
Chapter 2

Discrete-Time Models, Sequences,
and Difference Equations

2.1 Exponential Growth and Decay

� 2.1.1
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88 Discrete-Time Models, Sequences, and Difference Equations

3.
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4.
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5. Since the population doubles every 20 minutes, and 20 minutes is the unit of time, the formula is
Nt = N0 · 2t. Since there are initially N0 = 2 individuals, we get Nt = 2 · 2t = 2t+1.

6. Since the population doubles every 40 minutes, and 40 minutes is the unit of time, the formula is
Nt = N0 · 2t. Since there are initially N0 = 4 individuals, we get Nt = 4 · 2t = 2t+2.

7. Since the population doubles every 40 minutes, but 80 minutes is the unit of time, the population
will quadruple in one time unit, so that the formula is Nt = N0 · 4t. Since there is initially N0 = 1
individual, we get Nt = 4t.

8. At t = 0 the population is 20 · 40 = 20; we want to determine t so that 20 · 4t = 2 · 20, so that we
want 4t = 2. Thus t = 1

2 , so the population doubles after 1
2 time units, or 1.5 hours.

9. At t = 0 the population is 100 · 2t = 100; we want to determine t so that 100 · 2t = 3 · 100, so that
we want 2t = 3. Thus t = ln 3

ln 2 ≈ 1.585, so the population triples after about 1.585 time units, or
1.585 · 2 ≈ 3.17 hours, or about 190 minutes.

10. The initial population is 10, and the population triples in size every time unit, so the formula is
Nt = 10 · 3t.

11. Since each cell splits in two each hour, the population doubles each hour. Since there was one cell
at time t = 0, the formula is Nt = 2t:

t 0 1 2 3 4 5

2t 1 2 4 8 16 32
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2.1 Exponential Growth and Decay 89

12. Since each cell splits in two every 30 minutes, the population doubles every 30 minutes. Letting the
time unit be 30 minutes, since there was one cell at time t = 0, the formula is Nt = 2t. We want
to know the population after 1, 2, 3, 4, and 5 hours; these corresponds to t = 2, 4, 6, 8, 10:

t 0 2 4 6 8 10

2t 1 4 16 64 256 1024

One could alternatively take the time unit as one hour, in which case the formula would be Nt = 4t.

13. Let the unit of time be 42 minutes; then since the doubling time is one unit, starting from one
bacterium the formula is Nt = 2t. Then Nt = 1024 when 2t = 1024, so when t = 10. Since one
time unit represents 42 minutes, this is 420 minutes = 7 hrs.

14. Let the unit of time be 24 minutes; then since the doubling time is one unit, starting from one
bacterium the formula is Nt = 2t. Then Nt = 512 when 2t = 512, so when t = 9. Since one time
unit represents 24 minutes, this is 24 · 9 = 216 minutes = 3 hrs 36 min.

15. Let the unit of time be 10 minutes; then since the doubling time is one unit, starting from 5 bacteria
the formula is Nt = 5 · 2t. Then Nt = 320 when 5 · 2t = 320, or 2t = 64, so when t = 6. Since one
time unit represents 10 minutes, this is 60 minutes = 1 hr.

16. Let the unit of time be 12 minutes; then since the doubling time is one unit, starting from 10
bacteria the formula is Nt = 10 · 2t. Then Nt = 160 when 10 · 2t = 160, or 2t = 16, so when t = 4.
Since one time unit represents 12 minutes, this is 48 minutes.

17. Since the population doubles every unit of time, the equation is Nt = N0 · 2t; since initially there
are 40 individuals, we have N0 = 40 so that Nt = 40 · 2t.

18. Since the population halves in size every unit of time, the equation is Nt = N0 ·
(

1
2

)t
; since initially

there are 1024 individuals, we have N0 = 1024 so that Nt = 1024 ·
(

1
2

)t
= 210 · 2−t = 210−t. Of

course, this is valid only up to t = 10, since after that we are counting fractional individuals.

19. The reproductive rate is 4, so we have

4 =
Ni+1

Ni
− 1 ⇒ 5 =

Ni+1

Ni
⇒ Ni+1 = 5Ni.

Therefore the population quintuples every unit of time, so the equation is Nt = N0 ·5t; since initially
there are 20 individuals, the equation is Nt = 20 · 5t.

20. Since the population triples every unit of time, the equation is Nt = N0 · 3t; since initially there are
72 individuals, we have N0 = 72 so that Nt = 72 · 3t.

21. Since the population quadruples every unit of time, the equation is Nt = N0 ·4t; since initially there
are 5 individuals, we have N0 = 5 so that Nt = 5 · 4t.

22. Since the population grows by 50%, or 3
2 , every unit of time, the equation is Nt = N0 ·

(
3
2

)t
; since

initially there are 32 individuals, we have N0 = 32 so that Nt = 32 ·
(

3
2

)t
= 25 · 3t · 2−t = 3t · 25−t.
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90 Discrete-Time Models, Sequences, and Difference Equations

� 2.1.2

23. Since the population doubles every unit of time, the recursion is Nt+1 = 2Nt. (The corresponding
equation is Nt = N0 ·2t; since initially there are 11 individuals, we have N0 = 11 so that Nt = 11·2t.)

24. Since the population triples every unit of time, the recursion is Nt+1 = 3Nt. (The corresponding
equation is Nt = N0 · 3t; since initially there are 6 individuals, we have N0 = 6 so that Nt = 6 · 3t.)

25. Since the population quadruples every unit of time, the recursion isNt+1 = 4Nt. (The corresponding
equation is Nt = N0 ·4t; since initially there are 30 individuals, we have N0 = 30 so that Nt = 30·4t.)

26. The reproductive rate is 1
3 , so we have

1

3
=
Ni+1

Ni
− 1 ⇒ 4

3
=
Ni+1

Ni
⇒ Ni+1 =

4

3
Ni.

The recursion is Nt+1 = 4
3Nt. (The corresponding equation is Nt = N0 ·

(
4
3

)t
; since initially there

are 63 individuals, the equation is Nt = 63 ·
(

4
3

)t
.)

� 2.1.3

27. The curve is plotted below with the points superimposed on it:
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28. The curve is plotted below with the points superimposed on it:
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29. The curve is plotted below with the points superimposed on it:
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2.1 Exponential Growth and Decay 91

30. The curve is plotted below with the points superimposed on it:

1 2 3 4 5 6

0.25

0.5

0.75

1.

31. Nt+1 = 2Nt with N0 = 3, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 3 6 12 24 48 96

In general, Nt = 2tN0; since N0 = 3 we get Nt = 3 · 2t.

32. Nt+1 = 2Nt with N0 = 5, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 5 10 20 40 80 160

In general, Nt = 2tN0; since N0 = 5 we get Nt = 5 · 2t.

33. Nt+1 = 3Nt with N0 = 2, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 2 6 18 54 162 486

In general, Nt = 3tN0; since N0 = 2 we get Nt = 2 · 3t.

34. Nt+1 = 3Nt with N0 = 7, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 7 21 63 189 567 1701

In general, Nt = 3tN0; since N0 = 7 we get Nt = 7 · 3t.

35. Nt+1 = 5Nt with N0 = 1, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 1 5 25 125 625 3125

In general, Nt = 5tN0; since N0 = 1 we get Nt = 1 · 5t = 5t.

36. Nt+1 = 7Nt with N0 = 4, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 4 28 196 1372 9604 67228

In general, Nt = 7tN0; since N0 = 4 we get Nt = 4 · 7t.
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92 Discrete-Time Models, Sequences, and Difference Equations

37. Nt+1 = 1
2Nt with N0 = 640, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
Nt 640 320 160 80 40 20

In general, Nt =
(

1
2

)t
N0; since N0 = 640 we get Nt = 640 ·

(
1
2

)t
.

38. Nt+1 = 3
2Nt with N0 = 32, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
Nt 32 48 72 108 162 243

In general, Nt =
(

3
2

)t
N0; since N0 = 32 we get Nt = 32 ·

(
3
2

)t
.

39. Nt+1 = 1
3Nt with N0 = 1215, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
Nt 1215 405 135 45 15 5

In general, Nt =
(

1
3

)t
N0; since N0 = 1215 we get Nt = 1215 ·

(
1
3

)t
.

40. Nt+1 = 1
3Nt with N0 = 2430, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
Nt 2430 810 270 90 30 10

In general, Nt =
(

1
3

)t
N0; since N0 = 2430 we get Nt = 2430 ·

(
1
3

)t
.

41. Nt+1 = 1
5Nt with N0 = 31250, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 31250 6250 1250 250 50 10

In general, Nt =
(

1
5

)t
N0; since N0 = 31250 we get Nt = 31250 ·

(
1
5

)t
.

42. Nt+1 = 1
4Nt with N0 = 8192, for t = 0, 1, 2, 3, 4, 5.

t 0 1 2 3 4 5
N(t) 8192 2048 512 218 32 8

In general, Nt =
(

1
4

)t
N0; since N0 = 8192 we get Nt = 8192 ·

(
1
4

)t
=
(

1
2

)2t−13
.

43. Since Nt+1 = RNt = 2Nt and N0 = 2, the formula is Nt = 2 · 2t = 2t+1. A graph of Nt+1 = 2Nt in
the Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

2 4 6 8
Nt

4

8

12

16

Nt+1
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2.1 Exponential Growth and Decay 93

44. Since Nt+1 = RNt = 2Nt and N0 = 3, the formula is Nt = 3 · 2t. A graph of Nt+1 = 2Nt in the
Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

3 6 9 12
Nt

6

12

18

24

Nt+1

45. Since Nt+1 = RNt = 3Nt and N0 = 1, the formula is Nt = 3t. A graph of Nt+1 = 3Nt in the
Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

1 3 6 9
Nt

3

9

18

27

Nt+1

46. Since Nt+1 = RNt = 4Nt and N0 = 2, the formula is Nt = 2 · 4t. A graph of Nt+1 = 4Nt in the
Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

2 8 16 32
Nt

32
48
64

96

128

Nt+1

47. Since Nt+1 = RNt = 1
2Nt and N0 = 16, the formula is Nt = 16 ·

(
1
2

)t
. A graph of Nt+1 = 1

2Nt in
the Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

4 8 12 16
Nt

2

4

6

8

Nt+1
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48. Since Nt+1 = RNt = 1
2Nt and N0 = 64, the formula is Nt = 64 ·

(
1
2

)t
. A graph of Nt+1 = 1

2Nt in
the Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

16 32 48 64
Nt

8

16

24

32

Nt+1

49. Since Nt+1 = RNt = 1
3Nt and N0 = 81, the formula is Nt = 81 ·

(
1
3

)t
. A graph of Nt+1 = 1

3Nt in
the Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

9 27 45 63 81
Nt

3

9

18

27

Nt+1

50. Since Nt+1 = RNt = 1
4Nt and N0 = 16, the formula is Nt = 16 ·

(
1
4

)t
. A graph of Nt+1 = 1

4Nt in
the Nt-Nt+1 plane, with the points (Nt, Nt+1) superimposed on it for t = 0, 1, 2, is below:

1 2 4 8 16
Nt

1

2

4

Nt+1

51. Since Nt+1 = RNt = 2Nt and N0 = 2, the formula is Nt = 2 ·2t. A graph of Nt+1

Nt
−1 = R−1 = 1 in

the Nt-
Nt+1

Nt
−1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below. The reproductive

rate is the number of organisms added per parent from time t to time t + 1, which is Nt+1

Nt
− 1 =

R− 1 = 1.

2 4 6 8
Nt

0.5
1.

Nt+1

Nt

- 1
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52. Since Nt+1 = RNt = 2Nt and N0 = 4, the formula is Nt = 4 ·2t. A graph of Nt+1

Nt
−1 = R−1 = 1 in

the Nt-
Nt+1

Nt
−1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below. The reproductive

rate is the number of organisms added per parent from time t to time t + 1, which is Nt+1

Nt
− 1 =

R− 1 = 1.

2 4 6 8
Nt

0.5
1.

Nt+1

Nt

- 1

53. Since Nt+1 = RNt = 3Nt and N0 = 2, the formula is Nt = 2 ·3t. A graph of Nt+1

Nt
−1 = R−1 = 2 in

the Nt-
Nt+1

Nt
−1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below. The reproductive

rate is the number of organisms added per parent from time t to time t + 1, which is Nt+1

Nt
− 1 =

R− 1 = 2.

2 4 6 8
Nt

2
3

Nt+1

Nt

- 1

54. Since Nt+1 = RNt = 4Nt and N0 = 1, the formula is Nt = 4t. A graph of Nt+1

Nt
−1 = R−1 = 3 in the

Nt-
Nt+1

Nt
−1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below. The reproductive rate

is the number of organisms added per parent from time t to time t+1, which is Nt+1

Nt
−1 = R−1 = 3.

2 4 6 8
Nt

2
3
4

Nt+1

Nt

- 1

55. Since Nt+1 = RNt = 1
2Nt and N0 = 16, the formula is Nt = 16 ·

(
1
2

)t
. A graph of Nt+1

Nt
− 1 =

R − 1 = − 1
2 in the Nt-

Nt+1

Nt
− 1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below.

The reproductive rate is the number of organisms added per parent from time t to time t+1, which
is Nt+1

Nt
− 1 = R− 1 = − 1

2 .

10. 20. 30. 40. 50.
Nt

-1.

Nt+1

Nt

- 1

56. Since Nt+1 = RNt = 1
2Nt and N0 = 128, the formula is Nt = 128 ·

(
1
2

)t
. A graph of Nt+1

Nt
− 1 =

R − 1 = − 1
2 in the Nt-

Nt+1

Nt
− 1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below.
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The reproductive rate is the number of organisms added per parent from time t to time t+1, which
is Nt+1

Nt
− 1 = R− 1 = − 1

2 .

100. 200. 300.
Nt

-1.

Nt+1

Nt

- 1

57. Since Nt+1 = RNt = 1
3Nt and N0 = 27, the formula is Nt = 27 ·

(
1
3

)t
. A graph of Nt+1

Nt
− 1 =

R − 1 = − 2
3 in the Nt-

Nt+1

Nt
− 1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below.

The reproductive rate is the number of organisms added per parent from time t to time t+1, which
is Nt+1

Nt
− 1 = R− 1 = − 2

3 .

25. 50. 75. 100.
Nt

-1.

Nt+1

Nt

- 1

58. Since Nt+1 = RNt = 1
4Nt and N0 = 64, the formula is Nt = 64 ·

(
1
4

)t
. A graph of Nt+1

Nt
− 1 =

R − 1 = − 3
4 in the Nt-

Nt+1

Nt
− 1 plane, with the point

(
N0,

N1

N0
− 1
)

superimposed on it, is below.

The reproductive rate is the number of organisms added per parent from time t to time t+1, which
is Nt+1

Nt
− 1 = R− 1 = − 3

4 .

50. 100. 150. 200.
Nt

-1.

Nt+1

Nt

- 1

For exercises 59—61, which refer to Figure 2.9, note that the first graph in Figure 2.9 describes a popu-
lation with a constant reproductive rate, so it represents exponential growth. In the second population,
the reproductive rate decreases towards zero, so that Nt+1

Nt
− 1 decreases to zero. This means that Nt+1

Nt
decreases towards 1, so that the population eventually becomes constant (at the carrying capacity). In

the third graph, Nt+1

Nt
−1 increases to some constant, so that Nt+1

Nt
does as well. This reflects a population

that eventually grows exponentially since the reproductive rate is eventually essentially constant.

59. (a) The population will grow quickly at first (high reproductive rate), but as it grows, there will be
less sugar for each individual, so the growth rate will slow and eventually stop; the population
will stabilize. This is the second graph.

(b) As the habitat is large, the population will grow exponentially (in the absence of predators),
at least until some environmental constraints are encountered. This is the first graph.

(c) In this situation, the reproductive rate is higher with increased population; this is the third
graph.

60. (a) This population will exhibit exponential growth since (at least in the short term) there are no
environmental constraints. This is the first graph.

Copyright © 2018 Pearson Education, Inc.



2.2 Sequences 97

(b) While there are a small number of lions so that prey is plentiful, the growth rate will be high.
As the population increases, however, the amount of prey available per individual decreases,
so the population levels off at the carrying capacity. This is the second graph.

(c) As the colony outcompetes other colonies, the resources available to it expand and it can
continue to grow. This is the third graph.

61. (a) As the population of cells gets larger, they can acquire additional resources through metastasis,
so can continue to grow. This is the third graph.

(b) The number of sick individuals first expands rapidly as there is a large pool of uninfected
individuals. As those resources (well individuals) become scarce, the growth rate slows down
and eventually stops. This is graph 2.

(c) There are no obvious growth constraints in the short term, so the population grows exponen-
tially. This is the first graph.

62. (a) The recursion is Nt+1 = 3
2Nt, since the population grows by 50% each year. Thus the formula

is Nt = N1

(
3
2

)t−1
(note that we use t − 1 rather than t since at time 1 we want to have N1

individuals). Further, N1 = 16. so the formula is Nt = 16
(

3
2

)t−1
.

(b) The population size is 100 when 100 = 16
(

3
2

)t−1
, so that

(
3
2

)t−1
= 25

4 . This gives

(t− 1) ln
3

2
= ln

25

4
⇒ t− 1 =

ln 25− ln 4

ln 3− ln 2
⇒ t = 1 +

ln 25− ln 4

ln 3− ln 2
≈ 5.52 years.

(c) The population size is 1000 when 1000 = 16
(

3
2

)t−1
, so that

(
3
2

)t−1
= 125

2 . This gives

(t− 1) ln
3

2
= ln

125

2
⇒ t− 1 =

ln 125− ln 2

ln 3− ln 2
⇒ t = 1 +

ln 125− ln 2

ln 3− ln 2
≈ 11.2 years.

(d) According to the model, the population size is 1 000 000 when 1 000 000 = 16
(

3
2

)t−1
, so that(

3
2

)t−1
= 62 500. This gives

(t− 1) ln
3

2
= ln 62 500 ⇒ t− 1 =

ln 62 500

ln 3− ln 2
⇒ t = 1 +

ln 62 500

ln 3− ln 2
≈ 28.2 years.

The model is unlikely to be valid for such a large population unless the island is very large or
the birds require little space (and food).

2.2 Sequences

� 2.2.1

1. With an = n+ 1, we get

n 0 1 2 3 4 5
an 1 2 3 4 5 6

2. With an = 3n2, we get

n 0 1 2 3 4 5
an 0 3 12 27 48 75
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3. With an = n+2
n , we get

n 0 1 2 3 4 5
an undefined 3 2 5

3
3
2

7
5

4. With an = n
n+2 , we get

n 0 1 2 3 4 5
an 0 1

3
1
2

3
5

2
3

5
7

5. WIth f(n) = 1
(1+n)2 , we have

u 0 1 2 3 4 5
f(n) 1 1

4
1
9

1
16

1
25

1
36

6. With an = 1√
n+1

, we get

n 0 1 2 3 4 5
f(n) 1 1√

2
1√
3

1
2

1√
5

1√
6

7. With f(n) = (n+ 1)2, we have

n 0 1 2 3 4 5
f(n) 1 4 9 16 25 36

8. With f(n) = (n+ 4)1/3, we get

n 0 1 2 3 4 5
f(n) 41/3 51/3 61/3 71/3 2 91/3

9. With an = (−1)n+(−1)n+1, note that if k is even then (−1)k = 1, while if k is odd then (−1)k = −1.
Since exactly one of n and n + 1 is even and the other is odd, the sum is zero, so that an = 0 for
all n.

10. With an = (−1)n + 1, note that if n is even then (−1)n = 1, while if n is odd then (−1)n = −1. It
follows that an = 1 + 1 = 2 if n is even and an = −1 + 1 = 0 if n is odd:

n 0 1 2 3 4 5
an 2 0 2 0 2 0

11. With an = n2

n+1 , we get

n 0 1 2 3 4 5
an 0 1

2
4
3

9
4

16
5

25
6

12. With an = n3
√
n+ 1, we get

n 0 1 2 3 4 5

an 0
√

2 8
√

3 54 64
√

5 125
√

6

13. With f(n) = en/2, we get
n 0 1 2 3 4 5

f(n) 1
√
e e e3/2 e2 e5/2
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14. With f(n) = log(n+ 1), we get

n 0 1 2 3 4 5
f(n) 0 log 2 log 3 log 4 log 5 log 6

15. With f(n) =
(

1
3

)n
, we have

n 0 1 2 3 4 5
f(n) 1 1

3
1
9

1
27

1
81

1
243

16. With f(n) = 20.2n, we get

n 0 1 2 3 4 5
f(n) 1 20.2 20.4 20.6 20.8 2

17. This appears to be the sequence of squares of integers, an = (n + 1)2 for n = 0, 1, 2, . . .. Then
a5 = 36, a6 = 49, a7 = 64, and a8 = 81.

18. This appears to be the sequence an =
√
n, for n = 0, 1, 2, 3, 4. Thus for n = 5, 6, 7, 8 we have

an =
√

5,
√

6,
√

7,
√

8.

19. This appears to be the sequence an = 1
n+1 for n = 0, 1, 2, . . .. Then a5 = 1

6 , a6 = 1
7 , a7 = 1

8 , a8 = 1
9 .

20. This appears to be the sequence an = (−1)n+1

(n+1)2 , for n = 0, 1, 2, 3, 4. Thus for n = 5, 6, 7, 8 we have

an = 1
36 ,−

1
49 ,

1
64 ,−

1
81 .

21. This appears to be the sequence an = n+1
n+2 , for n = 0, 1, 2, 3, 4. Thus for n = 5, 6, 7, 8 we have

an = 6
7 ,

7
8 ,

8
9 ,

9
10 .

22. Note that each term is one more than a square. This appears to be the sequence an = (n+2)2 +1 =
n2 + 4n+ 5. Thus for n = 5, 6, 7, 8 we would get 50, 65, 82, and 101.

23. This appears to be the sequence an =
√

(n+ 1) + en+1, for n = 0, 1, 2, 3, 4. Thus for n = 5, 6, 7, 8

we have an =
√

6 + e6,
√

7 + e7,
√

8 + e8,
√

9 + e9.

24. This appears to be successive powers of 3: an = 3n for n = 0, 1, 2, . . .. Then a5 = 243, a6 = 729,
a7 = 2187, and a8 = 6561.

25. The given sequence is a0 = 0, a1 = 1, a2 = 2, a3 = 3 and a4 = 4. Thus we can guess the expression
to be an = n for n = 0, 1, 2, . . .

26. The given sequence is a0 = 0, a1 = 2, a2 = 4, a3 = 6 and a4 = 8. Thus we can guess the expression
to be an = 2n for n = 0, 1, 2, . . .

27. The given sequence is a0 = 1, a1 = 2, a2 = 4, a3 = 8 and a4 = 16. Thus we can guess the
expression to be an = 2n for n = 0, 1, 2, . . .

28. The given sequence is a0 = 1, a1 = 3, a2 = 5, a3 = 7 and a4 = 9. Thus we can guess the expression
to be an = 2n+ 1 for n = 0, 1, 2, . . ..

29. The given sequence is a0 = 1, a1 = 1
3 , a2 = 1

9 , a3 = 1
27 and a4 = 1

81 . Thus we can guess the
expression to be an = 1

3n for n = 0, 1, 2, . . ..

30. The given sequence is a0 = 1
3 , a1 = 2

5 , a2 = 3
7 , a3 = 4

9 and a4 = 5
11 . Thus we can guess the

expression to be an = n+1
2n+3 for n = 0, 1, 2, . . ..
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31. The given sequence is a0 = −1, a1 = 2, a2 = −3, a3 = 4 and a4 = −5. Thus we can guess the
expression to be an = (−1)n+1(n+ 1) for n = 0, 1, 2, . . ..

32. The given sequence is a0 = 9, a1 = 16, a2 = 25, a3 = 36, and a4 = 49. We can guess the expression
to be an = (n+ 3)2 for n = 0, 1, 2, . . ..

33. The given sequence is a0 = 5, a1 = 7, a2 = 9, a3 = 11, and a4 = 13. We can guess the expression
to be an = 2n+ 5 for n = 0, 1, 2, . . ..

34. The given sequence is a0 = 8, a1 = 18, a2 = 32, a3 = 50, and a4 = 72. Note that 1
2an = (n + 2)2

for the given values of n, so we guess the sequence to be an = 2(n+ 2)2 for n = 0, 1, 2, . . ..

35. The given sequence is a0 = 2, a1 = 0, a2 = 2, a3 = 0, and a4 = 2. Recalling exercise 10 in this
section, we can write this as an = (−1)n + 1.

36. The given sequence is repetitions of the sequence 0, 1, 2. One way of defining an is that it is the
remainder upon dividing n by 3.

� 2.2.2

37. We get the following sequence for an+1 =
√
an + 1 and a0 = 1:

n 0 1 2 3 4 5 6 7 8 9 10 11
an 1 1.414 1.554 1.598 1.612 1.616 1.617 1.618 1.618 1.618 1.618 1.618

38. We get the following sequence for an+1 = 1
an+1 and a0 = 2:

n 0 1 2 3 4 5 6 7 8 9 10
an 2 0.3333 0.75 0.5714 0.6364 0.6111 0.6207 0.6170 0.6184 0.6179 0.6181

n 11 12 13
an 0.6180 0.6180 0.6180

39. We get the following sequence for an+1 = an − 1
an

and a0 = 3:

n 0 1 2 3 4 5 6 7 8
an 3 2.667 2.292 1.855 1.316 0.557 −1.240 −0.434 1.873

n 9 10 11
an 1.339 0.592 −1.095

40. We get the following sequence for an+1 = an + 1
an

and a0 = 2:

n 0 1 2 3 4 5 6 7 8 9 10
an 1 2 2.5 2.9 3.245 3.553 3.834 4.095 4.339 4.570 4.789

n 11 12 13
an 4.998 5.198 5.390

41. We get the following sequence for an+1 =
√√

an + 1 and a0 = 6:

n 0 1 2 3 4 5 6 7 8 9 10
an 6.000 1.857 1.537 1.497 1.491 1.490 1.490 1.490 1.490 1.490 1.490

n 11 12
an 1.490 1.490
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42. We get the following sequence for an+1 = an + 1
a2n

and a0 = 1:

n 0 1 2 3 4 5 6 7 8 9 10
an 1 2 2.25 2.448 2.614 2.761 2.892 3.012 3.122 3.224 3.321

n 11 12
an 3.411 3.497

43. We get the following sequence for an+1 = 1
4an + 1 and a0 = 0:

n 0 1 2 3 4 5 6 7 8 9 10
an 0 1 1.25 1.313 1.328 1.332 1.333 1.333 1.333 1.333 1.333

n 11 12 13 14
an 1.333 1.333 1.333 1.333

44. We get the following sequence for an+1 =
√
a2
n + 1 and a0 = 1:

n 0 1 2 3 4 5 6 7 8 9 10
an 1 1.414 1.732 2 2.236 2.449 2.646 2.828 3.000 3.162 3.317

n 11 12 13 14 15 16
an 3.464 3.606 3.742 3.873 4 4.123

� 2.2.3

45. We get a0 = 1, a1 = 1
2 , a2 = 1

3 , a3 = 1
4 , a4 = 1

5 , and a5 = 1
6 . By limit law 9, since limn→∞ 1 = 1 is

finite and limn→∞(n+ 1) =∞, we know that

lim
n→∞

1

n+ 1
= 0.

46. We get a0 = 1, a1 = 3
4 , a2 = 3

5 , a3 = 1
2 , a4 = 3

7 , and a5 = 3
8 . By limit law 9, since limn→∞ 3 = 3 is

finite and limn→∞(n+ 3) =∞, we know that

lim
n→∞

3

n+ 3
= 0.

47. We get a0 = 0, a1 = 1
2 , a2 = 2

3 , a3 = 3
4 , a4 = 4

5 , and a5 = 5
6 . The text showed that limn→∞

n+1
n = 1,

so by limit law 4,

lim
n→∞

n

n+ 1
= lim
n→∞

1
n+1
n

=
limn→∞ 1

limn→∞
n+1
n

=
1

1
= 1.

48. We get a0 = 0, a1 = 2
9 , a2 = 1

4 , a3 = 6
25 , a4 = 2

9 , and a5 = 10
49 . Now,

lim
n→∞

(n+ 2)2

2n
= lim
n→∞

n2 + 4n+ 4

2n
= lim
n→∞

n

2
+ lim
n→∞

2 + lim
n→∞

2

n
=∞.

To see the final equality, note that limn→∞ 2 = 2 and by limit law 9, limn→∞
2
n = 0. Since both

these limits exist and are finite, limit law 5 then implies the result. Finally, by limit law 9,

lim
n→∞

2n

(n+ 2)2
= lim
n→∞

1
(n+2)2

2n

= 0.
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49. We get a0 = 5, a1 = 3, a2 = 9
5 , a3 = 7

5 , a4 = 21
17 , and a5 = 15

13 . Now,

lim
n→∞

n2 + 5

n2 + 1
= lim
n→∞

n2 + 1 + 4

n2 + 1
= lim
n→∞

(
1 +

4

n2 + 1

)
.

By limit law 9, limn→∞
4

n2+1 = 0, so we can break up the limit above by limit law 1:

lim
n→∞

(
1 +

4

n2 + 1

)
= lim
n→∞

1 + lim
n→∞

4

n2 + 1
= 1 + 0 = 1.

50. We get a0 = 1, a1 = 1√
2
, a2 = 1√

3
, a3 = 1

2 , a4 = 1√
5
, and a5 = 1√

6
. Since limn→∞ 1 = 1 and

limn→∞
√
n+ 1 =∞, by limit law 9 we get

lim
n→∞

1√
n+ 1

= 0.

51. a0 is undefined, and a1 = −1, a2 = 1
2 , a3 = − 1

3 , a4 = 1
4 , and a5 = − 1

5 . Note that |an| = 1
n ,

and that by limit law 9, limn→∞ |an| = 0. Since the an have limit zero in absolute value, the an
themselves must also have limit zero.

52. We get a0 = 1
3 , a1 = − 1

4 , a2 = 1
11 , a3 = − 1

30 , a4 = 1
67 , and a5 = − 1

128 . Note that |an| = 1
n3+3 ,

and that by limit law 9, limn→∞ |an| = 0. Since the an have limit zero in absolute value, the an
themselves must also have limit zero.

53. We have a0 = 0, a1 = 1
2 , a2 = 4

3 , a3 = 9
4 , and a4 = 16

5 . Now,

lim
n→∞

n2

n+ 1
= lim
n→∞

n2 + 2n+ 1− 2n− 1

n+ 1
= lim
n→∞

(n+ 1)2 − 2n− 1

n+ 1
= lim
n→∞

(
n+ 1− 2n+ 1

n+ 1

)
.

By an argument similar to that given in the text for finding limn→∞
n+1
n we see that the latter

term has limit 2, while limn→∞(n+ 1) =∞, so the limit of the sequence is ∞.

54. We have a0 = 1
2 , a1 = 2

3 , a2 = 3
4 , a3 = 4

5 , and a4 = 5
6 . Now,

lim
n→∞

n+ 1

n+ 2
= lim
n→∞

(n+ 2)− 1

n+ 2
= lim
n→∞

(
1− 1

n+ 2

)
.

Applying laws 9 and 1 gives limn→∞

(
1− 1

n+2

)
= limn→∞ 1 = 1.

55. We have a0 = 0, a1 = 1, a2 =
√

2, a3 =
√

3, and a4 = 2. Since the terms grow without bound as
n→∞, we see that limn→∞

√
n =∞.

56. We have a0 = 3, a1 = 4, a2 = 7, a3 = 12, and a4 = 19. Since the terms grow without bound as
n→∞, we see that limn→∞(n2 + 3) =∞.

57. We have a0 = 1, a1 = 2, a2 = 4, a3 = 8, and a4 = 16. Since the terms grow without bound as
n→∞, we see that limn→∞ 2n =∞.

58. We have a0 = 8, a1 = 16, a2 = 32, a3 = 64, and a4 = 128. Since the terms grow without bound as
n→∞, we see that limn→∞ 2n+3 =∞.

59. We have a0 = 1, a1 = 3, a2 = 9, a3 = 27, and a4 = 81. Since the terms grow without bound as
n→∞, we see that limn→∞ 3n =∞.
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60. We have a0 = 1, a1 = 1
9 , a2 = 1

81 , a3 = 1
729 , and a4 = 1

6561 . Further,

lim
n→∞

3−2n = lim
n→∞

1

9n
;

since 9n grows without bound as n → ∞, it follows that limn→∞ 9n = ∞, so by limit law 9,
limn→∞ 3−2n = 0.

61. With an = 1
n , since n grows without bound as n → ∞, it follows that limn→∞ an = 0. Now, we

need to find an integer N such that
∣∣ 1
n − 0

∣∣ < ε = 0.01 whenever n > N . Solving the inequality∣∣ 1
n − 0

∣∣ < 0.01 for positive n, we get 1
n < 0.01 or n > 1

0.01 = 100. Thus the smallest value of N
that we can choose is N = 100. And indeed

a101 =
1

101
≈ 0.00990 < 0.01.

62. With an = 1
n , since n grows without bound as n → ∞, it follows that limn→∞ an = 0. Now, we

need to find an integer N such that
∣∣ 1
n − 0

∣∣ < ε = 0.02 whenever n > N . Solving the inequality∣∣ 1
n − 0

∣∣ < 0.02 for positive n, we get 1
n < 0.02 or n > 1

0.02 = 50. Thus the smallest value of N that
we can choose is N = 50. And indeed

a51 =
1

51
≈ 0.0196 < 0.02.

63. With an = 1
n2 , since n2 grows without bound as n → ∞, it follows that limn→∞ an = 0. Now, we

need to find an integer N such that
∣∣ 1
n2 − 0

∣∣ < ε = 0.01 whenever n > N . Solving the inequality∣∣ 1
n2 − 0

∣∣ < 0.01 we get 1
n2 < 0.01 or n2 > 1

0.01 = 100. This gives n > 10, so the smallest value of N
that we can choose is N = 10. And indeed

a11 =
1

121
≈ 0.008 < 0.01.

64. With an = 1
n2 , since n2 grows without bound as n → ∞, it follows that limn→∞ an = 0. Now, we

need to find an integer N such that
∣∣ 1
n2 − 0

∣∣ < ε = 0.001 whenever n > N . Solving the inequality∣∣ 1
n2 − 0

∣∣ < 0.001 we get 1
n2 < 0.001 or n2 > 1

0.001 = 1000. This gives n >
√

1000 ≈ 31.62, so the
smallest value of N that we can choose is N = 31. And indeed

a32 =
1

322
=

1

1024
≈ 0.0009766 < 0.001.

65. With an = 1√
n

, since
√
n grows without bound as n→∞, it follows that limn→∞ an = 0. Now, we

need to find an integer N such that
∣∣∣ 1√

n
− 0
∣∣∣ < ε = 0.1 whenever n > N . Solving the inequality∣∣∣ 1√

n
− 0
∣∣∣ < 0.1 we get 1√

n
< 0.1 or

√
n > 1

0.1 = 10. This gives n > 100, so the smallest value of N

that we can choose is N = 100. And indeed

a101 =
1√
101
≈ 0.0995 < 0.1.

66. With an = 1√
n

, since
√
n grows without bound as n→∞, it follows that limn→∞ an = 0. Now, we

need to find an integer N such that
∣∣∣ 1√

n
− 0
∣∣∣ < ε = 0.05 whenever n > N . Solving the inequality∣∣∣ 1√

n
− 0
∣∣∣ < 0.05 we get 1√

n
< 0.05 or

√
n > 1

0.05 = 20. This gives n > 400, so the smallest value of

N that we can choose is N = 400. And indeed

a401 =
1√
401
≈ 0.04994 < 0.05.
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67. With an = (−1)n

n , since n grows without bound as n → ∞, it follows that limn→∞ an = 0. Now,
we need to find an integer N such that∣∣∣∣ (−1)n

n
− 0

∣∣∣∣ =

∣∣∣∣ (−1)n

n

∣∣∣∣ =
1

n
< ε = 0.01 whenever n > N.

Solving the inequality 1
n < 0.01 we get n > 100, so the smallest value of N that we can choose is

N = 100. And indeed

|a101 − 0| =
∣∣∣∣ (−1)11

11

∣∣∣∣ ≈ 0.0099 < 0.01.

68. With an = e−n = 1
en , since en grows without bound as n → ∞, it follows that limn→∞ an = 0.

Thus we want to find an integer N such that |e−n − 0| = |e−n| < ε = 0.01 whenever n > N . Since
e−n is always positive, this is equivalent to saying that e−n < 0.01 for n > N . Taking natural logs
gives −n < ln 0.01 ≈ −4.61, so that n > 4.62. So taking N = 4 (that is, n ≥ 5) will suffice. And
indeed e−5 ≈ 0.0067 < 0.01.

69. With an = e−3n = 1
e3n , since e3n grows without bound as n → ∞, it follows that limn→∞ an = 0.

Thus we want to find an integer N such that
∣∣e−3n − 0

∣∣ =
∣∣e−3n

∣∣ < ε = 0.001 whenever n > N .
Since e−3n is always positive, this is equivalent to saying that e−3n < 0.001 for n > N . Taking
natural logs gives −3n < ln

∑
0.001 ≈ −6.91, so that n > 6.91

3 ≈ 2.30. So taking N = 2 (that is,
n ≥ 3) will suffice. And indeed e−3·3 ≈ 0.000 12 < 0.001.

70. We have an = ln
(
1 + 1

n

)
. Since limn→∞

(
1 + 1

n

)
= 1 by limit laws 9 and 1, it follows that

limn→∞ ln
(
1 + 1

n

)
= limn→∞ ln 1 = 0. Thus we want to find an integer N such that∣∣∣∣ln(1 +

1

n

)
− 0

∣∣∣∣ =

∣∣∣∣ln(1 +
1

n

)∣∣∣∣ < ε = 0.1 whenever n > N.

Since 1 + 1
n > 1 for n > 0, it follows that ln

(
1 + 1

n

)
> 0, so we can remove the absolute value signs

and solve ln
(
1 + 1

n

)
< 0.1. Exponentiate both sides, giving 1 + 1

n = e0.1, so that n = 1
e0.1−1 ≈ 9.51.

So taking N = 9 (that is, n ≥ 10) will suffice. And indeed ln
(
1 + 1

10

)
≈ 0.095 < 0.1.

71. With an = 2−n = 1
2n , since 2n grows without bound as n → ∞, it follows that limn→∞ an = 0.

Thus we want to find an integer N such that |2−n − 0| = |2−n| < ε = 0.01 whenever n > N . Since
2−n is always positive, this is equivalent to saying that 2−n < 0.01 for n > N . Taking natural logs
gives −n ln 2 < ln 0.01, so that n > ln 100

ln 2 ≈ 6.64. So taking N = 6 (that is, n ≥ 7) will suffice. And
indeed 2−7 ≈ 0.007 < 0.01.

72. We have an = log
(
1 + 2

n2

)
. Since limn→∞

(
1 + 2

n2

)
= 1 by limit laws 9 and 1, it follows that

limn→∞ log
(
1 + 2

n2

)
= limn→∞ log 1 = 0. Thus we want to find an integer N such that∣∣∣∣log

(
1 +

2

n2

)
− 0

∣∣∣∣ =

∣∣∣∣log

(
1 +

2

n2

)∣∣∣∣ < ε = 0.05 whenever n > N.

Since 1 + 2
n2 > 1 for n > 0, it follows that log

(
1 + 2

n2

)
> 0, so we can remove the absolute value

signs and solve log
(
1 + 2

n2

)
< 0.05. Exponentiate both sides, giving 1 + 2

n2 = 100.05, so that
n2

2 = 1
100.05−1 . Solving for n gives n ≈ 4.05. So taking N = 4 (that is, n ≥ 5) will suffice. And

indeed log
(
1 + 2

25

)
≈ 0.033 < 0.05.
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73. We must show that for every ε > 0 we can find N such that∣∣∣∣ 3n − 0

∣∣∣∣ =

∣∣∣∣ 3n
∣∣∣∣ < ε whenever n > N.

To find a candidate for N , we solve
∣∣ 3
n

∣∣ < ε for positive n. This gives 3
n < ε, or n > 3

ε . Thus N = 3
ε

gives the required inequality.

74. We must show that for every ε > 0 we can find N such that∣∣∣∣ 1

n+ 1
− 0

∣∣∣∣ =

∣∣∣∣ 1

n+ 1

∣∣∣∣ < ε whenever n > N.

To find a candidate for N , we solve
∣∣∣ 1
n+1

∣∣∣ < ε for positive n. This gives 1
n+1 < ε, or n+ 1 > 1

ε , so

that n > 1
ε − 1. Thus we may choose N = 1

ε , since this is clearly greater than 1
ε − 1. If n > N then∣∣∣ 1

n+1

∣∣∣ < 1
n <

1
N = ε.

75. We must show that for every ε > 0 we can find N such that∣∣∣∣ 1

n2
− 0

∣∣∣∣ =

∣∣∣∣ 1

n2

∣∣∣∣ < ε whenever n > N.

To find a candidate for N , we solve
∣∣ 1
n2

∣∣ = 1
n2 < ε for positive n. This gives n2 > 1

ε , or n > 1√
ε
.

Thus N = 1√
ε

gives the required inequality.

76. We must show that for every ε > 0 we can find N such that∣∣e−2n − 0
∣∣ =

∣∣e−2n
∣∣ < ε whenever n > N.

To find a candidate for N , we solve
∣∣e−2n

∣∣ < ε for n. Since e−2n > 0 for all n, we can drop
the absolute value signs, giving e−2n < ε. Now take natural logs, giving −2n < ln ε, so that
n > − ln ε

2 = 1
2 ln 1

ε . Thus N = 1
2 ln 1

ε gives the required inequality.

77. We must show that for every ε > 0 we can find N such that∣∣2−3n − 0
∣∣ =

∣∣2−3n
∣∣ < ε whenever n > N.

To find a candidate for N , we solve
∣∣2−3n

∣∣ < ε for n. Since 2−3n > 0 for all n, we can drop
the absolute value signs, giving 2−3n < ε. Now take natural logs, giving −3n ln 2 < ln ε, so that
n > − ln ε

3 ln 2 = 1
3 ln 2 ln 1

ε . Thus N = 1
3 ln 2 ln 1

ε gives the required inequality.

78. We must show that for every ε > 0 we can find N such that∣∣∣∣ n

n+ 1
− 1

∣∣∣∣ =

∣∣∣∣− 1

n+ 1

∣∣∣∣ < ε whenever n > N.

To find a candidate for N , we solve
∣∣∣− 1

n+1

∣∣∣ < ε for positive n. This gives 1
n+1 < ε, or n + 1 > 1

ε ,

so that n > 1
ε − 1. Thus we may choose N = 1

ε , since this is clearly greater than 1
ε − 1. If n > N

then
∣∣∣− 1

n+1

∣∣∣ < 1
n <

1
N = ε.
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79. Since limn→∞
1
n = 0 and limn→∞

2
n2 = 0 by limit law 9 (since limn→∞ n =∞ and limn→∞ n2 =∞),

limit law 1 implies that

lim
n→∞

(
1

n
+

2

n2

)
= lim
n→∞

1

n
+ lim
n→∞

2

n2
= 0 + 0 = 0.

80. Since limn→∞
2
n = 0 and limn→∞

3
n2+1 = 0 by limit law 9 (since limn→∞ n =∞ and limn→∞ n2 +

1 =∞), limit law 1 implies that

lim
n→∞

(
2

n
− 3

n2 + 1

)
= lim
n→∞

2

n
− lim
n→∞

3

n2 + 1
= 0− 0 = 0.

81. We can write n+1
n as 1 + 1/n. Since both limn→∞ 1 and limn→∞

1
n exist and are equal to 1 and 0

respectively, we have by limit law 1 that

lim
n→∞

n+ 1

n
= lim
n→∞

(
1 +

1

n

)
= lim
n→∞

1 + lim
n→∞

1

n
= 1 + 0 = 1.

82. We have
2n− 3√

n
= 2n1/2 − 3√

n
.

Since 2n1/2 increases without bound as n → ∞, we have limn→∞(2n1/2) = ∞. Also, since
√
n

increases without bound as n→∞, we have limn→∞
√
n =∞, so by limit law 9, limn→∞

3√
n

= 0.

Thus by limit law 5, the given limit is ∞.

83. We can write n2+1
n2 as 1 + 1

n2 . Since both limn→∞ 1 exists and is equal to 1, and by limit law 9
limn→∞

1
n2 exists and is equal to 0, we have by limit law 1 that

lim
n→∞

n2 + 1

n2
= lim
n→∞

(
1 + 1

n2

)
= lim
n→∞

1 + lim
n→∞

1

n2
= 1 + 0 = 1.

84. We have
3n2 − 5

n
=

3n2

n
− 5

n
= 3n− 5

n
.

Since 3n increases without bound as n → ∞, we have limn→∞ 3n = ∞. Also, since n increases
without bound as n → ∞, we have limn→∞ n = ∞, so by limit law 9, limn→∞

5
n = 0. Thus by

limit law 5, the given limit is

lim
n→∞

3n2 − 5

n
= lim
n→∞

(
3n− 5

n

)
=∞.

85. Factor the denominator of n+1
n2−1 , so that

n+ 1

n2 − 1
=

n+ 1

(n+ 1)(n− 1)
=

1

n− 1
.

(Note that this is valid only if n 6= −1, but since we are interested in the behavior as n → ∞, we
may certainly assume that n 6= −1.) By limit law 9, since n−1 increases without bound as n→∞,
we see that limn→∞

1
n−1 exists and is equal to 0. Thus by limit law 9

lim
n→∞

n+ 1

n2 − 1
= lim
n→∞

1

n− 1
= 0.
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86. We have
n2

n2 + 4
=

1
n2+4
n2

=
1

1 + 4
n2

.

Since n2 increases without bound as n → ∞, we have limn→∞ n2 = ∞, so by limit law 9,
limn→∞

4
n2 = 0, and then limit law 1 implies that limn→∞

(
1 + 4

n2

)
= 1. Since limn→∞ 1 = 1,

limit law 4 applies, giving

lim
n→∞

n2

n2 + 4
= lim
n→∞

1

1 + 4
n2

=
limn→∞ 1

limn→∞
(
1 + 4

n2

) =
1

1
= 1.

87. Note that
(

1
3

)n
= 1

3n , and that 3n increases without bound as n → ∞. Thus limn→∞ 3n = ∞, so

that limn→∞
(

1
3

)n
= 0 by limit law 9. Further, limn→∞ 2n =∞. Thus by limit law 5,

lim
n→∞

((
1

3

)n
+ 2n

)
=∞.

88. First, notice that the expression 3−n − 4−n can also be written as
(

1
3

)n − ( 1
4

)n
. By Example 12,

we know that both limn→∞
(

1
3

)n
and limn→∞

(
1
4

)n
exist and are equal to 0. Thus by limit law 1

we have

lim
n→∞

[(
1

3

)n
−
(

1

4

)n]
= lim
n→∞

(
1

3

)n
− lim
n→∞

(
1

4

)n
= 0− 0 = 0.

89. First, notice that the expression (n+ 2−n)/n can also be written as 1 +
(

1
2

)n · 1
n . Since the limits

limn→∞ 1, limn→∞
(

1
2

)n
and limn→∞

1
n exist and are equal to 1, 0 and 0 respectively, we have that

lim
n→∞

n+ 2−n

n
= lim
n→∞

[
1 +

(
1

2

)n
· 1

n

]
= lim
n→∞

1 + lim
n→∞

[(
1

2

)n
· 1

n

]
= lim
n→∞

1 + lim
n→∞

(
1

2

)n
· lim
n→∞

1

n

= 1 + 0 · 0 = 1.

90. Note that
1 + e−n

n
=

1

n
+

1

nen
.

Since limn→∞ n = limn→∞ en =∞, it follows from limit law 9 that limn→∞
1
n = limn→∞

1
nen = 0,

so that

lim
n→∞

1 + e−n

n
= 0.

� 2.2.4

91. By repeatedly applying the recursion to the equation an+1 = 2an with a0 = 1, we have

a1 = 2a0 = 2 · 1 = 2

a2 = 2a1 = 2 · 2 = 4

a3 = 2a2 = 2 · 4 = 8

a4 = 2a3 = 2 · 8 = 16

a5 = 2a4 = 2 · 16 = 32.
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92. By repeatedly applying the recursion to the equation an+1 = 2an with a0 = 3, we have

a1 = 2a0 = 2 · 3 = 6

a2 = 2a1 = 2 · 6 = 12

a3 = 2a2 = 2 · 12 = 24

a4 = 2a3 = 2 · 24 = 48

a5 = 2a4 = 2 · 48 = 96.

93. By repeatedly applying the recursion to the equation an+1 = −2an with a0 = 1, we have

a1 = −2a0 = −2

a2 = −2a1 = 4

a3 = −2a2 = −8

a4 = −2a3 = 16

a5 = −2a4 = −32.

94. By repeatedly applying the recursion to the equation an+1 = −2an with a0 = 2, we have

a1 = −2a0 = −4

a2 = −2a1 = 8

a3 = −2a2 = −16

a4 = −2a3 = 32

a5 = −2a4 = −64.

95. By repeatedly applying the recursion to the equation an+1 = 1 + 2an with a0 = 0, we have

a1 = 1 + 2a0 = 1 + 0 = 1

a2 = 1 + 2a1 = 1 + 2 · 1 = 3

a3 = 1 + 2a2 = 1 + 2 · 3 = 7

a4 = 1 + 2a3 = 1 + 2 · 7 = 15

a5 = 1 + 2a4 = 1 + 2 · 15 = 31.

96. By repeatedly applying the recursion to the equation an+1 = 4− 2an with a0 = 4
3 , we have

a1 = 4− 2a0 = 4− 2 · 4

3
=

4

3
.

Since a1 = a0, it follows that a2 = a1 and that an = a0 = 4
3 for all n.
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97. By repeatedly applying the recursion to the equation an+1 = an
1+an

with a0 = 1, we have

a1 =
a0

1 + a0
=

1

1 + 1
=

1

2

a2 =
a1

1 + a1
=

1/2
3/2

=
1

3

a3 =
a2

1 + a2
=

1/3
4/3

=
1

4

a4 =
a3

1 + a3
=

1/4
5/4

=
1

5

a5 =
a4

1 + a4
=

1/5
6/5

=
1

6
.

98. By repeatedly applying the recursion to the equation an+1 =
√
an with a0 = 16, we have

a1 =
√
a0 =

√
16 = 4

a2 =
√
a1 =

√
4 = 2

a3 =
√
a2 =

√
2

a4 =
√
a3 =

√√
2 = 21/4

a5 =
√
a4 =

√
21/4 = 21/8.

99. By repeatedly applying the recursion to the equation an+1 = an + 1
an

with a0 = 1, we have

a1 = a0 +
1

a0
= 1 +

1

2
= 2

a2 = a1 +
1

a0
= 2 +

1

2
=

5

2

a3 = a2 +
1

a2
=

5

2
+

2

5
=

29

10

a4 = a3 +
1

a3
=

29

10
+

10

29
=

941

290

a5 = a4 +
1

a4
=

941

290
+

290

941
=

969581

272890
.

100. By repeatedly applying the recursion to the equation an+1 = 2a2
n with a0 = 1, we have

a1 = 2a2
0 = 2 · 12 = 2

a2 = 2a2
1 = 2 · 22 = 8

a3 = 2a2
2 = 2 · 82 = 27

a4 = 2a2
3 = 2 ·

(
27
)2

= 215

a5 = 2a2
4 = 2 ·

(
215
)2

= 231.

101. Following the method of Example 14, here we have f(a) = 1
2a + 2. If a is a fixed point, then it

must satisfy the equation a = f(a). Then the only fixed point is a = 4:

a =
1

2
a+ 2 ⇒ 1

2
a = 2 ⇒ a = 4.

Copyright © 2018 Pearson Education, Inc.



110 Discrete-Time Models, Sequences, and Difference Equations

102. Following the method of Example 14, here we have f(a) = 1
3a + 4

3 . If a is a fixed point, then it
must satisfy the equation a = f(a) . That is,

a =
1

3
a+

4

3
⇒ 2

3
a =

4

3
⇒ a = 2.

Thus the only fixed point is a = 2.

103. Following the method of Example 14, we have f(a) = 5
2 −

1
2a. If a is a fixed point, then it must

satisfy the equation a = f(a). That is,

a =
5

2
− 1

2
a ⇒ 3

2
a =

5

2
⇒ a =

5

3
.

The only fixed point is a = 5
3 .

104. Following the method of Example 14, we have f(a) = a2 − a. If a is a fixed point, then it must
satisfy the equation a = f(a). That is,

a = a2 − a ⇒ a2 − 2a = 0 ⇒ a = 0 or a = 2.

The two fixed points are a = 0 and a = 2.

105. Following the method of Example 14, here we have f(a) = 4
a . If a is a fixed point, then it must

satisfy the equation a = f(a). That is,

a =
4

a
⇒ a2 = 4 ⇒ a = ±2.

Thus there are two fixed points, namely a = 2 and a = −2.

106. Following the method of Example 14, we have f(a) = 4
a−3 . If a is a fixed point, then it must satisfy

the equation a = f(a). That is,

a =
4

a− 3
⇒ a2 − 3a = 4 ⇒ a2 − 3a− 4 = 0 ⇒ a = −1 or a = 4.

The two fixed points are a = −1 and a = 4.

107. Following the method of Example 14, here we have f(a) = 2
a+2 . If a is a fixed point, then it must

satisfy the equation a = f(a) . That is,

a =
2

a+ 2
⇒ a(a+ 2) = 2 ⇒ a2 + 2a− 2 = 0 ⇒ a = −1±

√
3.

Thus there are two fixed points, namely a = −1 +
√

3 and a = −1−
√

3.

108. Following the method of Example 14, we have f(a) = 8√
a
. If a is a fixed point, then it must satisfy

the equation a = f(a). That is,

a =
8√
a
⇒ a3/2 = 8 ⇒ a = 82/3 = 4.

The only fixed point is a = 4.
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109. Following the method of Example 14, here we have f(a) =
√

5a. If a is a fixed point, then it must
satisfy the equation a = f(a). That is,

a =
√

5a ⇒ a2 = 5a ⇒ a(a− 5) = 0 ⇒ a = 0 or 5.

Thus there are two fixed points, namely a = 0 and a = 5.

110. Following the method of Example 14, we have f(a) =
√
a+ 2. If a is a fixed point, then it must

satisfy the equation a = f(a). That is,

a =
√
a+ 2 ⇒ a2 = a+ 2 ⇒ a2 − a− 2 = 0 ⇒ a = −1 or a = 2.

However, note that
√
a+ 2 ≥ 0, so that a = −1 cannot be a fixed point. The only fixed point is

a = 2.

111. We first compute the fixed points. As in Example 14, we solve the equation a = 1
3a + 4

3 , giving
a = 2, so we guess that the limit is 2. Evaluating an for various values of n supports that conclusion:

n 0 1 2 3 4 5 6
an 0 1.333 1.778 1.926 1.975 1.992 1.997

112. We first compute the fixed points. As in Example 14, we solve the equation a = 1
3

(
a+ 1

9

)
to find

that 2a
3 = 1

27 , or that a = 1
18 . Now when a0 = 1, then an < 1 for all n = 1, 2, 3, . . ., and so we

could conclude that limn→∞ an = 1
18 ≈ 0.05556. Evaluating an for various values of n supports

that conclusion:

n 0 1 2 3 4 5 6
an 1 0.37037 0.16049 0.09054 0.06722 0.05944 0.05685

113. We first compute the fixed points. As in Example 14, we solve the equation a =
√

2a to find that
a(a−2) = 0, which means that a = 0 or a = 2. Now when a0 = 1, then an > 1 for all n = 1, 2, 3, . . .
and so we could conclude that limn→∞ an = 2. Evaluating an for various values of n supports that
conclusion:

n 0 1 2 3 4 5 6
an 1 21/2 23/4 27/8 215/16 231/32 263/64

114. We first compute the fixed points. As in Example 14, we solve the equation a = 3
a+2 , giving a = 1

or a = −3. Since a1 is positive, succeeding terms are positive as well, so we guess that the limit is
1. Evaluating an for various values of n supports that conclusion:

n 0 1 2 3 4 5 6
an 0 1.5 0.857 1.05 0.984 1.005 0.998

115. We first compute the fixed points. As in Example 14, we solve the equation a = 2a(1− a) to find
that a(2a − 1) = 0, which means that a = 0 or a = 1

2 . Now when a0 = 0.1, then an > 0.1 for all
n = 1, 2, 3, . . . and so we might conclude that limn→∞ an = 1

2 . Evaluating an for various values of
n supports that conclusion:

n 0 1 2 3 4 5 6
an 0.1 0.18 0.2952 0.41611 0.48592 0.4996 0.49999

116. Note that if a0 = 0, then an = 0 for all n, since each ai is a multiple of the previous one. Thus
limn→∞ an = 0.
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117. We first compute the fixed points. As in Example 14, we solve the equation a = 1
3

(
a+ 2

a

)
, giving

a = 1 or a = −1. Since a0 is positive, succeeding terms are positive as well, so we guess that the
limit is 1. Evaluating an for various values of n supports that conclusion:

n 0 1 2 3 4 5 6
an 3 1.222 0.953 1.017 0.994 1.002 0.999

118. We first compute the fixed points. As in Example 14, we solve the equation a = 1
2

(
a+ 9

a

)
to find

that a = 9
a , or that a = ±3. Now when a0 = −1, then an < −1 for all n = 1, 2, 3, . . . so we guess

that limn→∞ an = −3. Evaluating an for various values of n supports that conclusion:

n 0 1 2 3 4 5
an −1 −5 −3.4 −3.02353 −3.00009 −3.00000

� 2.2.5

119.

4∑
k=1

√
k =
√

1 +
√

2 +
√

3 +
√

4.

120.

5∑
k=3

(k − 1)2 = (3− 1)2 + (4− 1)2 + (5− 1)2 = 22 + 32 + 42.

121.

6∑
k=2

3k = 32 + 33 + 34 + 35 + 36.

122.

3∑
k=1

k2

k2 + 1
=

12

12 + 1
+

22

22 + 1
+

32

32 + 1
=

1

2
+

4

5
+

9

10
.

123.

3∑
n=0

an = a0 + a1 + a2 + a3 = a0 + 2a0 + 4a0 + 8a0 = 1 + 2 + 4 + 8.

124.

4∑
n=0

an = a0+a1+a2+a3+a4 = 2+(2+2)+(2+2+2)+(2+2+2+2)+(2+2+2+2+2) = 2+4+6+8+10.

125. 2 + 4 + 6 + 8 + · · ·+ 2n =

n∑
k=1

2k.

126.
1√
1

+
1√
2

+
1√
3

+
1√
4

=

4∑
k=1

1√
k

.

127. ln 2 + ln 3 + ln 4 + ln 5 =

5∑
k=2

ln k.

128.
3

5
+

4

6
+

5

7
+

6

8
+

7

9
=

7∑
k=3

k

k + 2
. Another possibility is

5∑
k=1

k + 2

k + 4
.
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129. Note that each denominator is five greater than the corresponding numerator, so one way to write

this is −1

4
+

1

6
+

2

7
+

3

8
=

3∑
k=−1

k

k + 5
.

130.
1

1
+

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n
=

n∑
k=0

1

2k
.

131. 1 + q + q2 + q3 + q4 + · · ·+ qn−1 =

n−1∑
k=0

qk.

132. 1− a+ a2 − a3 + a4 − a5 + · · ·+ (−1)nan =

n∑
k=0

(−1)kak.

2.3 Modeling with Recursion Relations

� 2.3.1

1.

Nt+1 = Nt + number of cod fish born during the year

− number of cod fish dying of old age during the year

− number of cod fish killed by predators during the year

− number of cod fish removed by fishing boats during the year

2.

Nt+1 = Nt + number of children born during the year

+ number of people moving into the town from other towns during the year

− number of people dying from any cause during the year

− number of people leaving the town to live in other towns during the year

3.

Nt+1 = Nt + number of kakapo births in the wild during the year

+ number of kakapo reintroduced into the wild from captive breeding during a year

− number of kakapo removed for captive breeding during the year

− number of kakapo killed by predators during the year

− number of kakapo deaths from disease during the year

4.

Nt+1 = Nt + number of trees seeded in the wild during the year

+ number of trees planted by people during the year

− number of trees killed by disease during the year

− number of trees cut down by loggers during the year
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5.

Nt+1 = Nt + area of reef restored or rebuilt during the year

− area killed by ocean acidification during the year

− area killed by fishing during the year

6. Note that the number of rhinos born in other parks during the year does not impact the population
in the national park under consideration. Neither does the number of ill or injured rhinos, the
number of female rhinos, or the number that become pregnant (though the latter two categories
are certainly interesting for population consideration, they do not directly affect the population —
only the number of births does).

Nt+1 = Nt + number of rhinos born in the park during the year

+ rhinos introduced into the park from captive breeding programs during the year

+ rhinos relocated to this park from other parks during the year

− rhinos moved out of this park to other parks during the year

− rhinos that die during the year

7. Since we are modeling the population of amœba, not the population of bacteria, the number of
bacteria on the plate, the number that are eaten in one hour, and the number that divide into
two cells in one hour are irrelevant to the model. They certainly affect the amœba population by
modifying the food supply, but they are not direct inputs to the model.

Nt+1 = Nt + number of amœba cells that divide into two cells in one hour

− number of amœba that die in one hour

8. The total number of students on campus, and the number who are not sick, are not direct inputs to
the model (although they do have an effect on the rate at which the disease spreads). The number
of doctors or nurses is also not a direct input, though it too has an effect on the number of students
with the flu.

Nt+1 = Nt + number of students who catch the flu

− number of students who recover from the flu in one day

− number of students who return home to recuperate from the flu in one day

9. (a) (i) If there are Nt individuals, then Nt · 0.5 of those are female. Of those, one quarter lays
an egg this year (since on average each female lays once every four years), so there are
Nt · 0.5 · 0.25 eggs. Of those, only 29% = 0.29 survive the first year, so the number of
births that survive the first year is Nt · 0.5 · 0.25 · 0.29 = 0.03625Nt.

(ii) Since one in fifty will die in a given year, the deaths reduce the population by 1
50Nt =

0.02Nt.

(iii) The recursion formula, from the above calculations, is Nt+1 = Nt + 0.03625Nt− 0.02Nt =
1.01625Nt. In the first five years, the population is given by the table below:

t 0 1 2 3 4 5
Nt 50 50.8 51.6 52.5 53.3 54.2

Of course, in the real world, there would always be an integer number of individuals, but
keeping the fractions during the computation prevents errors from building up too quickly.
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(iv) The formula in part (iii) represents exponential growth; since N0 = 50 the formula is
Nt = 50 · 1.01625t. The population reaches n individuals when

n = 50 · 1.01625t ⇒ n

50
= 1.01625t ⇒ ln

n

50
= t ln 1.01625 ⇒ t =

ln n/50

ln 1.01625
.

So the population reaches n = 100 and n = 200 at the following times:

n = 100 t =
ln 100/50

ln 1.01625
=

ln 2

ln 1.01625
≈ 43 years

n = 200 t =
ln 200/50

ln 1.01625
=

ln 4

ln 1.01625
≈ 86 years

(b) (i) If strategy 1 is implemented, then the number of births surviving the first year becomes
Nt · 0.5 · 0.5 · 0.29 = 0.0725Nt, since on average half the females will lay each year. So the
recurrence becomes Nt+1 = Nt + 0.0725Nt − 0.02Nt = 1.0525Nt. The population in the
next five years is as follows:

t 0 1 2 3 4 5
Nt 50 52.6 55.4 58.3 61.4 64.6

(ii) If strategy 2 is implemented, then the number of births surviving the first year becomes
Nt · 0.5 · 0.25 · 0.75 = 0.093 75Nt, since three quarters of the eggs will survive their first
year. So the recurrence becomes Nt+1 = Nt + 0.093 75Nt − 0.02Nt = 1.073 75Nt. The
population in the next five years is as follows:

t 0 1 2 3 4 5
Nt 50 53.7 57.6 61.9 66.5 71.4

(iii) Clearly the second strategy causes the population to increase more rapidly.

10. (a) (i) If there are Nt individuals, 50% = 0.5 of them are female, so there are 0.5 · Nt females.
Of those, 75% = 0.75 of them are females of reproductive age, so there are 0.75 · 0.5 ·Nt
females of reproductive age. Finally, of those, 22% = 0.22 will give birth in a given year,
so there are 0.75 · 0.5 · 0.22 ·Nt = 0.0825Nt births each year.

(ii) 4.5% = 0.045 of the Nt individuals will die, so the number of deaths is 0.045Nt.

(iii) From the previous parts, the recursion relation is Nt+1 = Nt + 0.0825Nt − 0.045Nt =
1.0375Nt. This represents exponential growth; Nt = N0 · 1.0375t; if there are 300 gorillas
initially, the formula is Nt = 300 · 1.0375t.

(iv) Using the formula above, we get

t 0 1 2 5 10
Nt 300 311.2 322.9 360.6 433.5

(v) The population will double to 600 when 600 = 300·1.0375t, or 1.0375t = 2. Taking natural
logs and solving for t gives

t =
ln 2

ln 1.0375
≈ 18.8 years.

(b) (i) Since the birth rate is 0.0825, in order for the population to remain stagnant, the death
rate would have to be the same, or 0.0825 = 8.25%.

(ii) Since the number of deaths is 0.045Nt, in order for the population to remain stagnant,
the number of births would have to be the same, or 0.045Nt. So if r is the birth rate for
females of reproductive age, we must have 0.5 · 0.25 · r = 0.045, or r = 0.36 = 36%. The
birth rate for females of reproductive age would have to be 36%.
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(iii) The recursion is Nt+1 = 1.0375Nt; is r gorillas leave each year, the recursion would
be Nt+1 = 1.0375Nt − r. We want Nt+1 = Nt, so solving Nt = 1.0375Nt − r gives
r = 0.0375Nt. Thus 3.75% of the gorillas would have to leave the park each year for the
population to remain constant. Since there are 300 gorillas, this is 0.0375 · 300 = 11.25.
So on average 11.25 gorillas would have to leave each year.

11. In this model, R0 = 4 and a = 1
30 , so the fixed points are N = 0 and N = R0−1

a = 3
1/30 = 90.

12. In this model, R0 = 2 and a = 1
60 , so the fixed points are N = 0 and N = R0−1

a = 1
1/60 = 60.

13. In this model, R0 = 2 and a = 1
90 , so the fixed points are N = 0 and N = R0−1

a = 1
1/90 = 90.

14. In this model, R0 = 3 and a = 1
100 , so the fixed points are N = 0 and N = R0−1

a = 2
1/100 = 200.

15. In this model, R0 = 3 and a = 1
30 , so the fixed points are N = 0 and N = R0−1

a = 2
1/30 = 60.

16. In this model, R0 = 5 and a = 1
240 , so the fixed points are N = 0 and N = R0−1

a = 4
1/240 = 960.

17. The population sizes are given by Nt+1 = R(Nt)Nt = R0

1+aNt
Nt = 2

1+0.01Nt
Nt, N0 = 2:

t 0 1 2 3 4 5
Nt 2 3.92 7.55 14.04 24.62 39.51

Since N0 > 0, the limiting value is given by

lim
t→∞

Nt =
R0 − 1

a
= 100.

18. The population sizes are given by Nt+1 = R(Nt)Nt = R0

1+aNt
Nt = 2

1+0.1Nt
Nt, N0 = 2:

t 0 1 2 3 4 5
Nt 2 3.33 5 6.67 8 8.89

Since N0 > 0, the limiting value is given by

lim
t→∞

Nt =
R0 − 1

a
= 10.

19. The population sizes are given by Nt+1 = R(Nt)Nt = R0

1+aNt
Nt = 3

1+1/20Nt
Nt, N0 = 7:

t 0 1 2 3 4 5
Nt 7 15.56 26.25 34.05 37.8 39.24

Since N0 > 0, the limiting value is given by

lim
t→∞

Nt =
R0 − 1

a
= 40.

20. The population sizes are given by Nt+1 = R(Nt)Nt = R0

1+aNt
Nt = 3

1+1/10Nt
Nt, N0 = 3:

t 0 1 2 3 4 5
Nt 3 6.92 12.27 16.53 18.69 19.54

Since N0 > 0, the limiting value is given by

lim
t→∞

Nt =
R0 − 1

a
= 20.
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21. The population sizes are given by Nt+1 = R(Nt)Nt = R0

1+aNt
Nt = 4

1+1/40Nt
Nt, N0 = 2:

t 0 1 2 3 4 5
Nt 2 7.62 25.6 62.44 97.52 113.46

Since N0 > 0, the limiting value is given by

lim
t→∞

Nt =
R0 − 1

a
= 120.

22. The population sizes are given by Nt+1 = R(Nt)Nt = R0

1+aNt
Nt = 4

1+1/60Nt
Nt, N0 = 2:

t 0 1 2 3 4 5
Nt 2 7.74 27.43 75.29 133.57 165.61

Since N0 > 0, the limiting value is given by

lim
t→∞

Nt =
R0 − 1

a
= 180.

23. Since limt→∞Nt = R0−1
a , we know that 100 = 3−1

a = 2
a , so a = 0.02.

24. Since limt→∞Nt = R0−1
a , we know that 200 = 5−1

a = 4
a , so a = 0.02.

25. Since Nt+1 = R(Nt)Nt = R0

1+aNt
Nt, substituting the given values we get

30 =
2

1 + 20a
· 20 =

40

1 + 20a
⇒ 600a+ 30 = 40 ⇒ a =

1

60
.

26. Since Nt+1 = R(Nt)Nt = R0

1+aNt
Nt, substituting the given values we get

40 =
4

1 + 50a
· 50 =

200

1 + 50a
⇒ 2000a+ 40 = 200 ⇒ a = 0.08.

� 2.3.3

27. From the discussion in the text, xt+1 = R0xt(1− xt) = xt(1− xt) with R0 = 1. Since xt = Nt
R0/b =

Ntb
R0

, we have xt = Nt1/10
1 = Nt

10 .

28. From the discussion in the text, xt+1 = R0xt(1− xt) = xt(1− xt) with R0 = 1. Since xt = Nt
R0/b =

Ntb
R0

, we have xt = Nt1/20
1 = Nt

20 .

29. From the discussion in the text, xt+1 = R0xt(1− xt) = 2xt(1− xt) with R0 = 2. Since xt = Nt
R0/b =

Ntb
R0

, we have xt = Nt1/15
2 = Nt

30 .

30. From the discussion in the text, xt+1 = R0xt(1− xt) = 2xt(1− xt) with R0 = 2. Since xt = Nt
R0/b =

Ntb
R0

, we have xt = Nt1/20
2 = Nt

40 .

31. From the discussion in the text, xt+1 = R0xt(1 − xt) = 2.5xt(1 − xt) with R0 = 2. Since xt =
Nt
R0/b = Ntb

R0
, we have xt = Nt1/30

2.5 = Nt
75 .
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32. From the discussion in the text, xt+1 = R0xt(1 − xt) = 2.5xt(1 − xt) with R0 = 2. Since xt =
Nt
R0/b = Ntb

R0
, we have xt = Nt1/50

2.5 = Nt
125 .

33. A fixed point occurs when Nt+1 = Nt = N , so we get N = R0 ·N − b ·N2, or bN2 + (1−R0)N =
N(bN + 1−R0) = 0. The fixed points are therefore N = 0 and N = R0−1

b .

34. Since Nt → 50, N = 50 is a fixed point, so that 50 = R0−1
b = 1

b and therefore b = 1
50 .

35. Since Nt → 40, N = 40 is a fixed point, so that 40 = R0−1
b = 1.5

b and therefore b = 1.5
40 = 3

80 .

36. We have Nt+1 = R0 ·Nt−b ·N2
t . Substituting the given values gives 15 = 2 ·10−b ·102 = 20−100b,

so that b = 5
100 = 1

20 .

37. We have Nt+1 = R0 ·Nt−b ·N2
t . Substituting the given values gives 30 = 3 ·15−b ·152 = 45−225b,

so that b = 15
225 = 1

15 .

38. We haveNt+1 = R0·Nt−b·N2
t . Substituting the given values gives 20 = 15R0− 1

10 ·152 = 15R0−22.5,
so that R0 ≈ 2.833.

39.

5 10 15 20

0.1

0.2

0.3

0.4

0.5

40.

5 10 15 20

0.1

0.2

0.3

0.4

0.5
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41.

5 10 15 20

0.2

0.4

0.6

0.8

42.

5 10 15 20

-1.0

-0.5

0.5

1.0

43.

0 5 10 15 20

0.55

0.60

0.65

0.70

0.75
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44.

5 10 15 20

0.2

0.4

0.6

0.8

45.

5 10 15 20

0.2

0.4

0.6

0.8

46.

5 10 15 20

-1.0

-0.5

0.5

1.0
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47.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

48.

5 10 15 20

0.2

0.4

0.6

0.8

1.0

49.

5 10 15 20

0.2

0.4

0.6

0.8

1.0
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50.

5 10 15 20

-1.0

-0.5

0.5

1.0

� 2.3.4

51. (a) Since 7.7% = 0.077 of the drug is eliminated each hour, we have Ct+1 = Ct−0.077Ct = 0.923Ct.

(b) The recurrence relation expresses exponential decay: Ct = C0 · 0.923t. Since C0 = 33.8 ng/ml,
we have Ct = 33.8 · 0.923t ng/ml.

(c) We want to find t such that Ct = 0.1; then 0.1 = 33.8 · 0.923t, so that 0.1
33.8 = 0.923t. Taking

natural logs of both sides and simplifying gives

t =
ln 0.1− ln 33.8

ln 0.923
≈ 72.67 hrs.

52. (a) Given the absorption rate, and since 10% = 0.1 of the drug is eliminated each hour, we have

at+1 = at + 10 · 0.4t − 0.1at = 0.9at + 10 · 0.4t.

(b) Starting with a0 = 0 we get

t 0 1 2 3 4 5 6
at 0 10 13 13.3 12.61 11.61 10.55

(c) The maximum amount of drug is ≈ 6.38, at t = 5.

(d) Continuing the table from part (b) through t = 24 gives

t 7 8 9 10 11 12 13 14 15
at 9.53 8.60 7.74 6.97 6.28 5.65 5.08 4.58 4.12

t 16 17 18 19 20 21 22 23 24
at 3.71 3.34 3.00 2.70 2.43 2.19 1.97 1.77 1.60
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(e) Plotting at against t using a semilog plot gives the graph below:

0 4 8 12 16 20 24
t

0.5

1

5

10

at

Semilog plot

For t larger than about 4, the graph is roughly linear, indicating exponential decay.

53. (a) Given the absorption rate, and since 40% = 0.4 of the drug is eliminated each hour, we have

at+1 = at + 20 · 0.2t − 0.4at = 0.6at + 20 · 0.2t.

(b) Starting with a0 = 0 we get

t 0 1 2 3 4 5 6
at 0 20.00 16.00 10.40 6.40 3.87 2.33

(c) The maximum amount of drug is 20, at t = 1.

(d) Continuing the table from part (b) through t = 24 gives (to three decimal places)

t 7 8 9 10 11 12 13 14 15
at 1.40 0.84 0.50 0.30 0.18 0.11 0.07 0.04 0.02

t 16 17 18 19 20 21 22 23 24
at 0.01 0.01 0.01 0 0 0 0 0 0

(e) Plotting at against t using a semilog plot gives the graph below. For t larger than about 1,
the graph is roughly linear, indicating exponential decay.

4 8 12 16 20 24
t

10
-4

0.1

100

at

Semilog plot
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54. (a) Since the drug has zeroth order elimination kinetics, the amount removed each hour is 20 −
14 mg = 6 mg.

(b) Each hour, 6 mg is removed, so we get at+1 = at − 6.

(c) Since 6 mg is removed each hour, after t hours we have removed 6tmg, so the explicit formula
is at = 20− 6t.

(d) The amount of drug present drops to zero when 20− 6t = 0, so when t = 10
3 ≈ 3.33 hours.

55. (a) The percentage removed between t = 0 and t = 1 is 20−14
20 = 6

20 = 0.3 = 30%. Since the drug
has first order elimination kinetics, this percentage is removed each hour.

(b) at+1 = at − 0.3at = 0.7at.

(c) The recursion relation expresses exponential decay, so at = a0 · 0.7t = 20 · 0.7t.
(d) Since 0.7t > 0 for all values of t, the amount of drug present will never be zero according to

the model.

56. (a) If the drug has zeroth order kinetics, the amount eliminated each hour is 40− 32 = 8 mg/ml.

(b) Since 8 mg/ml is eliminated each hour, we have ct+1 = ct − 8, so c2 should be c1 − 8 = 24.

(c) If the drug has first order kinetics, the percentage eliminated each hour is 40−32
40 = 0.2 = 20%.

(d) Since 20% is eliminated each hour, we get ct+1 = ct − 0.2ct = 0.8ct. Then we would expect
c2 = 0.8c1 = 25.6.

(e) Since the amount found matches the amount in part (d), we conclude that the drug has first
order kinetics.

57. (a) If the drug has zeroth order kinetics, the amount eliminated each hour is 50− 35 = 15 mg/ml.

(b) Since 15 mg/ml is eliminated each hour, we have ct+1 = ct − 15, so c2 should be c1 − 15 = 20.

(c) If the drug has first order kinetics, the percentage eliminated each hour is 50−35
50 = 0.3 = 30%.

(d) Since 30% is eliminated each hour, we get ct+1 = ct − 0.3ct = 0.7ct. Then we would expect
c2 = 0.7c1 = 24.5.

(e) Since the amount found matches the amount in part (b), we conclude that the drug has zeroth
order kinetics.

58. (a) Since 23% of the drug is eliminated each hour, we have ct+1 = ct − 0.23ct = 0.77ct.

(b) This recursion expresses exponential decay; since the initial concentration is 15µg/ml at t = 1,
the formula is ct = 15 · 0.77t−1.

(c) From the formula in part (b), c4 = 15 · 0.773 ≈ 6.85µg/ml.

(d) During that hour, 15µg/ml enter the bloodstream, and 0.23 of the amount present at time
t = 4 leaves the bloodstream, so the amount in the bloodstream at t = 5 is

c5 = c4 + 15− 0.23c4 = 6.85 + 15− 1.58 ≈ 20.3µg/ml.

(e) Using the recursion relation ct+1 = 0.77ct, we get

c6 = 0.77c5 = 0.77 · 20.3 ≈ 15.63

c7 = 0.77c6 = 0.77 · 15.63 ≈ 12.04

c8 = 0.77c7 = 0.77 · 12.04 ≈ 9.27.
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(f) During the ninth hour, 15µg/ml enters the bloodstream, and 0.23c8 leaves, so the amount at
t = 9 is

c9 = c8 + 15− 0.23c8 = 9.27 + 15− 2.13 ≈ 22.14µg/ml.

(g) One hour after the nth pill is taken, the amount in the bloodstream is 0.77 times the amount
when the pill was taken (accounting for elimination) plus 15µg/ml. The amount in the blood-
stream when the pill was taken is 0.773 times the amount one hour after the previous pill was
taken, since three hours elapse. So the amount is the bloodstream one hour after the nth pill
is taken is

Cn = 0.773Cn−1 · 0.77 + 15 = 0.774Cn−1 + 15 ≈ 15 + 0.35Cn−1.

(h) Since pills are taken at t = 1, 5, 9, . . . , C1 corresponds to t = 1, C2 to t = 5, C3 to t = 9, and
in general Cn corresponds to t4n−3.

(i) See the discussion in part (g) for the recursion. c1 = 15 since that is the concentration one
hour after the first pill was taken.

(j) Using the recursion from part (i), we get

t 1 2 3 4 5 6
Ct 15 20.273 22.127 22.778 23.007 23.088

(k) The amount of increase in each Cn appears to be decreasing, so it seems likely that Cn
converges.

(l) A fixed point of the recursion relation is found by solving C = 0.774C + 15 = 0.35C + 15, so
that 0.65C = 15 and C ≈ 23.1µg/ml.

59. Since the absolute amount by which the concentration decreases changes each hour (it decreases),
this cannot be zeroth order kinetics, so it must be first order kinetics. Indeed, computing the
percentage decrease each hour we get

16− 12

16
= 0.25,

12− 9

12
= 0.25,

9− 6.75

9
= 0.25,

so that 25% of the drug is eliminated each hour.

60. Since 2µg/ml is eliminated each hour, this drug has zeroth order kinetics.

61. Since 4µg/ml is eliminated each hour, this drug has zeroth order kinetics.

62. Since the absolute amount by which the concentration decreases changes each hour (it decreases),
this cannot be zeroth order kinetics, so it must be first order kinetics. Indeed, computing the
percentage decrease each hour we get

40− 36

40
= 0.1,

36− 32.4

36
= 0.1,

32.4− 29.16

32.4
= 0.1,

so that 10% of the drug is eliminated each hour.

63. (a) at+1 = at + amount added to the blood in tth day− amount eliminated in tth day.

(b) The amount added each day is 20µg, and the amount removed each day is 4% of the amount
present (at the start of the day). Thus

at+1 = at + 20− 0.04at = 0.96at + 20.
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(c) Applying the recursion we get

t 0 1 2 3 4 5 6
at 0 20 39.2 57.632 75.327 92.314 108.621

(d) Solving a = 0.96a+ 20 gives 0.04a = 20, so that a = 500µg.

64. (a) at+1 = at + amount added to the blood in tth day− amount eliminated in tth day.

(b) On the tth day, 10t + 10 mg is added, and each day half of the existing amount is removed;
substituting this information gives

at+1 = at + 10t+ 10− 0.5at = 0.5at + 10(t+ 1) + 10 mg.

(c) Applying the recursion we get

t 0 1 2 3 4 5
at 10 25 42.5 61.25 80.625 100.312

(d) at reaches (and barely exceeds) 100 at the start of the sixth day.

Chapter 2 Review

1. The expression 2−n can also be written as
(

1
2

)n
. Thus, from Example 12 in Section 2.2.2, we

conclude that

lim
n→∞

2−n = lim
n→∞

(
1

2

)n
= 0

2. For successive values of n, the values 1, 3, 9, 27, 81, 243, . . . of 3n indicate that the terms continue
to grow. Thus 3n goes to infinity as n → ∞, and we can write limn→∞ 3n = ∞. This can also be
seen using Example 12 in Section 2.2.2, from which we conclude that since R = 3 > 1,

lim
n→∞

3n =∞.

3. The expression 40(1− 4−n) can be written as 40− 40
(

1
4

)n
. From Example 12 in Section 2.2.2, we

know that limn→∞
(

1
4

)n
= 0. Also, it is obvious that limn→∞ 40 = 40. Thus

lim
n→∞

40(1− 4−n) = lim
n→∞

40− 40 lim
n→∞

(
1

4

)n
= 40− 40 · 0 = 40.

4. The expression 2
1+2−n can be written as 2

1+(1/2)n . From Example 12 in Section 2.2.2, we know that

limn→∞
(

1
2

)n
exists and is equal to 0. Thus

lim
n→∞

2

1− 2−n
=

limn→∞ 2

limn→∞(1− (1/2)n)
=

limn→∞ 2

limn→∞ 1− limn→∞(1/2)n
=

2

1− 0
= 2.

5. Example 12 in Section 2.2 states without proof that this limit is ∞. To see that this is true, choose
any real number K > 0, and let x = a− 1. Since a > 1, we see that x > 0, so there is some positive
integer n such that nx > K − 1. Now, using the binomial expansion of (1 + x)n, we get

an = (1 + x)n ≥ 1 + nx > 1 + (K − 1) = K,

so that an > K. This proves that no matter what real number K we choose, we can find an n such
that an > K, so that an grows without bound as n→∞, and thus limn→∞ an =∞.
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6. Let b = 1
a . Since 0 < a < 1, we have b > 1, so that limn→∞ an = limn→∞

1
bn . By the previous

exercise, limn→∞ bn =∞, so that by the limit rules limn→∞ an = 0.

7. Note that the expression n(n+1)
n2−1 can be written as n(n+1)

(n+1)(n−1) , which is the same as n
n−1 if n 6= −1.

Since we are interested in the behavior of an as n → ∞, we may assume that n 6= −1. Since
limn→∞

1
n = 0 we have

lim
n→∞

n(n+ 1)

n2 − 1
= lim
n→∞

n(n+ 1)

(n− 1)(n+ 1)
= lim
n→∞

n

n− 1
= lim
n→∞

1

1− 1/n

=
limn→∞ 1

limn→∞ 1− limn→∞ 1/n
=

1

1− 0
= 1.

8. Note that the expression n2+n−6
n−2 can be written as (n−2)(n+3)

n−2 , which is the same as n+ 3 if n 6= 2.
Since we are interested in the behavior of an as n→∞, we may assume that n > 2. Recalling that
limn→∞ n does not exist, since successive values of n grow without bound, we have

lim
n→∞

n2 + n− 6

n− 2
= lim
n→∞

(n− 2)(n+ 3)

n− 2
= lim
n→∞

(n+ 3) = lim
n→∞

n+ lim
n→∞

3 =∞.

9. Note that by dividing numerator and denominator by n, the expression
√
n

n+1 can be written as
1/
√
n

1+1/n .

Recalling that both limn→∞ 1/n and limn→∞ 1/
√
n exist and are equal to 0, we have

lim
n→∞

√
n

n+ 1
= lim
n→∞

1/
√
n

1 + 1/n
=

limn→∞ 1/
√
n

limn→∞(1 + 1/n)
=

0

1 + 0
= 0.

10. We first note that the expression n+1√
n

can be written as
√
n + 1√

n
. Now, limn→∞

1√
n

= 0, but

the successive terms 1,
√

2,
√

3, 2,
√

5,
√

6, . . . of
√
n are clearly growing without bound. That is,

limn→∞
√
n =∞. Then

lim
n→∞

n+ 1√
n

= lim
n→∞

(√
n+

1√
n

)
= lim
n→∞

√
n+ lim

n→∞

(
1√
n

)
= lim
n→∞

√
n+ 0 = lim

n→∞

√
n =∞.

11. Looking at the sequence, we can guess the next terms, namely, 11
12 , 13

14 , 15
16 , 17

18 , 19
20 and so on. We

thus find

an =
2n+ 1

2n+ 2
for n = 0, 1, 2, 3, . . .

12. Note that the numerator of an is the sum of the first n+ 1 even numbers, starting with 2, so it is

twice the sum of the first n + 1 positive integers; this sum is 2 · (n+1)(n+2)
2 = (n + 1)(n + 2). The

denominators are powers of two. So we can guess that the sequence is

an =
(n+ 1)(n+ 2)

2n+1
for n = 0, 1, 2, 3, . . .

So the next few terms of the sequence would be 42
64 , 56

128 , 72
256 , 90

512 , and 110
1024 .

13. The numerator of an appears to be n + 1, while the denominator is (n + 1)2 + 1, so we can guess
that the sequence is

an =
n+ 1

(n+ 1)2 + 1
=

n+ 1

n2 + 2n+ 2
for n = 0, 1, 2, 3, . . .

So the next few terms of the sequence would be 6
37 , 7

50 , 8
65 , 9

82 , and 10
101 .
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14. Looking at the sequence, we can guess the next terms, namely, 5
7 , 6

8 , 7
9 , 8

10 ,,
9
11 and so on. We thus

find
an =

n

n+ 2
for n = 0, 1, 2, 3, . . .

15. (a) (i) A plot of the points together with a plot of the number of pups born as a function of the
population size Nt is below:

20 40 60 80 100 120
x

10

20

30

40

y

The line is a reasonably good approximation to the data.

(ii) The number of wolves that die is 0.22Nt, so putting that together with the approximation
from part (i), we get

Nt+1 = Nt + 0.28Nt − 0.22Nt = 1.06Nt.

(iii) Applying the recursion we get

t 0 1 2 3 4 5 6 7 8 9 10
Nt 130 137.8 146.1 154.8 164.1 174. 184.4 195.5 207.2 219.6 232.8

(iv) According to the table above, the population size of 220 will be reached some time in the
tenth year.

(b) (i) The population increases by the number of pups born, which is unchanged at 0.28Nt, and
also by the number of new wolves introduced, which is r. It decreases by the death rate,
which is now only 0.30Nt. Putting this together gives

Nt+1 = Nt + 0.28 ·Nt + r − 0.30 ·Nt = 0.98Nt + r.

(ii) For r = 5, N0 = 130, applying the recursion gives

t 0 1 2 3 4 5 6 7 8 9 10
Nt 130 132.4 134.8 137.1 139.3 141.5 143.7 145.8 147.9 150 152

If we use r = 10, we get

t 0 1 2 3 4 5 6 7 8 9 10
Nt 130 137.4 144.7 151.8 158.7 165.5 172.2 178.8 185.2 191.5 197.7

(c) Assuming the original recursion relation, from part (a), but adding r = 10 pups each year, we
get for a recursion

Nt+1 = 1.06Nt + 10.
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Computing this relation for N0 = 130 gives

t 0 1 2 3 4 5 6 7 8 9 10
Nt 130 147.8 166.7 186.7 207.9 230.3 254.2 279.4 306.2 334.5 364.6

A population of 220 is reached under this strategy in the fifth year. However, the population
at the start of the fifth year in part (b) is 165.5, which is farther from 220 than the population
of 230.3 in this part; we expect 220 to be reached sooner using the strategy in this part.

16. (a) N2 = N1 +N0 = 1 + 1 = 2.

(b) N3 = N2 + N1 = 2 + 1 = 3, N4 = N3 + N2 = 3 + 2 = 5, N5 = N4 + N3 = 5 + 3 = 8, and
N6 = N5 +N4 = 8 + 5 = 13.

(c) Values of Nk for k up to 20 are below:

k 0 1 2 3 4 5 6 7 8 9 10
Nk 1 1 2 3 5 8 13 21 34 55 89

k 11 12 13 14 15 16 17 18 19 20
Nk 144 233 377 610 987 1597 2584 4181 6765 10946

(d) The required semilog plot is below:
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The points are approximately linear, so the Fibonacci sequence appears to grow exponentially.

17. (a) Calculating the recurrence gives

k 0 1 2 3 4
Nk 10 19.5 37.1 67.3 112

(b) Fixed points for the relation are given by solving N = 2N − 1
200N

2, or N2 − 200N = 0. This
gives N = 0 or N = 200; since the population is increasing, we see that limt→∞Nt = 200.

(c) We need to find fixed points of N = 2N − 1
200N

2 − pN . Simplifying gives

N2 + 200(p− 1)N = 0 → N(N + 200(p− 1)) = 0 → N = 0 or N = 200(1− p).

The limiting population is 200(1− p).
(d) Since the observed population limit is 160, solving 160 = 200(1− p) gives 1− p = 0.8, so that

p = 0.2.
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18. (a) Since 42% of the drug in the gut leaves the gut (into the blood), we get a recursion relation
at+1 = at − 0.42at = 0.58at, a0 = 10.

(b) The recursion expresses exponential decay with an initial value of 10: at = 10 · 0.58t.

(c) Solving 10 · 0.58t = 0.01 · 10 = 0.1 gives 0.58t = 0.001; taking logs and simplifying gives
t = ln 0.001

ln 0.58 ≈ 12.7 hours.

(d) The amount of drug entering the blood at time t is 0.42at, and the amount leaving is the
amount eliminated, which is 0.06bt, so

bt+1 = bt + 0.42at − 0.06bt = 0.94bt + 0.42at, b0 = 0.

(e) Substituting the explicit formula for at into the above, we get

bt+1 = 0.94bt + 4.2 · 0.58t, b0 = 0.

Calculating values gives

k 0 1 2 3 4 5 6
bk 0 4.20 6.38 7.41 7.79 7.80 7.60

The maximum amount of drug in the blood is about 7.80, in the fifth or sixth hour.

(f) Continuing the table from the previous part, we get

k 7 8 9 10 11 12 13 14 15
bk 7.31 6.96 6.60 6.23 5.88 5.54 5.21 4.90 4.61

k 16 17 18 19 20 21 22 23 24
bk 4.33 4.07 3.83 3.60 3.38 3.18 2.99 2.81 2.64

A plot of these values is below:
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(g) (i) If the drug immediately entered the bloodstream, then no more would come in after
the initial bolus, but each hour 6% of it would be eliminated, so that we would have
bt+1 = bt − 0.06bt = 0.94bt.

(ii) The model above is exponential decay with initial value 10, so we have bt = 10 · 0.94t.
Setting t = 24 gives b24 ≈ 2.265 mg.

(iii) The amount in the blood 24 hours later is lower with immediate absorption.
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19. (a) Each minute 0.01 IU is added, and pat is eliminated, so that at+1 = at + 0.01 − pat =
(1− p)at + 0.01.

(b) If p = 0.11 is a good fit, then we should have at+1 ≈ (1 − 0.11)at + 0.01 = 0.89at + 0.01.
Plotting at+1 against at and overlaying the line at+1 = 0.89at + 0.01 gives

0.01

0.02

0.03

0.04

Indeed the line is a good fit to the points, so that p = 0.11 is a good approximation.

(c) Using at+1 = 0.89at + 0.01 we get

k 6 7 8 9 10
ak 0.046 0.051 0.055 0.059 0.063

(d) Since 0.036 · 0.89 ≈ 0.032, 0.032 · 0.89 ≈ 0.028, 0.028 · 0.89 ≈ 0.025, and 0.025 · 0.89 ≈ 0.22, the
data are consistent with the recurrence above except that the addition of 0.1 does not occur;
that is, the pump is no longer adding insulin.

20. (a) Scenario 2 describes a model in which fishing removes a fixed percentage of the fish currently
in the lake.

(b) Since N1 −N2 = 250, 250 fish are removed from the lake each week.

(c) Each week, 250 fish are removed, so that Nt+1 = Nt − 250.

(d) Continuing to compute Nt, we get N3 = N2 − 250 = 500, N4 = N3 − 250 = 250, and
N5 = N4 − 250. The number of fish drops to zero after five weeks.

(e) The number removed from the lake could be as much as 1.1·1000−0.9·750 = 1100−675 = 425,
and as low as 0.9 · 1000− 1.1 · 750 = 900− 825 = 75.

(f) If the number of fish removed is 425, then starting from week 1, when there are 1100 fish, we
get N2 = 1100 − 425 = 674, N3 = 675 − 425 = 250, and N4 = 0. The population drops to
zero during the fourth week. If the number of fish removed is 75, then starting from week 1,
when there are 900 fish, the number of fish remaining after week t is 900 − 75(t − 1); this is
zero when t = 13, so the population drops to zero after 13 weeks.
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(g) The two plots are below:
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The second plot is closer to a straight line, so scenario 2 is the more likely one, since that
scenario represents exponential decay.
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