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Chapter 3 Solutions

Compare E, =2cos[27 x 10" (t = x/c) + /2] to
E, = Acos[27v(t - x/v)+7z/2]. (a) v=10"Hz, v =c,and
A=c/v=3%x10*/10" =3x10™° m, moves in positive x-direction,
A=2V/m, ¢ =7/2 linearly polarized in the y-direction. (b) B, =0, By =0,B, = Ey /c.
E, =0, Ey =E = E,sin(kz—wt) or cosine; B, =0, By =-B = Ey /c, or if you like,
- E . 4 ~ E
E=—2(i + j)sin(kz — wt), B=—"2

V2 2

First, by the right-hand rule, the directions of the vectors are right. Then
kE = wB and so (27r/A)E = wB = 27vB,hence E = AvB = ¢B.

(j—1)sin(kz — wr).

OE [0x = —kE, sin(kx — wt);—0B/dt = —wB, sin(kx — wt);

—kE, = -wB;E, = (w/k)B, and Eq. (2.33) w/k =c.

(a) The electric field oscillates along the line specified by the vector

—6i +3+/5]. (b) To find E,, dot E, with itself and take the square root, thus
V36 +4510*V/m =9 x10* V/m. (c) From the exponential

k-7 =/5x+2y)(7/3)x 107, hence k = (\/5i +2)(/3)x 107 and

because the phase is k -7 —t rather than k -7 + ot the wave moves in the
direction of k.(d) k -k =(xx10")*, k=2 x10"m™" and
A=27/k=200nm. (¢) ®=9.42x10" rad/s and

v=w/27r=15x10" Hz. (f) v=v1=3.00x10° m/s.

(a) The field is linearly polarized in the y-direction and varies sinusoidally
from zero and z = 0 to zero at z = z,. (b) Using the wave equation

0’E, 0’E, J°E, | J’E,

+ +
ox>  oyr 97 ¢ o

)

2 2

7w . 7z

—k* —=-+—| E,sin=—=cos(kx—wr)=0
7 c Z

and since this is true for all x, z, and ¢ each term must equal zero and so

k = (w/c)\J1-(cm/wz,)’. (c) Moreover, v = w/k = c/\[1-(cm/wz,) .

B

5= 10V o505 1)
c

(@) c=vA, so v =c/A=(3%10° m/s)/(550x10~° m) = 5.45x10"* Hz.
(b) w=27v =27(5.45%10" Hz) = 3.42 x 10" rad/s;
k=2m/A=27/(550x10° m)=1.14x10" m™". (c) E, = cE,, so

B, =E,/c=(600 V/m)/(3x10° m/s) =2x10° V-s/m*> =2x107° T.
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(d) E(y,t)=E,sin(ky—awt +¢); E0,0)=0=E;sin(¢),e =0;
B(y, ) = B, sin(ky—wt +¢); B (0,0)=0 = B, sin(¢), £ =0;

E (y, )= (600 V/m) sin((1.14x 107 m™)y—(3.42x 10" rad/s)?);
B (y,1) (2%x10°T)sin((1.14x107 m™")y —(3.42 x 10" rad/s)?).

39 B=i+)Esintz-wr+7/6)
c
= N
B(0,0) = (=i + j)—sin(7z/6)
c

310 E=(i+))E, sin(kz— ot + 7/6)
E(4/2,0) = (i + j)E, sin(—7 - 0+ 7/6)
E(1/2,0) = (i + j)E, sin(-57/6)
E(1/2,0) = (i +j)E,(-0.5)

311 Aty=0and¢=0, E-= Eoi. The wave travels in the +y(j) direction. As a result, B must be in the —k
direction. Then,

B(x,y,2,1)= —%Eof( expli(ky — wr)]

312 Atz=0andr=0, B= BO:i. The wave travels in the + z (ﬁ) direction. As a result, E must be

in the —i direction. Then,
E(x,y,2.1) = —cB,iexpli(kz — wr)]

3.13 By Gauss’ law, E =o0/¢,, where 0 =q/A is the surface charge density. Putting the average value of

this electric field into u, = &,E*/2 gives u, =07 /8¢,.

314 u, =B’ 2u,; c=1/\&,1,, s0 €, =1/t uy =c’€,B*[2; E =cB,s0 u, =&,(cB)’/2=¢,E*[2=u,.

3.15 <cos2 k-7 a)t)> =(1/T) IT cos’(k-F—at’)dt’. Let k-7 —wt’ = x; then
(cos™ (k-7 —wn)) =~(1/aT) cos” xdx = (1/2 @T)[ (1 +cos 2x)dx == (1/2aT)[x+0.5sin 2x];7 ",

Similarly use <sin2 (k-F— a)t)> = (1/2)<l —cos2(k -7 — a)t)> and
<sin(1€ F—ar) cos (k-7 — a)t)> = (1/2)<sin 2k -7 - a)t)>.

1
3.16 Using the identity cos” a = 5(1 +cos 2a) we have

<0052 a)t>T = <%[l +cos 2wt]>T = %[1 + (cos 2a)t>T] = %[1 + (sinc wT)cos 2wt ].

3.17 Using the identity sin’ o = %(1 —cos2«) we have

1 1 1
sin® wr) ={—[1—-cos2wt =—[1—=(cos 2wt) ]=—[1—-(sinc wT)cos 2wt].
( ), n 1) =31 { )=l ) ]
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3.18

3.19

3.20

3.21

3.22

3.23

3.24

1=(S), =(c*&|E, x B, |cos’(k -F—aT)) =

c’&, |Ey x By|(cos’ (K -F—an)) = *&,E,B, [2; E, = cBy,c =1/\[ 1,5, 50
eyc=1uyc. 1=E/2cu,. If E, =15.0 V/m,

I=(15.0 V/m)’/2(3x 10° m/s)(47x 107 m-kg/C®) = 9375/ W/m’> =298 W/m’.

Start with the following relationship for the irradiance:

1=C—§“Eg
P _1x10°W _ o _ 3x10° m/s-8.85x1072C-V' m™' =
A 1x10%m> 2 2 0
2x10 W/m* _ g

27x10°C-v'st "

Using the definition of a Volt (V =J/C):
Eg =74x10° V*/m’
E, =86 V/m

2
1
A=nr? :7{— =1.0cm?
x/EJ

40J/s x 60 s/min = 2.4 x10*J/min

15
(a) Since E = vB, Then use v = % = % =1.50 x 10® m/s, to obtain:
20 %

B = (1.50x10® m/s)(~100 V/m) iexp[i(kz —wt)]

() 7=k = =15

© k, = gi then & =k, &, =(1.5)¢, = 2.25¢, =1.99 x 10" F/m

0

(1.99 x 10" F/m)(1.50 x 10* m/s)
2

Total Power =20 W; Total Area at 1.0 m =47(10.0 m)* =47 m?;

I = Power/Area = (20 W)/(4z m’) =5/ W/m* =1.6 W/m”.

(=100 V/m)? = 14.9 W/m>

EV
@) 1=""F) =

(@ 7=1v=10"s, v=c, A=c/v=Cr=30m.

(b) E, =0.08 cos[(2 mv(t—x/c)], B, =E /c.) (c) By Eq. (3.44),

(S), =ce,Eq /2.

Will find /, then E, using Eq. (3.44). Total Power = L =3.9 X 10 W; Total area at

1.5x10"m =47(1.5x10"m)* =9.07x10”m* =2.8x 10" m".
I =Power/Area=(3.9x 10° W) /(2.8 x 10 m?) = 1.4 x 10* W/m>.

11
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From Eq. (3.44) I =(cg,/2)E;, s0 E, =21/c¢,;

E,

B 2(1.4%10° W/m®)
(3x10°* m/s)(8.85x107*s*-C*/ m-kg)
E, =1.0x10° V/m

325 E, =(E,/N2)(~i +}). k = 2z/\22)(i + j), hence
E= (10/\/5)(—; + })COS[(\/ 27 [A)(x+y)—wt] and
I =ce,E;/2=0.13 W/m®.
326 (a) [=cAr=(3.00x10* m/s)(2.00x107° s) = 0.600 m. (b) The volume
of one pulse is V =[7R* =2.9%107° m’; therefore (6.0J)/V =2.0x10° J/m’.

3.27 From Eq. (3.44), I =c¢,E; /2 and so

E, = [21/cg, =/7.535x10% =2.7x10" V/m.

3.28 u = (power)(t)/(volume) = (10° W(t)/[(zr* )(ct)] =107 W/[z£(107)* 3% 10*)], u =1.1x10"° J/m".
3.29 V=Al=Aurso that
N/At=nV/At =nv =100 m~>6 m/60s =10 m>s™".
330 I/E=1/hv=(19.88x107)/(6.63x107*)(100x10°) =3x10* photons/mzs.
n=(1/c)(I/E)=10" photons/m’.
331 N/t=P/hv=PAlhc=28x10"s".
332 P, =iV=(0.25)(3.0)=0.75 W. This is the electrical power dissipated.
The power available as light is P, = (0.01)P, =75 X 10*W. (a) The
photon flux is P,/hv = PA/hc =2.1x10" photons/s. (b) There are
2.1x10" in volume (3x10*)(15)(107) m®. Therefore

2.1x10'/3x10° =0.69x 10" is the number of photons per cubic meter.
(© I=75%10" W/10x10™* m® =7.5 W/m>.

333  [=P/4zr’ =100w/4z(Im)’ =8W/m®*, E, = \[2I/¢,c =78V/m, and B, = E,/c =2.6x107'T.

3.34 Imagine two concentric cylinders of radii #, andr, surrounding the wave. The energy flowing per

second through the first cylinder must pass through the second; that is, <S1 >27rr1 = <S2 > 27r,, and so

(S > 27r = constant and <S> varies inversely with r. Therefore, since <S> < E;, E, varies as /1/r.
335 p=E/c=hv/c=22x10" kgms

336 (dp/dt)=(dW/dt)/c, witharea A, (P)=(dp/dt)/A=(dW/dt)/Ac=1]c.

337 (a) E(z.0) = i(ﬁ.olj cosk(z—ct)
m

E — ~
(b) Since B, =—2, thus B(z, 1) = —jEcos k(z—ct)
c c

— A &
(c) P, =k—"E; cos’ k(z—ct)

-0
c
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3.38 From Eq. (3.52) the force exerted by the beam of light, AP = Ap/At, where p(incident) = £/c.

For reflected light at normal incidence, Ap = twice the incident momentum = 2(£/c)

AP =2(gle)At, but, T=—— & soP=21Jc.
Area-time

At an angle 0 with respect to the normal, only the component of momentum normal to the surface

changes, so p (normal) = pcosé, so, P(6)=2Icos8/c.
339 E=P-t=300w)100s)=3x10*J,p=E/c=10"" kgm/s.

340 (a) <P =2(5) /c> =2(1.4%x10° W/m?>)/(3x 10° m/s) =9 x 10 N/m>.
(b) S, and therefore P, drops off with the inverse square of the distance, and hence
(8)=[(0.7x10" m)?/(1.5x 10" m)?] (1.4x10° W/m*) =6.4x10" W/m’, and (P)=0.21 N/m’.
3.41 [ (absorded) = of and I (scattered) = (1 — &) I; the pressure arises from both contributions, viz.
P=callc+2(1-a)llc=Q2- a)lc.

3.42 The reflected component has a momentum change, and thus a pressure, of twice the incident
momentum, while the absorbed component has a momentum change of the incident momentum.

P (reflected) = 2(70.0%)I /c = 2(0.700)(2.00 x 10° W/m?)/(3 x 10* m/s)
=.93x107 N/m>.
P (absorbed) = (30.0%)1 /c = (0.300)(2.00 X 10° W/m*)/(3x 10* m/s)
=.20x 107 N/m*.
P = P (reflected) + P (absorbed) =1.13x 107> N/m>.

343 (5)=1400 W/m*, (P)=2(1400 W/m*/3x 10" m/s) =9.3x 10" N/m®.
F=(P)A=(9.3x10°N/m*)(2x10°m*) = 1.86 X107 N

344 (S)=(200%10" W)(500% 2 x10s)/A(L5),

(F)=A(P)=A(S)/c=6.7x10"N.

345 (F)=A(P)=A(S)/c=10 W/3x10° =3.3x10°N,

a=33x10"/100 kg =3.3x 107" m/s’,
v=at=3.3%x10""¢ =10 m/s. Therefore t =3x10"s or t =940 years.

3.46 B surrounds ¥ in circles, and E is radial, hence Ex B is tangent to the sphere, and no energy radiates
outward from it.

347 (a) v=5x10"Hz
(b) A=v/v=0.65¢/v=3.9 x 10" m =390 nm
(c)n=c/v=1538

348 c/v=2.42;0=1.24x10® m/s.

349 A, =540nm; n=vA/vA; A,/n=A =406 nm.
350 n=c/v=1/090=1.11=1.1.

351 n=c/v=03x10* m/s)/(1.245x10°* m/s) =2.410

3.52  I=uvt=(c/n)t=3.00x10° m/s)(1.00)/1.333 =2.25x10° m.
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A =A4,/n=(500 nm)/1.60 =312.5 nm;
(1.00x 107 m)/(312.5x 10~ m) =3.2x10* waves.

t, =(20.0 m)/(c/1.47) and t, = (20.0 m)/(c/1.63), hencet, —t, =3.2/c =1.07x 107" s.

The number of waves is vacuum is E//lo. With the glass in place, there are (E —L)/A, waves in
vacuum and an additional L/A waves in glass for a total of (E/ﬂo) + L(1/A—1/4,). The difference
in number is L(1/4—1/4,), giving a phase shift of A¢ of 27 for each wave; hence,

27L(A/A=1/4) =27 L(n/A, —1/A,) =27 L[2A, = 20007.

Thermal agitation of the molecular dipoles causes a marked reduction in K, but has little effect on n. At
optical frequencies n is predominantly due to electronic polarization, rotations of the molecular dipoles
having ceased to be effective at much lower frequencies.

From Eq. (3.70), for a single resonant frequency we have

Ng; 1 -
n= 1+_Cle > > ;
Em, \ Wy —@

since for low-density materials n &~ 1, the second term is < 1, and we need only retain the first two

terms of the binomial expansion of n. Thus 1+ x =1+ x/2 and n =1+ Nq’/[2€,m (@, —®")].

(a) The polar molecule, water, in the liquid state, is relatively free to move in response to the incident
radiation. In the solid state, the molecules are not free to move. (b) The radar (microwave) interacts
strongly with the liquid water in the droplets.

The normal order of the spectrum for a glass prism is R, O, Y, G, B, V, with red (R) deviated the least
and violet (V) deviated the most. For a fuchsin prism, there is an absorption band in the green, and so
the indices for yellow and blue on either side (n, and n,, ) of it are extremes, that is, n, is the maximum,
n, the minimum, and n, >n, >n, >n, >n,. Thus the spectrum in order of increasing deviation is

B, V, black band, R, O, Y.

1/2

Since (Ng_/g,m,)"* has dimensions of frequency, the right-hand side is dimensionless and the units

check.

With @ in the visible, @] — @’ is smaller for lead glass and larger for fused silica. Hence n(w) is larger
for the former and smaller for the latter.

Subtract 1 from each side of Eq. (3.70) and then invert both sides: 1/(n* —1) = (g,m, /Ng. )@} — @*);
since @ = 27c/A the desired result follows.

C, is the value that n approaches as A gets larger.
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3.64 The horizontal values of n (@) approached in each region between absorption bands increase as @
decreases.

n, =154 A =400nm
n, =1.50 4, =800nm
1.54=n=C,+C, /A’
1.50=n, =C,+C,/4;
An=04=C, [72—%]
1
C,=AnZl 25 (A5 =47
C, =8.53x10°nm’
C, =n—-C,/A} =145
3.65 Subtracting the two equations 1.557 =n, =C, +C, /A’ and
1.547=n, =C, +C,/A; gives An=0.01 =n,—n, =C,(1/A* =1/A)) so

that C, = AnAl A} /(A —A})=3.78x10°nm’. Then
C,=n—C,/A? =1.5345and n (610 nm) =C, +C,/A; =1.545.

3.66 Binomially expanding n” =1+ A/(1-A; /A*) gives n° =1+ A(1+ 4 / A%)
or n* =(1+A)[1+ A4 /(1+ A)A*]. Taking the square root and expanding
again gives n = (1+A)"*[1+ A4; /2(1+ A)A*]. This has the Cauchy
form with C, =(1+A)"? and C, = A4} /2(1+ A)"".

3.67 v= % =2.66x10"Hz



