a user program’s memory space upon
return from a system call, a malicious user might be able to use this data to
find out information about other processes.

5. The chance that all five processes are idle is 1/32, so the CPU idle time is 1/32.

6. There is enough room for 14 processes in memory. If a process has an I/O of
p, then the probability that they are all waiting for I/O is p14. By equating this
to 0.01, we get the equation p14 = 0. 01. Solving this, we get p = 0. 72, so we
can tolerate processes with up to 72% I/O wait.

7. If each job has 50% I/O wait, then it will take 40 minutes to complete in the
absence of competition. If run sequentially, the second one will finish 80 min-
utes after the first one starts. With two jobs, the approximate CPU utilization is
1 − 0. 52. Thus, each one gets 0.375 CPU minute per minute of real time. To
accumulate 20 minutes of CPU time, a job must run for 20/0.375 minutes, or
about 53.33 minutes. Thus running sequentially the jobs finish after 80 min-
utes, but running in parallel they finish after 53.33 minutes.

8. The probability that all processes are waiting for I/O is 0. 46 which is
0.004096. Therefore, CPU utilization = 1 − 0. 004096 = 0: 995904.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 7

9. The client process can create separate threads; each thread can fetch a different
part of the file from one of the mirror servers. This can help reduce downtime.
Of course, there is a single network link being shared by all threads. This link
can become a bottleneck as the number of threads becomes very large.

10. It would be difficult, if not impossible, to keep the file system consistent. Sup-
pose that a client process sends a request to server process 1 to update a file.
This process updates the cache entry in its memory. Shortly thereafter, another
client process sends a request to server 2 to read that file. Unfortunately, if the
file is also cached there, server 2, in its innocence, will return obsolete data. If
the first process writes the file through to the disk after caching it, and server 2
checks the disk on every read to see if its cached copy is up-to-date, the system
can be made to work, but it is precisely all these disk accesses that the caching
system is trying to avoid.

11. No. If a single-threaded process is blocked on the keyboard, it cannot fork.

12. A worker thread will block when it has to read a Web page from the disk. If
user-level threads are being used, this action will block the entire process,
destroying the value of multithreading. Thus it is essential that kernel threads
are used to permit some threads to block without affecting the others.

13. Yes. If the server is entirely CPU bound, there is no need to have multiple
threads. It just adds unnecessary complexity. As an example, consider a tele-
phone directory assistance number (like 555-1212) for an area with 1 million
people. If each (name, telephone number) record is, say, 64 characters, the en-
tire database takes 64 megabytes and can easily be kept in the server’s memory
to provide fast lookup.

14. When a thread is stopped, it has values in the registers. They must be saved,
just as when the process is stopped. the registers must be saved. Multiprogram-
ming threads is no different than multiprogramming processes, so each thread
needs its own register save area.

15. Threads in a process cooperate. They are not hostile to one another. If yield-
ing is needed for the good of the application, then a thread will yield. After all,
it is usually the same programmer who writes the code for all of them.

16. User-level threads cannot be preempted by the clock unless the whole process’
quantum has been used up (although transparent clock interrupts can happen).
Kernel-level threads can be preempted individually. In the latter case, if a
thread runs too long, the clock will interrupt the current process and thus the
current thread. The kernel is free to pick a different thread from the same proc-
ess to run next if it so desires.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

8 PROBLEM SOLUTIONS FOR CHAPTER 2

17. In the single-threaded case, the cache hits take 12 msec and cache misses take
87 msec. The weighted average is 2/3 × 12 + 1/3 × 87. Thus, the mean re-
quest takes 37 msec and the server can do about 27 per second. For a multi-
threaded server, all the waiting for the disk is overlapped, so every request
takes 12 msec, and the server can handle 83 1/3 requests per second.

18. The biggest advantage is the efficiency. No traps to the kernel are needed to
switch threads. The biggest disadvantage is that if one thread blocks, the entire
process blocks.

19. Yes, it can be done. After each call to pthread create, the main program could
do a pthread join to wait until the thread just created has exited before creat-
ing the next thread.

20. The pointers are really necessary because the size of the global variable is
unknown. It could be anything from a character to an array of floating-point
numbers. If the value were stored, one would have to giv e the size to cre-
ate global, which is all right, but what type should the second parameter of
set global be, and what type should the value of read global be?

21. It could happen that the runtime system is precisely at the point of blocking or
unblocking a thread, and is busy manipulating the scheduling queues. This
would be a very inopportune moment for the clock interrupt handler to begin
inspecting those queues to see if it was time to do thread switching, since they
might be in an inconsistent state. One solution is to set a flag when the runtime
system is entered. The clock handler would see this and set its own flag, then
return. When the runtime system finished, it would check the clock flag, see
that a clock interrupt occurred, and now run the clock handler.

22. Yes it is possible, but inefficient. A thread wanting to do a system call first
sets an alarm timer, then does the call. If the call blocks, the timer returns con-
trol to the threads package. Of course, most of the time the call will not block,
and the timer has to be cleared. Thus each system call that might block has to
be executed as three system calls. If timers go off prematurely, all kinds of
problems develop. This is not an attractive way to build a threads package.

23. Yes, it still works, but it still is busy waiting, of course.

24. It certainly works with preemptive scheduling. In fact, it was designed for that
case. When scheduling is nonpreemptive, it might fail. Consider the case in
which turn is initially 0 but process 1 runs first. It will just loop forever and
never release the CPU.

25. The priority inversion problem occurs when a low-priority process is in its
critical region and suddenly a high-priority process becomes ready and is
scheduled. If it uses busy waiting, it will run forever. With user-level threads,
it cannot happen that a low-priority thread is suddenly preempted to allow a

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 9

high-priority thread run. There is no preemption. With kernel-level threads
this problem can arise.

26. With round-robin scheduling it works. Sooner or later L will run, and eventual-
ly it will leave its critical region. The point is, with priority scheduling, L never
gets to run at all; with round robin, it gets a normal time slice periodically, so
it has the chance to leave its critical region.

27. Each thread calls procedures on its own, so it must have its own stack for the
local variables, return addresses, and so on. This is equally true for user-level
threads as for kernel-level threads.

28. Yes. The simulated computer could be multiprogrammed. For example, while
process A is running, it reads out some shared variable. Then a simulated
clock tick happens and process B runs. It also reads out the same variable.
Then it adds 1 to the variable. When process A runs, if it also adds 1 to the
variable, we have a race condition.

29. Yes, it will work as is. At a given time instant, only one producer (consumer)
can add (remove) an item to (from) the buffer.

30. The solution satisfies mutual exclusion since it is not possible for both proc-
esses to be in their critical section. That is, when turn is 0, P0 can execute its
critical section, but not P1. Likewise, when turn is 1. However, this assumes
P0 must run first. If P1 produces something and it puts it in a buffer, then
while P0 can get into its critical section, it will find the buffer empty and
block. Also, this solution requires strict alternation of the two processes, which
is undesirable.

31. To do a semaphore operation, the operating system first disables interrupts.
Then it reads the value of the semaphore. If it is doing a down and the sema-
phore is equal to zero, it puts the calling process on a list of blocked processes
associated with the semaphore. If it is doing an up, it must check to see if any
processes are blocked on the semaphore. If one or more processes are block-
ed, one of them is removed from the list of blocked processes and made run-
nable. When all these operations have been completed, interrupts can be
enabled again.

32. Associated with each counting semaphore are two binary semaphores, M, used
for mutual exclusion, and B, used for blocking. Also associated with each
counting semaphore is a counter that holds the number of ups minus the num-
ber of downs, and a list of processes blocked on that semaphore. To imple-
ment down, a process first gains exclusive access to the semaphores, counter,
and list by doing a down on M. It then decrements the counter. If it is zero or
more, it just does an up on M and exits. If M is negative, the process is put on
the list of blocked processes. Then an up is done on M and a down is done on
B to block the process. To implement up, first M is downed to get mutual

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

10 PROBLEM SOLUTIONS FOR CHAPTER 2

exclusion, and then the counter is incremented. If it is more than zero, no one
was blocked, so all that needs to be done is to up M. If, however, the counter
is now neg ative or zero, some process must be removed from the list. Finally,
an up is done on B and M in that order.

33. If the program operates in phases and neither process may enter the next phase
until both are finished with the current phase, it makes perfect sense to use a
barrier.

34. With kernel threads, a thread can block on a semaphore and the kernel can run
some other thread in the same process. Consequently, there is no problem
using semaphores. With user-level threads, when one thread blocks on a sem-
aphore, the kernel thinks the entire process is blocked and does not run it ever
again. Consequently, the process fails.

35. It is very expensive to implement. Each time any variable that appears in a
predicate on which some process is waiting changes, the run-time system must
re-evaluate the predicate to see if the process can be unblocked. With the
Hoare and Brinch Hansen monitors, processes can only be awakened on a sig-
nal primitive.

36. The employees communicate by passing messages: orders, food, and bags in
this case. In UNIX terms, the four processes are connected by pipes.

37. It does not lead to race conditions (nothing is ever lost), but it is effectively
busy waiting.

38. It will take nT sec.

39. Three processes are created. After the initial process forks, there are two proc-
esses running, a parent and a child. Each of them then forks, creating two addi-
tional processes. Then all the processes exit.

40. If a process occurs multiple times in the list, it will get multiple quanta per
cycle. This approach could be used to give more important processes a larger
share of the CPU. But when the process blocks, all entries had better be re-
moved from the list of runnable processes.

41. In simple cases it may be possible to see if I/O will be limiting by looking at
source code. For instance a program that reads all its input files into buffers at
the start will probably not be I/O bound, but a problem that reads and writes
incrementally to a number of different files (such as a compiler) is likely to be
I/O bound. If the operating system provides a facility such as the UNIX ps
command that can tell you the amount of CPU time used by a program, you
can compare this with the total time to complete execution of the program.
This is, of course, most meaningful on a system where you are the only user.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 11

42. If the context switching time is large, then the time quantum value has to be
proportionally large. Otherwise, the overhead of context switching can be
quite high. Choosing large time quantum values can lead to an inefficient sys-
tem if the typical CPU burst times are less than the time quantum. If context
switching is very small or negligible, then the time quantum value can be cho-
sen with more freedom.

43. The CPU efficiency is the useful CPU time divided by the total CPU time.
When Q ≥ T , the basic cycle is for the process to run for T and undergo a
process switch for S. Thus, (a) and (b) have an efficiency of T /(S + T). When
the quantum is shorter than T, each run of T will require T /Q process switches,
wasting a time ST /Q. The efficiency here is then

T

T + ST /Q

which reduces to Q/(Q + S), which is the answer to (c). For (d), we just sub-
stitute Q for S and find that the efficiency is 50%. Finally, for (e), as Q → 0 the
efficiency goes to 0.

44. Shortest job first is the way to minimize average response time.
0 < X ≤ 3: X , 3, 5, 6, 9.
3 < X ≤ 5: 3, X , 5, 6, 9.
5 < X ≤ 6: 3, 5, X , 6, 9.
6 < X ≤ 9: 3, 5, 6, X , 9.
X > 9: 3, 5, 6, 9, X .

45. For round robin, during the first 10 minutes each job gets 1/5 of the CPU. At
the end of 10 minutes, C finishes. During the next 8 minutes, each job gets 1/4
of the CPU, after which time D finishes. Then each of the three remaining jobs
gets 1/3 of the CPU for 6 minutes, until B finishes, and so on. The finishing
times for the five jobs are 10, 18, 24, 28, and 30, for an average of 22 minutes.
For priority scheduling, B is run first. After 6 minutes it is finished. The other
jobs finish at 14, 24, 26, and 30, for an average of 18.8 minutes. If the jobs run
in the order A through E, they finish at 10, 16, 18, 22, and 30, for an average of
19.2 minutes. Finally, shortest job first yields finishing times of 2, 6, 12, 20,
and 30, for an average of 14 minutes.

46. The first time it gets 1 quantum. On succeeding runs it gets 2, 4, 8, and 15, so
it must be swapped in 5 times.

47. Each voice call needs 200 samples of 1 msec or 200 msec. Together they use
400 msec of CPU time. The video needs 11 msec 33 1/3 times a second for a
total of about 367 msec. The sum is 767 msec per second of real time so the
system is schedulable.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

12 PROBLEM SOLUTIONS FOR CHAPTER 2

48. Another video stream consumes 367 msec of time per second for a total of
1134 msec per second of real time so the system is not schedulable.

49. The sequence of predictions is 40, 30, 35, and now 25.

50. The fraction of the CPU used is 35/50 + 20/100 + 10/200 + x/250. To be
schedulable, this must be less than 1. Thus x must be less than 12.5 msec.

51. Yes. There will be always at least one fork free and at least one philosopher
that can obtain both forks simultaneously. Hence, there will be no deadlock.
You can try this for N = 2, N = 3 and N = 4 and then generalize.

52. Each voice call runs 166.67 times/second and uses up 1 msec per burst, so
each voice call needs 166.67 msec per second or 333.33 msec for the two of
them. The video runs 25 times a second and uses up 20 msec each time, for a
total of 500 msec per second. Together they consume 833.33 msec per second,
so there is time left over and the system is schedulable.

53. The kernel could schedule processes by any means it wishes, but within each
process it runs threads strictly in priority order. By letting the user process set
the priority of its own threads, the user controls the policy but the kernel hand-
les the mechanism.

54. If a philosopher blocks, neighbors can later see that she is hungry by checking
his state, in test, so he can be awakened when the forks are available.

55. The change would mean that after a philosopher stopped eating, neither of his
neighbors could be chosen next. In fact, they would never be chosen. Sup-
pose that philosopher 2 finished eating. He would run test for philosophers 1
and 3, and neither would be started, even though both were hungry and both
forks were available. Similarly, if philosopher 4 finished eating, philosopher 3
would not be started. Nothing would start him.

56. Variation 1: readers have priority. No writer may start when a reader is active.
When a new reader appears, it may start immediately unless a writer is cur-
rently active. When a writer finishes, if readers are waiting, they are all started,
regardless of the presence of waiting writers. Variation 2: Writers have prior-
ity. No reader may start when a writer is waiting. When the last active process
finishes, a writer is started, if there is one; otherwise, all the readers (if any)
are started. Variation 3: symmetric version. When a reader is active, new
readers may start immediately. When a writer finishes, a new writer has prior-
ity, if one is waiting. In other words, once we have started reading, we keep
reading until there are no readers left. Similarly, once we have started writing,
all pending writers are allowed to run.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

PROBLEM SOLUTIONS FOR CHAPTER 2 13

57. A possible shell script might be

if [! –f numbers]; then echo 0 > numbers; fi
count = 0
while (test $count != 200)
do
count=′expr $count + 1′
n=′tail –1 numbers′
expr $n + 1 >>numbers

done

Run the script twice simultaneously, by starting it once in the background
(using &) and again in the foreground. Then examine the file numbers. It will
probably start out looking like an orderly list of numbers, but at some point it
will lose its orderliness, due to the race condition created by running two cop-
ies of the script. The race can be avoided by having each copy of the script test
for and set a lock on the file before entering the critical area, and unlocking it
upon leaving the critical area. This can be done like this:

if ln numbers numbers.lock
then
n=′tail –1 numbers′
expr $n + 1 >>numbers
rm numbers.lock

fi

This version will just skip a turn when the file is inaccessible. Variant solu-
tions could put the process to sleep, do busy waiting, or count only loops in
which the operation is successful.

© Copyright 2015 Pearson Education, Inc. All Rights Reserved.

