
Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

1

Software Engineering 10

Solutions Manual

IAN SOMMERVILLE

These solutions are made available for instructional purposes only. Neither the
author nor the publisher warrants the correctness of these solutions nor accepts any
liability for their use. Solutions may only be distributed to students and it is a
condition of distribution that they are only distributed by accredited instructors
using ‘Software Engineering, 10hedition’ as a textbook. The solutions may be made
available to students on a password-protected intranet but must not be made
available on a publicly-accessible WWW server.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

2

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

3

Preface

This solutions manual is intended to help teachers of software engineering courses
in marking homework questions for students. Each chapter in the book has 10
exercises of different types, which you may set for students either as is or in a
modified form. I have supplied answers to 50% of the exercises in this manual.

The exercises for which answers have not been supplied are, generally, of
one of three types:

1. Simple exercises whose answers can be found in the text of the chapter.
There are typically one or two of these questions in each chapter and they
are intended to stimulate students to read the chapter.

2. Design problems for which there is a range of solutions and you have to use
your judgment to decide if the solution is appropriate. Supplying a solution
here would imply that there is only one right answer to the question.

3. Ethics-related questions as the aim of these questions is to encourage
students to think about the ethics issues involved. The notion of a right and
wrong answer does not apply in this case as the student’s response to the
question depends both on their cultural background and on their particular
views on a topic. I suggest that these questions should be used to stimulate
class discussions rather than as part of class tests.

It is important when marking the student’s answers to exercises to see the
supplied solutions as a guide only rather than a definitive statement of the only
possible answer to the question. It is generally good educational practice to give
students credit for what they know and if they produce credible answers that reveal
they have thought about the exercise and have some knowledge of the topic, then
this should be rewarded.

This solutions manual may be used in conjunction with the associated quiz
book, which lists short questions and answers for each chapter in the book. These
can be used for short class tests to assess if students have read the material or as
self-assessment tests which the students complete in their own time.

If you think that I have made a mistake in some of these answers (quite
possible), please let me know. In some cases, there are obviously several possible
answers and you may disagree with my solutions. I’d be delighted to consider
including your alternative solutions but I do not have time to engage in detailed
email discussions about the exercises in the book.

Ian Sommerville
October 2014

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

4

1 Introduction

1.2 What is the most important difference between generic software product
development and custom software development? What might this mean in
practice for users of generic software products?

The essential difference is that in generic software product development, the
specification is owned by the product developer. For custom product development,
the specification is owned and controlled by the customer. The implications of this
are significant – the developer can quickly decide to change the specification in
response to some external change (e.g. a competing product) but, when the
customer owns the specification, changes have to be negotiated between the
customer and the developer and may have contractual implications.

For users of generic products, this means they have no control over the
software specification so cannot control the evolution of the product. The developer
may decide to include/exclude features and change the user interface. This could
have implications for the user’s business processes and add extra training costs
when new versions of the system are installed. It also may limit the customer’s
flexibility to change their own business processes.

1.3 What are the four important attributes that all professional software should
have? Suggest four other attributes that may sometimes be significant.

Four important attributes are maintainability, dependability, performance and
usability. Other attributes that may be significant could be reusability (can it be
reused in other applications), distributability (can it be distributed over a network
of processors), portability (can it operate on multiple platforms e.g laptop and
mobile platforms) and inter-operability (can it work with a wide range of other
software systems).

Decompositions of the 4 key attributes e.g. dependability decomposes to security,
safety, availability, etc. is also a valid answer to this question.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

5

1.4 Apart from the challenges of heterogeneity, business and social change and
trust and security, identify other problems and challenges that software
engineering is likely to face in the 21st century (hint: think about the
environment).

Problems and challenges for software engineering

There are many possible challenges that could be identified. These include:

1. Developing systems that are energy-efficient. This makes them more usable
on low power mobile devices and helps reduce the overall carbon footprint
of IT equipment.

2. Developing validation techniques for simulation systems (which will be
essential in predicting the extent and planning for climate change).

3. Developing systems for multicultural use

4. Developing systems that can be adapted quickly to new business needs

5. Designing systems for outsourced development

6. Developing systems that are resistant to attack

7. Developing systems that can be adapted and configured by end-users

8. Finding ways of testing, validating and maintaining end-user developed
systems

1.5 Based on your own knowledge of some of the application types discussed
in section 1.1.2, explain, with examples, why different application types
require specialized software engineering techniques to support their design
and development.

Different application types require the use of different development techniques for
a number of reasons:

1. Costs and frequency of change. Some systems (such as embedded systems
in consumer devices) are extremely expensive to change; others, must
change frequently in response to changing requirements (e.g. business
systems). Systems which are very expensive to change need extensive up-
front analysis to ensure that the requirements are consistent and extensive
validation to ensure that the system meets its specification. This is not cost-
effective for systems that change very rapidly.

2. The most important ‘non-functional’ requirements. Different systems have
different priorities for non-functional requirements. For example, a real-time

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

6

control system in an aircraft has safety as its principal priority; an interactive
game has responsiveness and usability as its priority. The techniques used to
achieve safety are not required for interactive gaming; the extensive UI
design required for games is not needed in safety-critical control systems.

3. The software lifetime and delivery schedule. Some software systems have a
relatively short lifetime (many web-based systems), others have a lifetime of
tens of years (large command and control systems). Some systems have to
be delivered quickly if they are to be useful. The techniques used to develop
short-lifetime, rapid delivery systems (e.g. use of scripting languages,
prototyping, etc.) are inappropriate for long-lifetime systems which require
techniques that allow for long-term support such as design modelling.

1.8 Discuss whether professional engineers should be certified in the same way
as doctors or lawyers.

These are possible discussion points - any discussion on this will tend to be wide
ranging and touch on other issues such as the nature of professionalism, etc.

Advantages of certification

• Certification is a signal to employers of some minimum level of
competence.

• Certification improves the public image of the profession.

• Certification generally means establishing and checking educational
standards and is therefore a mechanism for ensuring course quality.

• Certification implies responsibility in the event of disputes. Certifying body
is likely to be accepted at a national and international level as ‘speaking for
the profession’.

• Certification may increase the status of software engineers and attract
particularly able people into the profession.

Disadvantages of certification

• Certification tends to lead to protectionism where certified members tend
not to protect others from criticism.

• Certification does not guarantee competence merely that a minimum
standard was reached at the time of certification.

• Certification is expensive and will increase costs to individuals and
organisations.

• Certification tends to stultify change. This is a particular problem in an area
where technology developments are very rapid.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

7

2 Software Processes

2.1 Giving reasons for your answer based on the type of system being
developed, suggest the most appropriate generic software process model
that might be used as a basis for managing the development of the
following systems:

• A system to control anti-lock braking in a car
• A virtual reality system to support software maintenance
• A university accounting system that replaces an existing system
• An interactive travel planning system that helps users plan journeys
 with the lowest environmental impact

1. Anti-lock braking system This is a safety-critical system so requires a lot of
up-front analysis before implementation. It certainly needs a plan-driven
approach to development with the requirements carefully analysed. A
waterfall model is therefore the most appropriate approach to use, perhaps
with formal transformations between the different development stages.

2. Virtual reality system This is a system where the requirements will change
and there will be an extensive user interface components. Incremental
development with, perhaps, some UI prototyping is the most appropriate
model. An agile process may be used.

3. University accounting system This is a system whose requirements are
fairly well-known and which will be used in an environment in conjunction
with lots of other systems such as a research grant management system.
Therefore, a reuse-based approach is likely to be appropriate for this.

4. Interactive travel planning system System with a complex user interface but
which must be stable and reliable. An incremental development approach is
the most appropriate as the system requirements will change as real user
experience with the system is gained.

2.3 Consider the integration and configuration process model shown in Figure
2.3. Explain why it is essential to repeat the requirements engineering
activity in the process.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

8

You need to repeat the requirements engineering activity because it is essential to
adapt the system requirements according to the capabilities of the
system/components to be reused. These activities are:

1. An initial activity where you understand the function of the system and set
out broad requirements for what the system should do. These should be
expressed in sufficient detail that you can use them as a basis for deciding of
a system/component satisfies some of the requirements and so can be
reused.

2. Once systems/components have been selected, you need a more detailed
requirements engineering activity to check that the features of the reused
software meet the business needs and to identify changes and additions that
are required.

2.4 Suggest why it is important to make a distinction between developing the
user requirements and developing system requirements in the requirements
engineering process.

There is a fundamental difference between the user and the system requirements
that mean they should be considered separately.

1. The user requirements are intended to describe the system’s functions and
features from a user perspective and it is essential that users understand
these requirements. They should be expressed in natural language and may
not be expressed in great detail, to allow some implementation flexibility.
The people involved in the process must be able to understand the user’s
environment and application domain.

2. The system requirements are much more detailed than the user requirements
and are intended to be a precise specification of the system that may be part
of a system contract. They may also be used in situations where
development is outsourced and the development team need a complete
specification of what should be developed. The system requirements are
developed after user requirements have been established.

2.6 Explain why change is inevitable in complex systems and give examples
(apart from prototyping and incremental delivery) of software process
activities that help predict changes and make the software being developed
more resilient to change.

Systems must change because as they are installed in an environment the
environment adapts to them and this adaptation naturally generates new/different

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

9

system requirements. Furthermore, the system's environment is dynamic and
constantly generates new requirements as a consequence of changes to the
business, business goals and business policies. Unless the system is adapted to
reflect these requirements, its facilities will become out-of-step with the facilities
needed to support the business and, hence, it will become less useful.

Examples of process activities that support change are:

1. Recording of requirements rationale so that the reason why a requirement is
included is known. This helps with future change.

2. Requirements traceability that shows dependencies between requirements
and between the requirements and the design/code of the system.

3. Design modeling where the design model documents the structure of the
software.

4. Code refactoring that improves code quality and so makes it more amenable
to change.

2.9 Suggest two advantages and two disadvantages of the approach to process
maturity that is embodied in the SEI’s Capability Maturity Framework.

Advantages of process improvement frameworks

1. The approach provides a means of measuring the state of a process and a
structured approach to introducing process improvements.

2. It is useful as a way of building on the experience of others in process
improvement.

Disadvantages of process improvement frameworks

1. Like any measurement system, there is a tendency to introduce
improvements to improve the measured rating rather than concentrate on
improvements that meet real business goals.

2. The maturity model approach is expensive and bureaucratic to operate. It is
not really suitable for organisations that use agile development.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

10

3 Agile Software
Development

3.2 Explain how the principles underlying agile methods lead to the accelerated
development and deployment of software.

The principles underlying agile development are:

1. Individual and interactions over processes and tools. By taking advantages
of individual skills and ability and by ensuring that the development team
know what each other are doing, the overheads of formal communication
and process assurance are avoided. This means that the team can focus on
the development of working software.

2. Working software over comprehensive documentation. This contributes to
accelerated development because time is not spent developing, checking and
managing documentation. Rather, the programmer’s time is focused on the
development and testing of code.

3. Customer collaboration over contract negotiation. Rather than spending
time developing, analyzing and negotiating requirements to be included in a
system contract, agile developers argue that it is more effective to get
feedback from customer’s directly during the development about what is
required. This allows useful functionality to be developed and delivered
earlier than would be possible if contracts were required.

4. Responding to change over following a plan. Agile developers argue
(rightly) that being responsive to change is more effective than following a
plan-based process because change is inevitable whatever process is used.
There is significant overhead in changing plans to accommodate change and
the inflexibility of a plan means that work may be done that is later
discarded.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

11

3.3 Extreme programming expresses user requirements as stories, with each
story written on a card. Discuss the advantages and disadvantages of this
approach to requirements description.

Advantages of stories:
1. They represent real situations that commonly arise so the system will

support the most common user operations.

2. It is easy for users to understand and critique the stories.

3. They represent increments of functionality – implementing a story delivers
some value to the user.

Disadvantages of stories

1. They are liable to be incomplete and their informal nature makes this
incompleteness difficult to detect.

2. They focus on functional requirements rather than non-functional
requirements.

3. Representing cross-cutting system requirements such as performance and
reliability is impossible when stories are used.

4. The relationship between the system architecture and the user stories is
unclear so architectural design is difficult.

3.6 Compare and contrast the Scrum approach to project management with
conventional plan-based approaches as discussed in Chapter 23. Your
comparison should be based on the effectiveness of each approach for
planning the allocation of people to projects, estimating the cost of projects,
maintaining team cohesion and managing changes in project team
membership.

Planning allocation of people to projects

Scrum
Scrum handles people allocation informally. Team members ‘bid’ for features from
the product backlog to implement if they think that their expertise is appropriate.
Alternatively, the tasks can be allocated by the Scrum master.

There is no formal mechanism in Scrum for planning for project members
with very specific expertise to be temporarily allocated to a team. This need must
be identified by the Scrum master and he or she has to discuss how the expertise
can be made available.

Plan-based development

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

12

A project plan is used to identify the parts of the system to be delivered and these
are specified in the requirements document. The expertise required for each part
can then be identified and the allocation of people to projects planned on that basis.

Estimating project costs

Scrum

Project costs are estimated based on the required delivery date for the software and
people working in the Scrum team. The functionality of the system is adjusted so
that some working system will always be delivered for the original cost estimation.
Of course, this may not be adequate for the customer and they have to become
involved in rescheduling the delivery of the system.

Plan-based development

Project costs are based on an analysis of the functionality specified in the
requirements document as well as the non-functional requirements of the system.
They may be adjusted to reflect team size and delivery schedule. It is normal for
costs to be underestimated and the final project to cost much more than originally
estimated. An average cost for team members is assumed.

Maintaining team cohesion

Scrum

Team member meet daily either face to face or electronically. Extensive informal
discussions and communications are encouraged. Team members negotiate work
to be done from the project backlog. This all leads to a shared feeling of product
ownership and a very cohesive team.

Plan-based development

Team cohesion is the responsibility of the project manager and he or she has to take
explicit actions to encourage this. The general approach relies on formal meetings
that are relatively infrequent and this does not lead to the development of a
cohesive team.

Managing changes in project team membership

Scrum

This is a topic that is rarely discussed in Scrum but is a fundamental problem
because so much information is informal and reliant on people remembering what
has been agreed. When someone leaves, it can be very difficult to bring a
replacement team member up to speed, especially if very little project
documentation is available.

Plan-based development

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

13

The project management plan is based around expertise rather than individuals and
project documents should be available. Therefore, if a team member leaves, then a
new team member with comparable expertise can read what has been done and,
after understanding this, should be able to serve as a replacement.

3.8 Why is it necessary to introduce some methods and documentation from
plan-based approaches when scaling agile methods to larger projects that
are developed by distributed development teams.

1. Project planning is often essential when developing software with larger
teams to (a) ensure that the right people are available when they are needed
to be involved in the development process and (b) ensure that the delivery
schedules of different parts of the system developed by different teams are
aligned. This means that if Part A depends on Part B, the schedule should
ensure that Part B is developed before Part A.

2. Requirements analysis and documentation is important to decide how to
distribute the work across teams and to ensure that each team has some
understanding of what other teams are doing.

3. Design documentation especially interface specifications are important so
that teams can develop independently without having access to software that
is under development.

4. Risk management may be required to ensure that all of the teams understand
the risks faced and can organize their work to minimize these risks. Risk
management may also be useful to cope with different delivery schedules
used by different teams.

3.10 It has been suggested that one of the problems of having a user closely
involved with a software development team is that they ‘go native’. That is,
they adopt the outlook of the development team and lose sight of the
needs of their user colleagues. Suggest three ways how you might avoid this
problem and discuss the advantages and disadvantages of each approach.

1. Involve multiple users in the development team. Advantages are you get
multiple perspectives on the problem, better coverage of user tasks and
hence requirements and less likelihood of having an atypical user.
Disadvantages are cost, difficulties of getting user engagement and possible
user conflicts.

 Software Engineering 10 – Solutions Manual Introduction

©Ian Sommerville 2014

14

2. Change the user who is involved with the team. Advantages are, again,
multiple perspectives. Disadvantages are each user takes time to be
productive and possible conflicting requirements from different users.

3. Validate user suggestions with other user representatives. Advantages are
independent check on suggestions; disadvantage is that this slows down the
development process as it takes time to do the checks.

Software Engineering 10 – Solutions Manual

©Ian Sommerville 2014

15

4 Requirements
Engineering

4.2 Discover ambiguities or omissions in the following statement of
requirements for part of a ticket-issuing system:

 An automated ticket machine sells rail tickets. Users select their destination
and input a credit card and a personal identification number. The rail ticket
is issued and their credit card account charged. When the user presses the
start button, a menu display of potential destinations is activated, along
with a message to the user to select a destination and the type of ticket
required. Once a destination has been selected, the ticket price is displayed
and customers are asked to input their credit card. Its validity is checked
and the user is then asked to input their personal identifier (PIN). When the
credit transaction has been validated, the ticket is issued.

Ambiguities and omissions include:

1. Can a customer buy several tickets for the same destination together or must
they be bought one at a time?

2. Can customers cancel a request if a mistake has been made?

3. How should the system respond if an invalid card is input?

4. What happens if customers try to put their card in before selecting a
destination (as they would in ATM machines)?

5. Must the user press the start button again if they wish to buy another ticket
to a different destination?

6. Should the system only sell tickets between the station where the machine is
situated and direct connections or should it include all possible destinations?

