Chapter 1
 Whole Numbers and Introduction to Algebra

1.1 Check Points

1. a. millions place

b. ones place

Ihousands Pcriod		

c. hundreds place

d. millions place

2. Work from left to right. Write the name of the threedigit number in each period, followed by the name of the period and a comma. Do not write the name of the last period, "ones."
a. twenty-seven thousand, one hundred forty-three
b. five hundred twenty-one million, six hundred thirty thousand, fifty-seven
3. a. Begin by noting how to write the number within each period.
$\overbrace{\text { fifty-three }}^{53}$ thousand, $\overbrace{\text { four hundred six }}^{406}$
Write the digits for the number in each period,
followed by a comma.
The standard form for the number is 53,406 .
b. Begin by noting how to write the number within each period.
$\overbrace{\text { two hundred four million, }}^{204} \overbrace{\text { nine hundred thirty-two thousand, }}^{932} \overbrace{\text { sixteen }}^{016}$
Write the digits for the number in each period, followed by a comma.
The standard form for the number is $204,932,016$.
4. a. The place value chart shows that 704,663 contains 7 hundred-thousands, 0 ten-thousands, 4 thousands, 6 hundreds, 6 tens, and 3 ones. Thus 704,663 is written in expanded form as follows: $704,663=700,000+4000+600+60+3$.
b. The place value chart shows that 49,063,400 contains 4 ten-millions, 9 millions, 0 hundred-thousands, 6 tenthousands, 3 thousands, 4 hundreds, 0 tens, and 0 ones. Thus $49,063,400$ is written in expanded form as follows: $49,063,400=40,000,000+9,000,000+60,000+3000+400$.
5. a. $14>5$ because 14 is to the right of 5 on the number line.
b. $0<16$ because 0 is to the left of 16 on the number line.
6. a. The digit to the right of the thousands digit is 4 , which is less than 5 . This indicates to leave the thousands digit the same. Replace all digits to the right with zeros.
$57,498 \approx 57,000$
b. The digit to the right of the hundred-thousands digit is 5 . This indicates to add one to the hundred-thousands digit. Replace all digits to the right with zeros.
$4,856,902 \approx 4,900,000$
c. The digit to the right of the thousands digit is 6 , which is greater than 5 . This implies to add one to the thousands digit. Replace all digits to the right with zeros.
$9602 \approx 10,000$
d. The digit to the right of the millions digit is 2 , which is less than 5 . This implies to leave the millions digit the same. Replace all digits to the right with zeros.
$684,236,042 \approx 684,000,000$
7. a. The digit to the right of the billions digit is 0 , which is less than 5 . This implies to leave the billions digit the same. Replace all digits to the right with zeros.
$7,058,746,857 \approx 7,000,000,000$
b. The digit to the right of the ten-thousands digit is 6 , which is greater than 5 . This implies to add one to the tenthousands digit. Replace all digits to the right with zeros.
$7,058,746,857 \approx 7,058,750,000$
8. a. The cost of a coronary bypass in the United States is $\$ 67,583$
b. The country with the least amount in the CT scan column is India.

The average cost for this procedure in India is $\$ 43$.
c. The charge for an appendectomy in Chile is $\$ 5509$. The countries in which an appendectomy costs more than in Chile are Canada, Switzerland, and United States.
9. a. We begin with the number of marriages between an African-American husband and a white wife in 2010. Look at the bars labeled with the year 2010. The yellow bar to the right represents the number of marriages between an African-American husband and a white wife. The number above this bar is 390, representing 390 thousand. Thus, in 2010, there were 390,000 marriages between an African-American husband and a white wife.
b. Look for the red bar labeled 61 (for 61 thousand, or 61,000). This is the bar to the left for the year labeled 1990 . Thus, in 1990, there were 61,000 marriages between a white husband and an African-American wife.

1.1 Concept and Vocabulary Check

1. whole; 0
2. standard
3. periods
4. millions; hundred-thousands; thousands; tens
5. millions; forty-two; nine
6. expanded; $5 \underline{000} ; 60 ; 8$
7. number line
8. $<$
9. $>$
10. 8 ; 5; add 1; 9,000,000
11. 2; 3 ; do not change; $8,542,000$

1.1 Exercise Set

Note that exercises \#1-22 use the following table:

Millions Pcriod		
	$\frac{\sum_{5}^{0}}{\stackrel{y}{3}}$	$\begin{aligned} & \text { 番 } \\ & \hline \end{aligned}$

Thousands Pcriod		
		$\begin{aligned} & \frac{2}{2} \\ & =3 \\ & \text { 翟 } \\ & 0 \\ & \vdots \end{aligned}$

1. hundreds
2. hundreds
3. ones
4. ones
5. hundred-thousands
6. hundred-thousands
7. millions
8. millions
9. ten-millions
10. ten-millions
11. hundred-millions
12. hundred-millions
13. two hundred fifty-eight
14. three hundred twenty-four
15. eight thousand, three hundred seventy-six
16. six thousand, two hundred twenty-six
17. thirty-six thousand, eight hundred eighty
18. fifty-two thousand, seven
19. seven million, five hundred sixty-six thousand
20. four million, three hundred two thousand
21. thirty-five million, two hundred sixty thousand, three hundred seventy-five
22. fifty-seven million, forty-four thousand, two hundred eight
23. The standard form is 3468 .
24. The standard form is 5283 .
25. The standard form is 86,500 .
26. The standard form is 58,004 .
27. The standard form is $16,402,012$.
28. The standard form is $14,204,015$.
29. The standard form is $9,000,009$.
30. The standard form is $5,000,005$.
31. The standard form is $26,034,203$.
32. The standard form is $52,028,706$.
33. The standard form is 620,595 .
34. The standard form is 430,696 .
35. The expanded form is $600+40+3$.
36. The expanded form is $500+70+2$.
37. The expanded form is $5000+40+6$.
38. The expanded form is $3000+50+7$.
39. The expanded form is $80,000+1000+300+60+4$.
40. The expanded form is $70,000+2000+500+40+6$.
41. The expanded form is $50,000+5000+30+8$.
42. The expanded form is $40,000+4000+20+9$.
43. The expanded form is
$20,000,000+8,000,000+600,000+40,000$.
44. The expanded form is $50,000,000+6,000,000+300,000+7000+30+2$.
45. $9>3$ because 9 is to the right of 3 on the number line.
46. $7>2$ because 7 is to the right of 2 on the number line.
47. $0<14$ because 0 is to the left of 14 on the number line.
48. $0<16$ because 0 is to the left of 16 on the number line.
49. $3600<4500$ because 36000 is to the left of 4500 on the number line.
50. $2300<3200$ because 2300 is to the left of 3200 on the number line.
51. $200,000>20,000$ because 200,000 is to the right of 20,000 on the number line.
52. $300,000>30,000$ because 300,000 is to the right of 30,000 on the number line.
53. 624 rounded to the nearest ten is 620 .
54. 372 rounded to the nearest ten is 370 .
55. 627 rounded to the nearest ten is 630 .
56. 378 rounded to the nearest ten is 380 .
57. 4891 rounded to the nearest hundred is 4900 .
58. 5482 rounded to the nearest hundred is 5500 .
59. 4831 rounded to the nearest hundred is 4800 .
60. 5432 rounded to the nearest hundred is 5400 .
61. 61,529 rounded to the nearest thousand is 62,000 .
62. 72,503 rounded to the nearest thousand is 73,000 .
63. 61,129 rounded to the nearest thousand is 61,000 .
64. 72,103 rounded to the nearest thousand is 72,000 .
65. 24,628 rounded to the nearest ten-thousand is 20,000.
66. 34,628 rounded to the nearest ten-thousand is 30,000.
67. 345,207 rounded to the nearest ten-thousand is 350,000.
68. 645,308 rounded to the nearest ten-thousand is 650,000.
69. $86,609,100$ rounded to the nearest million is 87,000,000.
70. $75,809,100$ rounded to the nearest million is 76,000,000.
71. $86,409,100$ rounded to the nearest million is 86,000,000.
72. $75,309,100$ rounded to the nearest million is 75,000,000.
73. $86,609,100$ rounded to the nearest ten-million is 90,000,000.
74. $75,809,100$ rounded to the nearest million is 80,000,000.
75. ninety-two quadrillion, two hundred thirty-three trillion, seven hundred twenty billion, three hundred sixty-eight million, five hundred forty-seven thousand, eight hundred.
76. ten-quadrillions
77. $700,000,000,000+20,000,000,000$
78. $90,000,000,000,000,000+2,000,000,000,000,000$
79. $92,233,720,368,547,800$ rounded to the nearest tenquadrillion is $90,000,000,000,000,000$.
The word name is ninety quadrillion.
80. $92,233,720,368,547,800$ rounded to the nearest quadrillion is $92,000,000,000,000,000$.
The word name is ninety-two quadrillion
81. Steven Spielberg generates the greatest revenue per year which is $\$ 27,400,000$. In word form this is twenty-seven million, four hundred thousand dollars.
82. Tom Cruise generates the greatest revenue per movie which is $\$ 17,100,000$. In word form this is seventeen million, one hundred thousand dollars.
83. Samuel L. Jackson generates the least revenue per movie. His yearly revenue is $\$ 24,400,000$. In word form this is twenty-four million, four hundred thousand dollars.
84. Johnny Depp generates between ten million dollars and eleven million dollars per movie. His yearly revenue is $\$ 24,300,000$. In word form this is twentyfour million, three hundred thousand dollars.
85. Tom Cruise and Tom Hanks generate the same revenue per year.
Tom Cruise generates the greatest revenue per movie which is $\$ 17,100,000$. In word form this is seventeen million, one hundred thousand dollars.
86. Tom Cruise and Tom Hanks generate the same revenue per year.
Tom Hanks generates the lesser revenue per movie which is $\$ 12,000,000$. In word form this is 12 million dollars.
87. $\$ 53,664$
88. $\$ 53,285$
89. 2011
90. 2010
91. The maximum is shown by the highest bar in the graph. This occurs in 2007 at $\$ 55,627$.
92. The minimum is shown by the lowest bar in the graph. This occurs in 2012 at $\$ 51,017$.
93. $2,376,206$; two million, three hundred seventy-six thousand, two hundred six
94. $1,857,160$; one million; eight hundred fifty-seven thousand, one hundred sixty
95. Williams
96. Brown and Jones
97. $1,857,160$ rounded to the nearest hundred-thousand is $1,900,000$.
98. $2,376,206$ rounded to the nearest hundred-thousand is $2,400,000$.
99. The 3 is in the ten-thousands place.
100. The 8 is in the ten-thousands place.
101. $1,380,145<1,534,042$
102. $1,857,160>1,380,145$
103. two thousand, four hundred fifty-three
104. two hundred two thousand, twenty-two
105. 102,063
106. 12,042
107. - 117. Answers will vary.
1. does not make sense; Explanations will vary. Sample explanation: Adding one to this number would create a bigger number.
2. makes sense
3. makes sense
4. makes sense
5. true
6. false; Changes to make the statement true will vary. A sample change is: The number 32,864 is written in standard form.
7. false; Changes to make the statement true will vary. A sample change is: When rounding whole numbers, the digit to be rounded either stays the same or increases by 1 .
8. false; Changes to make the statement true will vary. A sample change is: When comparing numbers of various items, tables are just as effective as bar graphs.
9. The whole numbers from 10 to 40 would be rounded to 10 or 20 or 30 or 40 . So there are four different rounded numbers.
10. a. 46 rounded to the nearest ten is 50 .
b. 23 rounded to the nearest ten is 20 .
c. $46+23 \approx 50+20=70$
11. a. $10 ; 10$
b. $8 ; 8$
c. No the order does not make a difference.
12. a. 9
b. 9
c. No the group changes does not change the answer.

1.2 Check Points

1. 7243
$\begin{array}{r}+632 \\ \hline 7875\end{array}$
2. $\quad \stackrel{1}{2,09} 7$
$\begin{array}{r}+8,544 \\ \hline 10,641\end{array}$
3. 222 2 572

329,874
$\begin{array}{r}4,882 \\ \hline\end{array}$
360,328
4. Exact Estimate
$25,572 \approx 26,000$
$329,874 \approx 330,000$
$+4,882 \approx \frac{+5,000}{361,000}$
The exact sum from Check Point 3 seems reasonable.
5. a. associative property of addition
b. identity property of addition
c. commutative property of addition
d. commutative property of addition
6. $15+3+5+7+8$ could be rearranged as $\overbrace{15+5}^{20}+\overbrace{3+7}^{10}+8$ which is $20+10+8=38$.
7. a. Billy Crystal's number
$=$ Johnny Carson's number +4
$=5+4$
$=9$
Billy Crystal hosted the Oscars 9 times.
b. Bob Hope's number
$=$ Johnny Carson's number +13
$=5+13$
$=18$
Bob Hope hosted the Oscars 18 times.
c. $5+9+18=32$

Johnny Carson, Billy Crystal, and Bob Hope hosted the Oscars a total of 32 times.
8. 11 feet +11 feet +9 feet +9 feet +13 feet $=53$ feet
9. 38 yd

19 yd
38 yd
+19 yd
114 yd
The yard requires 114 yd of fencing.

1.2 Concept and Vocabulary Check

1. sum; addends
2. carrying
3. identity
4. commutative
5. associative
6. rectangle; length
7. perimeter

1.2 Exercise Set

1. 23
$\begin{array}{r}+42 \\ \hline 65\end{array}$
2. 26
$+33$
59
3. 53
$\begin{array}{r}+340 \\ \hline 393\end{array}$
4. 67
$+230$
297
5. 4762
$+\frac{+124}{4886}$
6. 5643
$\begin{array}{r}+325 \\ \hline 5968\end{array}$
7. 2542
$+\frac{126}{2668}$
8. 3427
$\begin{array}{r}+261 \\ \hline 3688\end{array}$
9. 89
$+32$
121
10. 97
+54
+151
11. 4308
$\begin{array}{r}+2956 \\ \hline 7264\end{array}$
12. 5706
$\begin{array}{r}+3645 \\ \hline 9351\end{array}$
13. 5274
+6298
$+11,572$
14. 3748
$\begin{array}{r}+8397 \\ \hline 12,145\end{array}$
15. 741

325
$\begin{array}{r}+986 \\ \hline\end{array}$
2052
16. 876

521
$+994$
2391
17. 62,833

8,763
$\begin{array}{r}8,763 \\ +\quad 98 \\ \hline 71,694\end{array}$
71,694
18. 57,926

5,843
$\begin{array}{r}5,843 \\ +\quad 79 \\ \hline 63,848\end{array}$
19. 804,127

39,705
$\begin{array}{r}+\quad 2,008 \\ \hline 845,840\end{array}$
20. 906,238

29,507
$\begin{array}{r}+\quad 4,007 \\ \hline 939,752\end{array}$
21. 3,788

9,546
2,030
$\begin{array}{r}+83,947 \\ \hline 99,311\end{array}$
22. 5,877

8,493
5,060
$\begin{array}{r}+94,726 \\ \hline 114,156\end{array}$
23. Exact Estimate

49	≈ 50
37	≈ 40
+22	$\approx \frac{+20}{110}$

24. Exact Estimate

$$
\begin{aligned}
62 & \approx 60 \\
43 & \approx 40 \\
+19 & \approx \frac{+20}{120}
\end{aligned}
$$

25. $\begin{array}{rlr}\text { Exact } & \text { Estimate } \\ 2513 & \approx \begin{array}{r}2500 \\ 864\end{array} & \approx 900 \\ +1937 & \approx \frac{+1900}{5300}\end{array}$
26. Exact Estimate
$3416 \approx 3400$
$778 \approx 800$
$+1926 \approx \frac{+1900}{6100}$
27. Exact Estimate
$62,534 \approx 63,000$
$4107 \approx 4000$
$+8612 \approx \frac{+9000}{76,000}$
28. $\begin{aligned} \text { Exact } & \text { Estimate } \\ 84,517 & \approx 85,000 \\ 6103 & \approx 6000 \\ +7814 & \approx \frac{+8000}{99,000}\end{aligned}$
29. a. $6234+7983 \approx 6000+8000$

$$
=14,000
$$

b. No, the estimate does not seem reasonable.
30. a. $6807+4150 \approx 7000+4000$

$$
=11,000
$$

b. No, the estimate does not seem reasonable.
31. a. $18,972+378,641+6874$

$$
\begin{aligned}
& \approx 20,000+380,000+7000 \\
& =407,000
\end{aligned}
$$

b. Yes, the estimate seems reasonable.
32. a. $28,612+287,611+7862$

$$
\begin{aligned}
& \approx 30,000+290,000+8000 \\
& =328,000
\end{aligned}
$$

b. Yes, the estimate seems reasonable.
33. commutative property of addition
34. commutative property of addition
35. associative property of addition
36. associative property of addition
37. identity property of addition
38. identity property of addition
39. identity property of addition
40. identity property of addition
41. commutative property of addition
42. commutative property of addition
43. $12+7+8+3=\overbrace{12+8}^{20}+\overbrace{7+3}^{10}$

$$
\begin{aligned}
& =20+10 \\
& =30
\end{aligned}
$$

44. $18+9+2+1=\overbrace{18+2}^{20}+\overbrace{9+1}^{10}$

$$
\begin{aligned}
& =20+10 \\
& =30
\end{aligned}
$$

45. $32+7+11+8+39=\overbrace{32+8}^{40}+\overbrace{11+39}^{50}+7$

$$
\begin{aligned}
& =40+50+7 \\
& =97
\end{aligned}
$$

46. $22+4+1+8+59=\overbrace{22+8}^{30}+\overbrace{1+59}^{60}+4$

$$
=30+60+4
$$

$$
=94
$$

47. $96+5+4+195+17=\overbrace{96+4}^{100}+\overbrace{5+195}^{200}+17$

$$
\begin{aligned}
& =100+200+17 \\
& =317
\end{aligned}
$$

48. $93+4+7+196+12=\overbrace{93+7}^{100}+\overbrace{4+196}^{200}+12$

$$
=100+200+12
$$

$$
=312
$$

49. $412+123=535$
50. $514+226=740$
51. $89+45=134$
52. $93+28=121$
53. $5492+12,326=17,818$
54. $8943+13,517=22,460$
55. $127,813+2799=130,612$
56. $138,514+3786=142,300$
57. $87+93+8+2015=2203$
58. $94+72+5+3017=3188$
59. $2917+306+14,999=18,222$
60. $3716+504+15,998=20,218$
61. 8 inches

10 inches
8 inches
$\frac{+10 \text { inches }}{36 \text { inches }}$
The perimeter is 36 inches.
62. 14 inches

9 inches
14 inches
$\begin{array}{r}+9 \text { inches } \\ \hline 46 \text { inches }\end{array}$
The perimeter is 46 inches.
63. 9 feet

7 feet
+11 feet
27 feet
The perimeter is 27 feet.
64. 10 feet

16 feet
+9 feet
35 feet
The perimeter is 35 feet.
65. 6 yards

8 yards
6 yards
$\frac{+8 \text { yards }}{28 \text { yards }}$
The perimeter is 28 yards.
66. 7 yards

$$
18 \text { yards }
$$

7 yards
$\frac{+18 \text { yards }}{50 \text { yards }}$
The perimeter is 50 yards.
67. 250 inches

250 inches
250 inches
$\frac{+250 \text { inches }}{1000 \text { inches }}$
The perimeter is 1000 inches.
68. 50 inches

50 inches
50 inches
$\frac{+50 \text { inches }}{200 \text { inches }}$
The perimeter is 200 inches.
69. 9 yards

9 yards
12 yards
12 yards
21 yards
+21 yards
84 yards
The perimeter is 84 yards.
70. 5 inches

13 inches
9 inches
4 inches
14 inches
+17 inches
62 inches
The perimeter is 62 inches.
71. $\overbrace{517+0}^{517}=\overbrace{514+3}^{517}$
72. $\overbrace{825+0}^{825}=\overbrace{821+4}^{825}$
73. $\overbrace{53+64}^{117}>\overbrace{41+74}^{115}$
74. $\overbrace{62+14+18}^{94}>\overbrace{23+49+18}^{90}$
75. $\overbrace{61+10}^{71}<\overbrace{50+35}^{85}$
76. $\overbrace{57+30}^{87}<\overbrace{66+22}^{88}$
77. $\overbrace{239+1268+1590}^{3097}>\overbrace{598+1248+71}^{1917}$
78. $\overbrace{2105+2892+4300}^{9297}>\overbrace{1400+3429+99}^{4928}$
79. Number of dogs named Bella $=$ Number of dogs named Lucy +2089

$$
\begin{aligned}
& =3571+2089 \\
& =5660
\end{aligned}
$$

5660 dogs are named Bella.
80. Number of dogs named Bailey $=$ Number of dogs named Lucy +417

$$
\begin{aligned}
& =3571+417 \\
& =3988
\end{aligned}
$$

3988 dogs are named Bailey.
81. Number of dogs named Bailey $=$ Number of dogs named Molly +707

$$
\begin{aligned}
& =3281+707 \\
& =3988
\end{aligned}
$$

3988 dogs are named Bailey.
82. Number of dogs named Bella $=$ Number of dogs named Molly +2379

$$
\begin{aligned}
& =3281+2379 \\
& =5660
\end{aligned}
$$

5660 dogs are named Bella.
83. 5660 Named Bella (from a previous exercise)

3958 Named Max (from bar graph)
+3571 Named Max (from bar graph)
13,189
84. 3988 Named Bailey (from a previous exercise)

3958 Named Max (from bar graph)
+3571 Named Max (from bar graph)
11,517
85. a. Exact Estimate

59 feet ≈ 60 feet
23 feet ≈ 20 feet
25 feet ≈ 30 feet
46 feet ≈ 50 feet
+43 feet $\approx \frac{+40 \text { feet }}{200 \text { feet }}$
The estimate is 200 feet.
b. $\quad 59$ feet

23 feet
25 feet
46 feet
+43 feet
196 feet
The perimeter is 196 feet.
86. a.

Exact	Estimate
3 feet	\approx0 feet 15 feet
21 feet	≈ 20 feet
15 feet	≈ 20 feet
9 feet	\approxfeet +24 feet
$+\frac{+20 \text { feet }}{90 \text { feet }}$	

The estimate is 90 feet.
b. 3 feet

15 feet
21 feet
15 feet
9 feet
+24 feet
87 feet
The perimeter is 87 feet.
87. - 96. Answers will vary.
97. does not make sense; Explanations will vary.

Sample explanation: No column's sum exceeded 9.
98. makes sense
99. makes sense
100. makes sense
101. false; Changes to make the statement true will vary. A sample change is: The expressions are equal because of the commutative property of addition.
102. true
103. true
104. true
105. The two smaller vertical sides total 7 inches, so the unlabeled vertical side must also be 7 inches. The two smaller horizontal sides total 9 inches, so the unlabeled horizontal side must also be 9 inches.

3 inches
4 inches
7 inches
3 inches
6 inches
+9 inches

> 32 inches
> The perimeter is 32 inches.
106. The labeled vertical side is 8 inches, so the 2 smaller vertical sides must total 8 inches. Since one of these vertical sides is labeled 3 inches, the unlabeled vertical side must be 5 inches
The horizontal vertical side is 10 inches, so the 2 smaller horizontal sides must total 10 inches. Since one of these horizontal sides is labeled 5 inches, the unlabeled horizontal side must also be 5 inches.

8 inches
5 inches
3 inches
10 inches
5 inches
$\begin{array}{r}+5 \text { inches } \\ \hline 36 \text { inches }\end{array}$
The perimeter is 36 inches.
107. Answers will vary.
108. $8-2=6$ because $6+2=8$.
109. Yes, the sum is 92 .

78
$\begin{array}{r}+14 \\ \hline 92\end{array}$
110. $5-3=2$

1.3 Check Points

1. a. $13-10=3$

Check: $3+10=13$
b. $8-2=6$

Check: $6+2=8$
c. $12-12=0$

Check: $0+12=12$
d. $40-0=40$

Check: $40+0=40$
2. 6893 Check: 6172
$\frac{-721}{6172} \quad \frac{+721}{6893}$
3. $5 \not \subset \not 2 \quad$ Check: 517

$$
\frac{-45}{517} \quad \frac{+45}{562}
$$

4. $\begin{aligned} & 41517 \\ & \$ 8 \not 6 \not 74 \\ & \text { Check: }\end{aligned} 4781$
$\frac{-893}{4781} \quad \frac{+893}{5674}$
5. $\begin{array}{r}9 \\ 6 \not 1010 \\ 7 \not \emptyset \varnothing \\ -256 \\ \hline 444\end{array} \quad$ Check: $\begin{array}{r} \\ \hline\end{array} \quad \begin{array}{r}444 \\ +256 \\ \hline 700\end{array}$
6. $\begin{aligned} \text { Exact } & \text { Estimate } \\ 5674 & \approx \begin{array}{c}6000 \\ -893\end{array}\end{aligned} \frac{-1000}{5000}$

The exact difference of 4781, determined in Check Point 4, seems reasonable.
7. a. 130,490 (Lawyers)

$$
\frac{-45,230}{85,260} \text { (All Occupations) }
$$

The difference is $\$ 85,260$.
b. 130,490 (Lawyers)

$$
\frac{-60,360}{70,130}
$$

(Accountants)
The average salary for accountants is $\$ 70,130$.
8. Balance after May $\begin{aligned} 10 & =\overbrace{820}^{\begin{array}{c}\text { Balance } \\ \text { May } 1\end{array}}-\overbrace{(450+85+5+37)}^{\begin{array}{c}\text { Withdrawls on or } \\ \text { before May } 10\end{array}} \\ & =820-577 \\ & =243\end{aligned}$

The balance after May 10 is $\$ 243$.

1.3 Concept and Vocabulary Check

1. minuend; subtrahend; difference
2. $2 ; 10 ; 12$
3. 0
4. borrowing

1.3 Exercise Set

1. 87 Check: 62
$\frac{-25}{62} \quad \frac{+25}{87}$
2. 73 Check: 31
-42
31 $\frac{+42}{73}$
3. $\begin{array}{r}598 \\ -325 \\ \hline 273\end{array} \quad$ Check: $\begin{array}{r}273 \\ +325 \\ \hline 598\end{array}$
4. 752 Check: 321

$$
\frac{-431}{321} \quad \frac{+431}{752}
$$

5. 376
$\begin{array}{r}-52 \\ \hline 324\end{array}$
Check:
324
$\begin{array}{r}+52 \\ \hline 376\end{array}$
6. 387
$\frac{-65}{322}$
7. 6288
$\frac{-178}{6110}$
Check: 6110
+178
6288
8. 9366

Check: 9120
$\frac{-246}{9120} \quad \frac{+246}{9366}$
9. $\begin{array}{r}6785 \\ -2385 \\ \hline 4400\end{array} \quad$ Check: $\begin{array}{r}4400 \\ +2385 \\ \hline 6785\end{array}$
10. 8453

Check: 5200
$\begin{array}{r}-3253 \\ \hline 5200\end{array}$

$$
\frac{+3253}{8453}
$$

11. 78,993

Check: 74,502
$\begin{array}{r}-4,491 \\ \hline 74,502\end{array}$

$$
\frac{+4,491}{78,993}
$$

12. 67,876

Check: 64,605
$\begin{array}{r}-3,271 \\ \hline 64,605\end{array}$

$$
\frac{+3,271}{67,876}
$$

13. 25,176 Check: 0
$\begin{aligned} &-25,176 \\ & 0+25,176 \\ & 25,176\end{aligned}$
14. 32,574
$-32,574$
0
Check: 0

$$
\begin{array}{r}
+32,574 \\
\hline 32,574
\end{array}
$$

15. 82

$$
\frac{-35}{47}
$$

$$
\text { Check: } \begin{array}{r}
47 \\
+35 \\
\hline 82
\end{array}
$$

16. 63
$-\frac{28}{35}$
Check: 35

$$
\frac{+28}{63}
$$

17. 80

Check: 53

$$
\frac{-27}{53}
$$

18. 90
Check: 47

$$
\frac{-43}{47}
$$

19. 857

Check: 184
$\frac{-673}{184} \quad \frac{+673}{857}$

21. 933 Check: 476

$$
\frac{-457}{476} \quad \frac{+457}{933}
$$

22. 746 Check: 347

$$
\frac{-399}{347} \quad \frac{+399}{746}
$$

23. 800 Check: 277

-523	
277	+523
800	

24. 500 Check: 224
$\begin{aligned} &-276 \\ & 224+276 \\ & 500\end{aligned}$
25. 253 Check: 206
$\frac{-47}{206} \quad \frac{+47}{253}$
26. 468 Check: 409
$\frac{-59}{409} \quad \frac{+59}{468}$
27. $\begin{array}{r}7382 \\ -460 \\ \hline 6922\end{array} \quad \begin{array}{r}6922 \\ +460 \\ \hline 7382\end{array}$
28. 8249 Check: 7929
$\frac{-320}{7929} \quad \frac{+320}{8249}$
29. 1533 Check: 1484
$\frac{-49}{1484} \quad \frac{+49}{1533}$
30. 1746 Check: 1657
$\frac{-89}{1657} \quad \frac{+89}{1746}$
31. $\begin{array}{r}1967 \\ -1928 \\ \hline 39\end{array} \quad$ Check: $\begin{array}{r}39 \\ +1928 \\ \hline 1967\end{array}$
32. 2952

Check: 5

$$
\frac{-2947}{5} \quad \frac{+2947}{2952}
$$

33. 42,566 Check: 28,858

$$
\frac{-13,708}{28,858} \quad \frac{+13,708}{42,566}
$$

34. 65,722
$\begin{array}{r}-26,807 \\ \hline 38,915\end{array}$
Check: 38,915

$$
\begin{array}{r}
+26,807 \\
\hline 65,722
\end{array}
$$

35. 60,000 Check: 32,017
$\frac{-27,983}{32,017} \quad \frac{+27,983}{60,000}$
36. $\begin{array}{r}80,000 \\ -39,982\end{array} \quad$ Check: $\begin{array}{r}40,018 \\ +39,982 \\ \hline 40,018\end{array} \quad \begin{aligned} & 80,000\end{aligned}$
37. 86,497
$\frac{-25,850}{60,647} \quad \frac{+25,850}{86,497}$
38. 71,111 Check: 52,113
$\frac{-18,998}{52,113} \quad \frac{+18,998}{71,111}$
39. Exact Estimate

$$
\begin{array}{r}
338 \approx 340 \\
-223 \approx \frac{-220}{120}
\end{array}
$$

40. Exact Estimate

$$
\begin{aligned}
586 & \approx 590 \\
-123 & \approx \frac{-120}{470}
\end{aligned}
$$

41. Exact Estimate

$$
\begin{aligned}
1875 & \approx 1900 \\
-1387 & \approx \frac{-1400}{500}
\end{aligned}
$$

42. Exact Estimate

$$
2813 \approx 2800
$$

$$
\frac{-2271}{} \approx \frac{-2300}{500}
$$

43. Exact Estimate

$$
\begin{aligned}
18,963 & \approx 19,000 \\
-16,218 & \approx \frac{-16,000}{3000}
\end{aligned}
$$

44. Exact Estimate

$$
\begin{aligned}
24,817 & \approx 25,000 \\
\frac{-13,199}{} & \approx \frac{-13,000}{12,000}
\end{aligned}
$$

45. a. Exact Estimate

$$
\begin{aligned}
3635 & \approx 3600 \\
-462 & \approx \frac{-500}{3100}
\end{aligned}
$$

b. No; An exact difference of 2173 does not seem reasonable.
46. a. Exact Estimate

$$
\begin{aligned}
1852 & \approx 1900 \\
-427 & \approx \frac{-400}{1500}
\end{aligned}
$$

b. No; An exact difference of 1025 does not seem reasonable.
47. $53-6=47$
48. $73-7=66$
49. $71-11=60$
50. $57-35=22$
51. $88-62=26$
52. $97-55=42$
53. $49-7=42$
54. $55-4=51$
55. $43-3=40$
56. $68-8=60$
57. $80-36=44$
58. $90-39=51$
59. $548-30=518$
60. $876-60=816$
61. $758-654=104$
62. $497-293=204$
63. $9083-134=8949$
64. $3935-885=3050$
65. 905,008
$\begin{array}{r}-280,034 \\ \hline 624,974\end{array}$
66. $2,013,000$
$\begin{array}{r}-507,093 \\ \hline 1,505,907\end{array}$
67. $\overbrace{35-15}^{20}=\overbrace{80-60}^{20}$
68. $\overbrace{40-35}^{5}=\overbrace{85-80}^{5}$
69. $\overbrace{458-84}^{374}<\overbrace{716-330}^{386}$
70. $\overbrace{121-53}^{68}>\overbrace{761-706}^{55}$
71. 70 (Minuend)
$\begin{aligned}-40 & \text { (Subtrahend) } \\ 30 & \text { (Difference) }\end{aligned}$
72. 100 (Minuend)
-90 (Subtrahend)
10 (Difference)
73. 1550
$\begin{array}{r}-122 \\ \hline 1428\end{array}$
The difference is 1428 years.
74. 1550
$\frac{-405}{1145}$
The difference is 1145 years.
75. 405
-195
210
The extreme lifespan of a whale is 210 years.
76. 405
$\begin{array}{r}-328 \\ \hline 77\end{array}$
The extreme lifespan of a cockatoo is 77 years.
77. 122
$-\frac{28}{94}$
The extreme lifespan of a dog is 94 years less than the extreme lifespan of a human.
78. 122
$\frac{-38}{84}$
The extreme lifespan of a cat is 84 years less than the extreme lifespan of a human.
79. Balance $=\overbrace{(1050+435)}^{\text {Deposits }}-\overbrace{(525+185+4+100+190)}^{\text {Withdrawls }}$

$$
\begin{aligned}
& =1485-1004 \\
& =481
\end{aligned}
$$

The balance after June 25 is $\$ 481$.
80. Balance $=\overbrace{(1120+350)}^{\text {Deposits }}-\overbrace{(615+145+225+300+4)}^{\text {Withdrawls }}$

$$
\begin{aligned}
& =1470-1289 \\
& =181
\end{aligned}
$$

The balance after December 31 is $\$ 181$.
81.

Rectangle:	$\underline{\text { Square: }}$
17 feet	14 feet
13 feet	14 feet
17 feet	14 feet
+13 feet	+ 14 feet
60 feet	56 feet

Difference:
60 feet (Rectangle)

- 56 feet (Square)

4 feet
The rectangular garden requires 4 more feet of fencing than the square garden.
82.

$\underline{\text { Rectangle: }}$	Square:
23 feet	16 feet
11 feet	16 fee
23 feet	16 fee
+11 feet	+16 feet
68 feet	

Difference:
68 feet (Rectangle)

- 64 feet (Square)

4 feet
The rectangular garden requires 4 more feet of fencing than the square garden.
83. - 88. Answers will vary.
89. does not make sense; Explanations will vary. Sample explanation: To check a subtraction problem by add the difference to the subtrahend.
90. does not make sense; Explanations will vary. Sample explanation: Borrowing is unnecessary because each digit in the subtrahend exceeds the corresponding digit in the minuend.
91. makes sense
92. makes sense
93. true
94. true
95. false; Changes to make the statement true will vary. A sample change is: When 30 is subtracted from 50, 30 is the subtrahend.
96. true
97. 479
-184
295
98. 849
-355
494
99. No; the associative property cannot be applied to subtraction.
$10-(6-1)=10-5=5$
$(10-6)-1=4-1=3$
100. Answers will vary.
101. eighty-nine thousand, one hundred sixty-two
102. 35,287
$\begin{array}{r}+4,956 \\ \hline 40,243\end{array}$
103. Exact Estimate
$35,287 \approx 35,000$
$+4,956 \approx \frac{+5,000}{40,000}$
104. a. $5 \times 3=5+5+5=15$
b. $2 \times 4=2+2+2+2=8$
c. $6 \times 7=6+6+6+6+6+6+6=42$
105. a. $(2 \times 3) \times 5=6 \times 5=30$
b. $2 \times(3 \times 5)=2 \times 15=30$
c. No; the grouping did not change the answer.
106. a. $2839 \approx 3000$
b. $621 \approx 600$
c. $2839 \times 621 \approx 3000 \times 600$

1.4 Check Points

1. a. $73 \cdot 1=73$
b. $73 \times 0=0$
c. $0(14)=0$
d. $1 \times 13=13$
2. a. associative property of multiplication
b. commutative property of multiplication
c. commutative property of multiplication
3. a. $10(4+5)=10 \cdot 4+10 \cdot 5$
b. $10(4+5)=10(9)=90$
$10 \cdot 4+10 \cdot 5=40+50=90$
Yes, both methods give the same answer.
4. 243
$\times 2$
486

- 12

5. 823
$\times 7$
5761
6. 258
$\frac{\times 24}{1032}$
$\begin{array}{r}+5160 \\ \hline 6192\end{array}$
7. 437
$\begin{array}{r}\times 253 \\ \hline 1311\end{array}$

21850
$\begin{array}{r}+87400 \\ \hline 110,561\end{array}$
8. 723

$$
\begin{array}{r}
\times 205 \\
3615 \\
+144600 \\
\hline 148,215
\end{array}
$$

9. a. $953 \cdot 1000=953,000$
b. $4026 \cdot 100=402,600$
10. $2 \cdot 7 \cdot 5 \cdot 3=\overbrace{2 \cdot 5 \cdot 7 \cdot 3}^{10} \overbrace{2}^{21}$

$$
\begin{aligned}
& =10 \cdot 21 \\
& =210
\end{aligned}
$$

11. a. 28
$\times 7$
$\times 196$
Attach 3 zeros to 196.
$28(7000)=196,000$
b. $2 \times 8=16$

Attach $2+3$, or 5 zeros to 16 .
$200 \cdot 8000=1,600,000$
12. $4796 \times 817 \approx 5000 \times 800$

$$
=4,000,000
$$

13. amount spent on housing and utilities $=(5 \cdot 126)+35$

$$
\begin{aligned}
& =630+35 \\
& =665
\end{aligned}
$$

The amount spent on housing and utilities is $\$ 665$.
14. Total Sales $=\overbrace{83 \cdot 12}^{\text {Adult tickets }}+\stackrel{\text { Child tickets }}{57 \cdot 5}$

$$
\begin{aligned}
& =996+285 \\
& =1281
\end{aligned}
$$

The total amount collected in ticket sales is $\$ 1281$.
15. a. 21

$$
\begin{array}{r}
\times 18 \\
168 \\
+210 \\
\hline 378
\end{array}
$$

The area of the floor is 378 square feet.
b. 378
$\begin{array}{r}\times \quad 7 \\ \hline 2646\end{array}$
The cost of the carpeting is $\$ 2646$.

1.4 Concept and Vocabulary Check

1. $6+6+6$
2. factors; product
3. 0
4. identity
5. commutative
6. associative
7. distributive; distributes
8. five
9. length; width; square

1.4 Exercise Set

1. $27 \cdot 1=27$
2. $39 \cdot 1=39$
3. $0 \cdot 27=0$
4. $0 \cdot 39=0$
5. $(1)(1205)=1205$
6. $(1)(1372)=1372$
7. $7 \cdot 0 \cdot 3=0$
8. $7 \cdot 0 \cdot 5=0$
9. commutative property of multiplication
10. commutative property of multiplication
11. associative property of multiplication
12. associative property of multiplication
13. distributive property
14. distributive property
15. commutative property of addition
16. commutative property of addition
17. commutative property of multiplication
18. commutative property of multiplication
19. a. $4(3+5)=4 \cdot 3+4 \cdot 5$
b. $4(3+5)=4(8)=32$
$4 \cdot 3+4 \cdot 5=12+20=32$
Yes, both methods give the same answer.
20. a. $3(4+5)=3 \cdot 4+3 \cdot 5$
b. $3(4+5)=3(9)=27$
$3 \cdot 4+3 \cdot 5=12+15=27$
Yes, both methods give the same answer.
21. 23
$\times 3$
69
22. 41
$\times 2$
82
23. 62
$\begin{array}{r}\times \quad 4 \\ \hline 248\end{array}$
24. 73
$\begin{array}{r}\times 2 \\ \hline 146\end{array}$
25. 402
$\times 3$
1206
26. 503
$\begin{array}{r}\times \quad 3 \\ \hline\end{array}$
1509
27. 52
$\times 8$
416
28. 48
$\begin{array}{r}\times \quad 3 \\ \hline 144\end{array}$
29. 56
$\begin{array}{r}\times \quad 9 \\ \hline 504\end{array}$
30. 38
$\times 9$
342
31. 614
$\begin{array}{r}\times \quad 6 \\ \hline 3684\end{array}$
32. 613
$\begin{array}{r}\times \quad 7 \\ \hline 4291\end{array}$
33. 277
$\begin{array}{r}\times \quad 8 \\ \hline 2216\end{array}$
34. 488
$\begin{array}{r}\times \quad 6 \\ \hline 2928\end{array}$
35. 3074
$\times \quad 5$
15,370
36. 4038
$\begin{array}{r}\times \quad 5 \\ \hline 20,190\end{array}$
37. 19
$\begin{array}{r}\times 18 \\ \hline 152\end{array}$
$\begin{array}{r}+190 \\ \hline 342\end{array}$
38. 23
$\begin{array}{r}\times 15 \\ \hline 115\end{array}$
$\begin{array}{r}+230 \\ \hline 345\end{array}$
39. 53
$\begin{array}{r}\times 53 \\ \hline 159\end{array}$
$\begin{array}{r}+2650 \\ \hline 2809\end{array}$
40. 64

$$
\begin{array}{r}
\times 64 \\
256 \\
+3840 \\
\hline 4096
\end{array}
$$

41. 163

$$
\begin{array}{r}
\times 23 \\
+389 \\
+3260 \\
\hline 3749
\end{array}
$$

42. 136

$$
\frac{\times 32}{272}
$$

$$
+4080
$$

43. 706
$\times 83$
2118

$$
\begin{array}{r}
+56480 \\
\hline 58,598
\end{array}
$$

44. 807

$$
\begin{array}{r}
\times 46 \\
+3842 \\
+32280 \\
\hline 37,122
\end{array}
$$

45. 2357
$\times 79$
21213

$$
\frac{+164990}{186,203}
$$

46. 5732
$4 \frac{\times 97}{40124}$
$\begin{array}{r}+515880 \\ \hline 556,004\end{array}$
47. 135
$\begin{array}{r}\times 112 \\ \hline 270\end{array}$
1350

$$
\frac{+13500}{15,120}
$$

48. 351
$\begin{array}{r}\times 114 \\ \hline 1404\end{array}$ 3510
$\begin{array}{r}+35100 \\ \hline 40,014\end{array}$
49. 3427
$\begin{array}{r}\times 828 \\ \hline 27416\end{array}$
68540
$\begin{array}{r}+2741600 \\ \hline 2,837,556\end{array}$
50. $\begin{array}{r}4372 \\ \times 288 \\ \hline 34976 \\ 349760 \\ +874400 \\ \hline 1,259,136\end{array}$
51. 324

$$
\frac{\times 609}{2916}
$$

$$
\begin{array}{r}
+194400 \\
\hline 197,316
\end{array}
$$

52. 721

$$
\frac{\times 807}{5047}
$$

$$
\begin{array}{r}
+576800 \\
\hline 581,847
\end{array}
$$

53. 985

$$
\begin{array}{r}
\times 230 \\
29550 \\
+197000 \\
\hline 226,550
\end{array}
$$

54. 658
$\begin{array}{r}\times 320 \\ \hline 13160\end{array}$

$$
\frac{+197400}{210,560}
$$

55. 332

$$
\begin{array}{r}
\times 2400 \\
\hline 13280 \\
+664000 \\
\hline 796,800
\end{array}
$$

56. 234
$\begin{array}{r}\times 4200 \\ \hline 46800\end{array}$

$$
\frac{+936000}{982,800}
$$

57. $(749)(58)(0)=0$
58. $(972)(85)(0)=0$
59. $157 \cdot 10=1570$
60. $238 \cdot 10=2380$
61. $8 \times 100=800$
62. $7 \times 100=700$
63. $22(1000)=22,000$
64. $37(1000)=37,000$
65. $4207 \times 10,000=42,070,000$
66. $5306 \times 10,000=53,060,000$
67. $4 \cdot 6 \cdot 25=\overbrace{4 \cdot 25}^{100} \cdot 6$

$$
\begin{aligned}
& =100 \cdot 6 \\
& =600
\end{aligned}
$$

68. $4 \cdot 7 \cdot 25=\overbrace{4 \cdot 25}^{100} \cdot 7$

$$
\begin{aligned}
& =100 \cdot 7 \\
& =700
\end{aligned}
$$

69. $2 \cdot 9 \cdot 5 \cdot 3=\overbrace{2 \cdot 5 \cdot 5 \cdot \overbrace{9}^{10}}^{27}$

$$
=10 \cdot 27
$$

$$
=270
$$

70. $5 \cdot 9 \cdot 3 \cdot 2=\overbrace{5 \cdot 2 \cdot 2 \cdot 9 \cdot 3}^{27}$

$$
\begin{aligned}
& =10 \cdot 27 \\
& =270
\end{aligned}
$$

71. $7 \times 4000=28,000$
72. $3 \times 8000=24,000$
73. 53
$\frac{\times 7}{371}$
Attach 4 zeros to 371.
$53(70,000)=3,710,000$
74. 47
$\frac{\times 8}{376}$
Attach 4 zeros to 376.
$47(80,000)=3,760,000$
75. $7 \times 9=63$

Attach $1+2$, or 3 zeros to 63 . $70 \times 900=63,000$
76. $9 \times 4=36$

Attach $1+2$, or 3 zeros to 36 .
$90 \times 400=36,000$
77. $2 \cdot 16=32$

Attach $3+3$, or 6 zeros to 32 .
$2000 \times 16,000=32,000,000$
78. $3 \cdot 12=36$

Attach $3+3$, or 6 zeros to 36 .
$3000 \times 12,000=36,000,000$
79. $83 \times 29 \approx 80 \times 30$

$$
=2400
$$

Yes, an exact product of 2407 seems reasonable.
80. $48 \times 33 \approx 50 \times 30$

$$
=1500
$$

Yes, an exact product of 1584 seems reasonable.
81. $312 \times 58 \approx 300 \times 60$

$$
=18,000
$$

Yes, an exact product of 18,906 seems reasonable.
82. $519 \times 38 \approx 500 \times 40$

$$
=20,000
$$

Yes, an exact product of 19,722 seems reasonable.
83. $273 \times 114 \approx 300 \times 100$

$$
=30,000
$$

No, an exact product of 311,222 does not seem reasonable.
84. $386 \times 217 \approx 400 \times 200$

$$
=80,000
$$

No, an exact product of 837,622 does not seem reasonable.
85. $(4826)(523) \approx(5000)(500)$

$$
=2,500,000
$$

Yes, an exact product of $2,523,998$ seems reasonable.
86. $(3906)(517) \approx(4000)(500)$

$$
=2,000,000
$$

Yes, an exact product of $2,019,402$ seems reasonable.
87. $90 \cdot 4=360$
88. $60 \cdot 7=420$
89. $18 \cdot 9=162$
90. $26 \cdot 5=130$
91. $4 \cdot 800=3200$
92. $3 \cdot 900=2700$
93. $2 \cdot 307=614$
94. $2 \cdot 408=816$
95. $2 \cdot 1873=3746$
96. $2 \cdot 2946=5892$
97. $3 \cdot 3240=9720$
98. $3 \cdot 4320=12,960$
99. $6 \times 9=54$

The area is 54 square feet.
100. 20
$\begin{array}{r}\times 24 \\ \hline 80\end{array}$
$\begin{array}{r}+400 \\ \hline 480\end{array}$
The area is 480 square feet.
101. 30
$\begin{array}{r}\times 15 \\ \hline 150\end{array}$
$\begin{array}{r}+300 \\ \hline 450\end{array}$
The area is 450 square yards.
102. 14
$\frac{\times 3}{42}$
The area is 42 square yards.
103. 528
$\begin{array}{r}\times 603 \\ \hline 1584\end{array}$
$\begin{array}{r}+316800 \\ \hline 318,384\end{array}$
three hundred eighteen thousand, three hundred eighty-four
104. 528
$\begin{array}{r}\times 603 \\ \hline 2562\end{array}$
$\begin{array}{r}+341600 \\ \hline 344,162\end{array}$
three hundred forty-four thousand, one hundred sixty-two
105. $\overbrace{64 \cdot 8-300}^{212}<\overbrace{3 \cdot 79-10}^{227}$
106. $\overbrace{87 \cdot 6-200}^{322}<\overbrace{53 \cdot 7-40}^{331}$
107. $\overbrace{59 \cdot 6-3 \cdot 58}^{180}>\overbrace{39 \cdot 8-52 \cdot 4}^{104}$
108. $\overbrace{12(4+3)}^{84}<\overbrace{2 \cdot 41+3}^{85}$
109. $3 \cdot 486-232=1458-232$

$$
=1226
$$

There were 1226 billionaires in 2012.
110. $7 \cdot 140-34=980-34$

$$
=946
$$

There were 946 billionaires in 2007.
111. 485
$\frac{\times 12}{970}$
$\begin{array}{r}+4850 \\ \hline 5820\end{array}$
It will travel 5820 miles.
112. 38
$\begin{array}{r}\times 12 \\ \hline 76\end{array}$
$\begin{array}{r}+380 \\ \hline 456\end{array}$
You can travel 456 miles.
113. 12
$\begin{array}{r}\times 18 \\ \hline 96\end{array}$
$+120$
It will take 216 minutes.
114. 28
$\begin{array}{r}\times 31 \\ \hline 28\end{array}$
$\begin{array}{r}+840 \\ \hline 868\end{array}$
You use 868 gallons.
115. Total cost $=\overbrace{16 \cdot 378}^{\text {airfare }}+\overbrace{16 \cdot 260}^{\text {food/lodging }}$

$$
\begin{aligned}
& =6048+4160 \\
& =10,208
\end{aligned}
$$

The total cost is $\$ 10,208$.
116. Total $=\frac{\text { novels }}{17 \cdot 14}+\overbrace{13 \cdot 23}^{\text {biographies }}$

$$
\begin{aligned}
& =238+299 \\
& =537
\end{aligned}
$$

They took in $\$ 537$.
117. 9 A.M. to 5 P.M. is 8 hours.
$7 \cdot 2+5=14+5$

$$
=19
$$

The total cost is $\$ 19$.
118. Cost if using monthly payments $=14 \cdot 50+100$

$$
\begin{aligned}
& =700+100 \\
& =800
\end{aligned}
$$

Savings: 800

$$
\frac{-750}{50}
$$

Paying the total amount at the time of the purchase will save $\$ 50$.
119. a. 18

$$
\begin{array}{r}
\times 14 \\
72 \\
+180 \\
\hline 252
\end{array}
$$

The area of the floor is 252 square feet.
b. 252
$\begin{array}{r}\times \quad 8 \\ \hline 2016\end{array}$
The cost of the carpeting is $\$ 2016$.
120. a. 19
$\begin{array}{r}\times 15 \\ \hline 95\end{array}$
$\begin{array}{r}+190 \\ \hline 285\end{array}$
The area of the floor is 285 square feet.
b. 285
$\begin{array}{r}\times \quad 8 \\ \hline 2280\end{array}$
The cost of the carpeting is $\$ 2280$.
121. a. 50

$$
\begin{array}{r}
\times 94 \\
200 \\
+4500 \\
\hline 4700
\end{array}
$$

The area of the court is 4700 square feet.
b. $\quad 400$

$$
\begin{array}{r}
\times 12 \\
800 \\
+4000 \\
\hline 4800
\end{array}
$$

12 gallons will cover 4800 square feet.
c. Yes; 12 gallons are enough to refinish the court.
122. a. 50

$$
\begin{array}{r}
\times 84 \\
200 \\
+4000 \\
\hline 4200
\end{array}
$$

The area of the court is 4200 square feet.
b. 400
$\underset{3600}{\times 9}$
9 gallons will cover 3600 square feet.
c. No; 9 gallons are not enough to refinish the court.
123. - 132. Answers will vary.
133. makes sense
134. makes sense
135. does not make sense; Explanations will vary.

Sample explanation: You must attach $2+3$, or 5 zeros.
136. does not make sense; Explanations will vary. Sample explanation: The area of a regulation tennis court is 2808 square feet.
137. false; Changes to make the statement true will vary. A sample change is: Deleting 0 as a factor might change the product from being 0 to being non-zero.
138. false; Changes to make the statement true will vary. A sample change is: The distributive property states that multiplication distributes over addition .
139. true
140. true
141. 613
$\begin{array}{r}\times \quad 6 \\ \hline 3678\end{array}$
142. 32
$\begin{array}{r}\times 14 \\ \hline 128\end{array}$
$\begin{array}{r}+320 \\ \hline 448\end{array}$
143. a. $5(7-3)=5(4)=20$

$$
5 \cdot 7-5 \cdot 3=35-15=20
$$

b. $10(8-2)=10(6)=60$
$10 \cdot 8-10 \cdot 2=80-20=60$
c. yes
144. Answers will vary.
145. 305,640
146. 863
$\begin{array}{r}+7697 \\ \hline 8560\end{array}$
147. 9002
$\begin{array}{r}+897 \\ \hline 8105\end{array}$
148. $21 \div 3=7$ because $7 \times 3=21$.
149. Yes, the product is 1206 .

$$
\begin{array}{r}
67 \\
\times 18 \\
\hline 536 \\
+670 \\
\hline 1206
\end{array}
$$

150. $(502 \times 47)+15=23,594+15$

$$
=23,609
$$

Mid-Chapter Check Point - Chapter 1

1. eight billion, sixty-three million, five hundred sixtyone thousand, four
2. $54,302,628$
3. a. nearest hundred:
$64,517 \approx 64,500$
b. nearest thousand:
$64,517 \approx 65,000$
4. $18>0$
5. $18<19$
6. 5809
$\begin{array}{r}+3762 \\ \hline 9571\end{array}$
7. 652
$\begin{array}{r}-378 \\ \hline 274\end{array}$
8. 876
$\begin{array}{r}\times \quad 4 \\ \hline 3504\end{array}$
9. 87
$\begin{array}{r}\times 36 \\ \hline 522\end{array}$
$\begin{array}{r}+2610 \\ \hline 3132\end{array}$
10. 324
$\begin{array}{r}\times 162 \\ \hline 648\end{array}$
19440
$\begin{array}{r}+32400 \\ \hline 52,488\end{array}$
11. $4 \times 9=36$

Attach $2+3$, or 5 zeros to 36 .
$400 \cdot 9000=3,600,000$
12. $57 \cdot 93 \cdot 0=0$
13. 17
$\begin{array}{r}+96 \\ \hline 113\end{array}$
14. 8000
-57
15. 52
-38
14
16. $(8 \cdot 3)-6=24-6=18$
17. $2 \cdot 15-7=30-7=23$
18. Exact Estimate
$876 \approx 900$
$337 \approx 300$
$+\frac{+100}{2300}$
19. Exact Estimate
$9846 \approx 10,000$
$\underline{-2317} \approx \frac{-2000}{8000}$
20. $\overbrace{(2893)(648)}^{\text {Exact }} \approx \overbrace{(3000)(600)}^{\text {Estimate }}$

$$
=1,800,000
$$

21. associative property of multiplication
22. distributive property
23. commutative property of addition
24. Perimeter:

4 yards
13 yards
4 yards
+13 yards
34 yards
Area:
13 yards
$\times 4$ yards
52 square yards
25. a. The James Bond franchise had the greatest number of movies.
The total world gross for this franchise was $\$ 5,116,147,171$.
b. three billion, two hundred eighty-seven million, two hundred eighty-five thousand, five dollars
c. Star Wars had 7 movies.
$\$ 4,279,632,749 \approx \$ 4,000,000,000$
d. Shrek and Lord of the Rings each had total world gross less than $\$ 3,500,000,000$.
26. a. 61 (1980)
-28 (Ancient Greece and Rome)
33
People born in 1980 are expected to live 33 years more than people born in ancient Greece and Rome.
b. Average life expectancy was 48 years in 1950 .
c. The following life expectancies round to 30 .

Stone Age: $25 \approx 30$
Ancient Greece and Rome: $28 \approx 30$
Middle Ages: $30 \approx 30$
1900: $31 \approx 30$
d. life expectancy 1950: 48
life expectancy Middle Ages: 30

$$
\begin{aligned}
& 48 \stackrel{?}{=} 2 \cdot 30-12 \\
& 48 \stackrel{?}{=} 60-12 \\
& 48 \stackrel{?}{=} 48 \text { true }
\end{aligned}
$$

27. Balance $=\overbrace{(730+250)}^{\text {Deposits }}-\overbrace{(29+156+347)}^{\text {Withdrawls }}$

$$
=980-532
$$

$$
=448
$$

The balance is $\$ 448$.
28. 58,952
$-51,723$
7229
The change in the city's population was 7229 .
29. $(8)(1480)+(5)(1245)=11,840+6225$

$$
=996+285
$$

$$
=18,065
$$

The total cost is $\$ 18,065$.
30. 14
$\frac{\times 12}{28}$
$\begin{array}{r}+140 \\ \hline 168\end{array}$
The area of the floor is 378 square feet.
$168 \times 10=1680$
The cost of the carpeting is $\$ 1680$.

1.5 Check Points

1. a. $56 \div 7=8$ because $8 \cdot 7=56$.
b. $\frac{27}{9}=3$ because $3 \cdot 9=27$.
c. $3 \longdiv { 9 7 }$ because $9 \cdot 3=27$.
2. a. $13 \div 1=13$ because $13 \cdot 1=13$.
b. $13 \div 13=1$ because $1 \cdot 13=13$.
c. $1 7 \longdiv { 1 7 }$ because $1 \cdot 17=17$.
d. $1 \longdiv { 1 7 }$ because $17 \cdot 1=17$.
e. $\frac{2306}{1}=2306$ because $2306 \cdot 1=2306$.
f. $2 3 0 6 \longdiv { \frac { 1 } { 2 3 0 6 } }$ because $1 \cdot 2306=2306$.
3. a. $9 \longdiv { 0 }$ because $0 \cdot 9=0$.
b. $0 \div 253=0$ because $0 \cdot 253=0$.
c. $\frac{0}{8}=0$ because $0 \cdot 8=0$.
d. $\frac{8}{0}=$ undefined
4. $2 9 \longdiv { 2 4 0 7 }$
$\frac{232}{87}$
$\begin{array}{r}87 \\ 87 \\ \hline 0\end{array}$
e. $\frac{0}{0}=$ undefined
Check: 83

5. $6 \longdiv { 4 4 8 8 }$
$\underline{42}$
28
$\frac{24}{48}$
$\frac{48}{0}$
Check: $\begin{array}{r}748 \\ \times \quad 6 \\ \hline 4488\end{array}$
6. $6 \longdiv { 4 0 8 6 } \begin{array} { r } { \underline { 4 2 } } \end{array}$
05
$\underline{0}$
$\overline{5} 2$
$\frac{48}{40}$
$\frac{36}{4}$
$42,520 \div 6=7086$ R 4
Check: 7086

$$
\begin{array}{r}
\times \quad 6 \\
\hline 42516 \\
+\quad 4 \\
\hline 42520
\end{array}
$$

路
11. a. $47,869 \div 62 \approx 48,000 \div 60$

$$
\begin{aligned}
& =4800 \not 0 \div 6 \emptyset \\
& =4800 \div 6=800
\end{aligned}
$$

b. $718,403 \div 879 \approx 720,000 \div 900$

$$
\begin{aligned}
& =7200 \not \varnothing \varnothing \div 9 \not \varnothing \varnothing \\
& =7200 \div 9=800
\end{aligned}
$$

12. a. The amount that Shaq still needs to raise is the difference of what he asked for and the amount he has already raised.
$450,000-112,000=338,000$
Shaq still needs to raise $\$ 338,000$ to reach his goal.

$$
2704
$$

b. $1 2 5 \longdiv { 3 3 8 0 0 0 }$

$$
\frac{250}{88}
$$

$$
880
$$

$$
\underline{875}
$$

$$
50
$$

$$
\frac{0}{500}
$$

500
$\frac{500}{0}$
Each fan will need to contribute $\$ 2704$.
13. a. The number of boats needed is the quotient of the number of people on the cruise and the number of people who can be seated on each boat.

$$
\begin{array}{r}
1 9 \longdiv { 1 2 } \\
\frac{19}{243} \\
\frac{19}{53} \\
\frac{38}{15}
\end{array}
$$

There are enough people to fill 12 riverboats, with 15 people left over. So, 13 boats are needed.
b. Using a $13^{\text {th }}$ boat means that there will be empty seats. There are 19 seats per boat and 15 leftover people. Thus, there will be $19-15=4$ empty seats on the boat.
14. Mean $=\frac{\text { sum of values }}{\text { number of values }}$

$$
=\frac{83+86+79+100+90+84}{6}=\frac{522}{6}
$$

6 $\begin{gathered}87 \\ \frac{582}{42}\end{gathered}$
$\frac{42}{0}$
The mean score for the six tests is 87 .

1.5 Concept and Vocabulary Check

1. dividend; divisor; quotient
2. $4 \longdiv { 2 0 }$
3. $9 \cdot 4$
4. 1
5. 0
6. $0 ; 0$
7. $360 ; 0$
8. divided by

1.5 Exercise Set

1. $20 \div 4=5$ because $5 \cdot 4=20$.
2. $72 \div 9=8$ because $8 \cdot 9=72$.
3. $\frac{36}{3}=12$ because $12 \cdot 3=36$.
4. $\frac{24}{3}=8$ because $8 \cdot 3=24$.
5. $9 \longdiv { 4 5 }$ because $5 \cdot 9=45$.
6. $6 \longdiv { 4 8 }$ because $8 \cdot 6=48$.
7. $7 \longdiv { 2 8 }$ because $4 \cdot 7=28$.
8. $7 \longdiv { 3 5 }$ because $5 \cdot 7=35$.
9. $5 \longdiv { 3 5 }$ because $7 \cdot 5=35$.
10. $8 \longdiv { 6 4 }$ because $8 \cdot 8=64$.
11. $19 \div 1=19$
12. $23 \div 1=23$
13. $19 \div 19=1$
14. $23 \div 23=1$
15. $1 \longdiv { 3 1 } \lcm { 3 1 }$
16. $1 \longdiv { 3 7 }$
17. $\frac{1507}{1}=1507$
18. $\frac{1608}{1}=1608$
19. $0 \div 12=0$
20. $0 \div 15=0$
21. $12 \div 0=$ undefined
22. $15 \div 0=$ undefined
23. $1 6 \longdiv { 0 } { } ^ { 0 }$
24. $2 6 \longdiv { 0 }$
25. $0 \longdiv { 1 6 } =$ undefined
26. $0 \longdiv { 2 6 } =$ undefined
27. $1 6 \longdiv { 1 6 }$
28. $2 6 \longdiv { 2 6 }$
29. $0 \longdiv { 0 } =$ undefined
30. $0 \div 0=$ undefined
31. 3 | $\frac{31}{93}$ |
| :---: |
| |
| |
| 9 |

$\overline{0} 3$
$\frac{3}{0}$
32. $5 \longdiv { { } ^ { 9 } 9 5 }$
$\frac{5}{4} 5$
$\frac{45}{0}$
33. $7 \longdiv { 5 1 8 }$
$\frac{49}{28}$
$\frac{28}{0}$
34. $6 \underset{\substack{441 \\ 42}}{\begin{array}{c}63 \\ 241\end{array}}$

21
$\frac{21}{0}$
35. $6 \longdiv { 1 5 0 }$
$\frac{12}{30}$
30
0
36. $\begin{gathered}6 \lcm{210} \\ \underline{18}\end{gathered}$

30
$\frac{30}{0}$
37. $4 \longdiv { 2 6 8 2 }$ $\stackrel{24}{28}$
$\frac{28}{08}$
$\frac{8}{0}$
38. $4 \longdiv { 2 8 } \begin{array} { r } { 2 9 5 2 } \\ { } \\ { 2 9 5 } \end{array}$
$\frac{28}{15}$
$\frac{12}{3}$
44. $6 \begin{gathered}\frac{413}{2480} \\ \frac{24}{08}\end{gathered}$
$\frac{6}{20}$
$\frac{32}{0}$
$\frac{18}{2}$

$$
2480 \div 6=413 \mathrm{R} 2
$$

39. $1 2 5 \longdiv { 5 6 7 6 0 }$
56
07
$\frac{0}{76}$
72
40
$\frac{40}{0}$
40. $8 \longdiv { 4 8 4 7 2 }$
$\frac{48}{04}$
$\frac{0}{47}$
$\frac{40}{72}$
72
-7
41. $9 \longdiv { 3 2 } \begin{array} { r } { \frac { 3 2 1 } { 2 9 1 } } \end{array}$
$\frac{27}{21}$
$\frac{18}{3}$
$291 \div 9=32$ R 3
42. $9 \longdiv { 3 3 8 }$
$\frac{27}{68}$
$\frac{63}{5}$
$338 \div 9=37$ R 5
43. $6 \longdiv { 3 2 1 }$
$\underline{18}$
13
12
10
$\frac{6}{4}$
$1930 \div 6=321 \mathrm{R} 4$
44. $7 \longdiv { 3 5 4 3 8 }$

35

04
0
43
$\frac{42}{18}$
$\frac{14}{4}$

$35,438 \div 7=5062 \mathrm{R} 4$
46. $7 \longdiv { 2 8 5 1 6 }$
$\frac{28}{05}$
$\stackrel{0}{5}$
$\frac{49}{26}$
$\frac{21}{5}$
$28,516 \div 7=4073$ R 5
47. $1 7 \longdiv { 5 3 }$
$\frac{85}{5}$
$\frac{51}{0}$

48. 17 | 986 |
| ---: |
| 985 |

$\frac{85}{136}$
$\overline{136}$
$\frac{136}{0}$
49. $2 3 \longdiv { 1 3 1 1 }$
$\frac{115}{16}$
$\begin{array}{r}161 \\ 161 \\ \hline 0\end{array}$

63. $2 1 8 \longdiv { 2 3 3 7 6 }$ $\underline{218}$ 157
$\stackrel{0}{1576}$
$\frac{1526}{50}$
$23,376 \div 218=107 \mathrm{R} 50$
64. $3 4 8 \longdiv { 3 5 5 9 6 }$
$\frac{348}{79}$
0
$\overline{796}$
$\frac{696}{100}$
$35,596 \div 348=102$ R 100
65. $4 1 3 \longdiv { 3 1 1 }$

1239 454 413 419 $\frac{413}{6}$
$128,449 \div 413=311 \mathrm{R} 6$
66. $5 1 3 \longdiv { 2 1 0 8 4 8 }$ $\frac{2052}{56}$ 564
$\frac{513}{518}$
$\underline{513}$
$210,848 \div 513=411$ R 5
67. $260 \div 20=26 \not \emptyset \div 2 \not 0=26 \div 2=13$
68. $280 \div 20=28 \not \emptyset \div 2 \not 0=28 \div 2=14$
69. $\frac{28,000}{400}=\frac{280 \not \varnothing \varnothing}{4 \varnothing \varnothing}=\frac{280}{4}=70$
70. $\frac{32,000}{400}=\frac{320 \varnothing \varnothing}{4 \varnothing \varnothing}=\frac{320}{4}=80$
71. $3 0 0 0 \longdiv { 1 2 , 0 0 0 , 0 0 0 } = 3 \varnothing \phi \varnothing \longdiv { 1 2 0 0 0 \phi \varnothing \varnothing } = 3 \longdiv { 1 2 0 0 0 }$
72. $3 0 0 0 \longdiv { 1 8 , 0 0 0 , 0 0 0 } = 3 \varnothing \varnothing \varnothing \longdiv { 1 8 0 0 0 \varnothing \varnothing \varnothing \sigma } = 3 \longdiv { \frac { 6 0 0 0 } { 1 8 0 0 0 } }$
73. $\frac{83,000,000}{10,000}=\frac{8300 \varnothing \varnothing \varnothing \varnothing}{1 \varnothing \varnothing \varnothing \varnothing}=\frac{8300}{1}=8300$
74. $\frac{97,000,000}{10,000}=\frac{9700 \varnothing \varnothing \varnothing \varnothing}{1 \varnothing \varnothing \varnothing \varnothing}=\frac{9700}{1}=9700$
75. $2622 \div 23 \approx 2600 \div 20=260 \varnothing \div 2 \not 0=260 \div 2=130$

Yes 114 seems reasonable.
76. $2016 \div 42 \approx 2000 \div 40=200 \not \emptyset \div 4 \not 0=200 \div 4=50$

Yes 48 seems reasonable.
77. $20,928 \div 327 \approx 21,000 \div 300=210 \not \varnothing \varnothing \div 3 \not \varnothing \varnothing=210 \div 3=70$

Yes 64 seems reasonable.
78. $13,688 \div 236 \approx 14,000 \div 200=140 \not \varnothing \varnothing \div 2 \not \varnothing \varnothing=140 \div 2=70$

Yes 58 seems reasonable.
79. $2806 \div 67 \approx 2800 \div 70=280 \not 0 \div 7 \not 0=280 \div 7=40$

Yes 41 R 59 seems reasonable.
80. $1804 \div 58 \approx 1800 \div 60=180 \not 0 \div 6 \not 0=180 \div 6=30$

Yes 31 R 6 seems reasonable.
81. $362,517 \div 879 \approx 360,000 \div 900=3600 \not \varnothing \varnothing \div 9 \not \varnothing \varnothing=3600 \div 9=400$

No 42 R 369 does not seem reasonable.
82. $561,917 \div 693 \approx 560,000 \div 700=5600 \not 0 \not \subset \div \not \varnothing \not 0=5600 \div 7=800$

No 81 R 587 does not seem reasonable.
83. $7 \longdiv { \frac { 1 3 } { 9 1 } }$ $\frac{7}{2}$
$\frac{21}{0}$
84. $\frac{19}{76}$
$\frac{4}{36}$
$\frac{36}{0}$
85. $1 8 \longdiv { 5 9 4 }$
$\frac{54}{54}$
$\frac{54}{0}$
86. $1 2 \longdiv { 7 3 }$
$\frac{84}{36}$
$\frac{36}{0}$
87. $1 3 \longdiv { 2 7 5 6 }$

26
15
13
26
$\frac{26}{0}$
88. $1 4 \longdiv { 1 3 0 2 }$

126
42
$\frac{42}{0}$
89. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{9+36+11+18+24+22}{6}=\frac{120}{6}=20$

The mean score for the six tests is 20 .
90. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{27+14+28+52+37+22}{6}=\frac{180}{6}=30$

The mean score for the six tests is 20 .
91. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{81+87+92+84+91}{5}=\frac{435}{5}$
$5 \longdiv { 8 7 5 }$
$\frac{40}{35}$
35

The mean score for the five tests is 87 .
92. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{76+94+92+71+82}{5}=\frac{415}{5}$
$5 \longdiv { 4 1 5 }$
$\frac{40}{15}$
$\frac{15}{0}$
The mean score for the five tests is 83 .
93. $3 4 \longdiv { 1 0 5 9 }$
$\frac{34}{20}$
$\frac{0}{200}$
$\frac{170}{306}$
$\frac{306}{0}$

The answer is 1059 , which in words is one thousand fifty-nine.
94. $\begin{aligned} & \\ & \stackrel{4334}{52008} \\ & 48\end{aligned}$

48
$\begin{array}{r}40 \\ 36 \\ \hline\end{array}$
40
$\frac{36}{48}$
$\frac{48}{0}$
The answer is 4334, which in words is four thousand three hundred thirty-four.
95. $\overbrace{736 \div 23-10}^{22}<\overbrace{715 \div 55+14}^{27}$
96. $\overbrace{876 \div 12-40}^{33}<\overbrace{594 \div 18+2}^{35}$
97. $\overbrace{(600 \div 3)-(200 \div 4)}^{150}<\overbrace{800 \div 5}^{160}$
98. $\overbrace{(700 \div 5)-(360 \div 3)}^{20}<\overbrace{225 \div 9}^{25}$
99. $4 \longdiv { 2 9 }$ $\frac{8}{36}$
$\frac{36}{0}$
$116 \div 4=29$ pizzas
100. $4 \longdiv { 9 4 0 }$
$\frac{8}{16}$
16
$\frac{0}{0}$
$960 \div 4=240$ cups
101. $3 6 \longdiv { 1 8 1 0 8 }$
$\underline{180}$
10
$\frac{0}{108}$
108
$\$ 18,108 \div 36=\$ 503$
102. $3 6 \longdiv { 1 4 6 8 8 } \underset { 1 4 4 } { \frac { 4 0 8 } { 2 } }$ $\frac{144}{28}$
$\frac{0}{288}$
$\underline{288}$
$\$ 14,688 \div 36=\$ 408$
103. a. $\$ 480,000 \div 6=\$ 80,000$ per person
b. $\$ 480,000 \div 10=\$ 48000 \not \varnothing \div 1 \varnothing$ per person
$=\$ 48000 \div 1$
$=\$ 48,000$
c. $\$ 80,000-\$ 48,000=\$ 32,000$ per person

$\$ 50,000 \div 4=\$ 12,500$ per person
b. $\$ 50,000 \div 5=\$ 10,000$ per person
c. $\$ 12,500-\$ 10,000=\$ 2,500$ per person
105. a. $1 2 \longdiv { \frac { 1 1 4 } { 1 3 6 8 } }$
$\frac{12}{16}$
$\frac{12}{48}$
$\frac{48}{0}$
$\$ 1368 \div 12=\$ 114$ per mo
b. $1 1 4 \longdiv { 7 9 8 }$
$\frac{798}{0}$
$\$ 798 \div \$ 114=7$ months
106. a. $1 2 \longdiv { 2 8 2 0 }$
$\frac{24}{42}$
$\frac{36}{60}$
$\frac{60}{0}$
$\$ 2820 \div 12=\$ 235$ per month
b. $2 3 5 \longdiv { 1 6 4 5 } \begin{array} { r } { \frac { 7 } { 1 6 4 5 } } \\ { 0 } \end{array}$
$\$ 1645 \div \$ 235=7$ months
107. a. $\$ 23,000-\$ 2700=\$ 20,300$ depreciation in 7 years.
$7 \longdiv { 2 9 0 3 0 0 }$
14
63
$\frac{63}{0} 0$
$\frac{0}{00}$
$\frac{0}{0}$
$\$ 20,300 \div 7=\$ 2900$ depreciation per year.
b. $\$ 23,000-(\$ 2900 \cdot 3)=\$ 14,300$
108. a. $\$ 34,800-\$ 8550=\$ 26,250$ depreciation in 7 years.
$7 \begin{array}{r}3750 \\ 26250 \\ 21\end{array}$
52
$\frac{49}{35}$
$\stackrel{35}{0}$
$\frac{0}{0}$
$\$ 26,250 \div 7=\$ 3750$ depreciation per year.
b. $\$ 34,800-(\$ 3750 \cdot 3)=\$ 23,550$
109. a. $2 8 \longdiv { \frac { 1 4 } { 4 0 3 } }$
$\frac{28}{123}$
123
$\frac{112}{11}$
$403 \div 28=14 \mathrm{R} 11$
So, 15 buses are needed.
b. Using a $15^{\text {th }}$ bus means that there will be empty seats. There are 28 seats per bus and 11 leftover people. Thus, there will be $28-11=17$ empty seats on the bus.
110. a. $2 3 \longdiv { 2 8 6 }$

$$
\begin{aligned}
& \frac{23}{56} \\
& \frac{46}{10}
\end{aligned}
$$

$286 \div 23=12$ R 10
So, 13 buses are needed.
b. Using a $13^{\text {th }}$ bus means that there will be empty seats. There are 23 seats per bus and 10 leftover people. Thus, there will be $23-10=13$ empty seats on the bus.
111. a. Mean $=\frac{86+84+78+72+50}{5}=\frac{370}{5}=74$
$5 \longdiv { \begin{array} { r } { 7 4 } \\ { 3 7 0 } \\ { \frac { 3 5 } { 2 0 } } \\ { 2 0 } \\ { 0 } \end{array} }$
b. C
c. Mean $=\frac{86+84+78+72}{4}=\frac{320}{4}=80$
$4 \begin{array}{r}80 \\ \hline 320 \\ \hline 00 \\ -0 \\ \hline 0\end{array}$
The grade now would be B.
d. The mean score is pulled down enough to lower the final course grade by one letter.
112. a. Mean $=\frac{98+94+92+80+56}{5}=\frac{420}{5}=84$

84
5
$\frac{40}{20}$
$\frac{20}{0}$

b. B
c. \quad Mean $=\frac{98+94+92+80}{4}=\frac{364}{4}=91$

The grade now would be A.
d. The mean score is pulled down enough to lower the final course grade by one letter.
113. $568,158 \div 97,814 \approx 600,000 \div 100,000$

$$
\begin{aligned}
& =6 \varnothing \varnothing \varnothing \varnothing \varnothing \div 1 \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \\
& =6 \div 1 \\
& =6
\end{aligned}
$$

6 people per square mile
114. $37,691,912 \div 158,633 \approx 38,000,000 \div 160,000$

$$
\begin{aligned}
& =3800 \not \varnothing \varnothing \varnothing \varnothing \div 16 \not \varnothing \not \varnothing \varnothing \varnothing \\
& =3800 \div 16 \\
& =237 \mathrm{R} 80,000
\end{aligned}
$$

There are approximately 237 or 238 people per square mile.
115. - 122. Answers will vary.
123. makes sense
124. does not make sense; Explanations will vary. Sample explanation: Any whole number divided by zero is undefined.
125. does not make sense; Explanations will vary. Sample explanation: The remainder is always less than the divisor.
126. does not make sense; Explanations will vary. Sample explanation: The mean must be between the highest and lowest score.
127. false; Changes to make the statement true will vary. A sample change is: When 20 is divided by 5 , the result is 4 .
128. false; Changes to make the statement true will vary. A sample change is: The quotient of any number and 1 is the number itself.
129. true
130. true
131. The number of acres is missing.
132. The total number of bushels of wheat is missing.
133. a. $(12 \div 6) \div 2=2 \div 2=1$
b. $12 \div(6 \div 2)=12 \div 3=4$
c. No, the associative property cannot be applied to division because the answers are different.
134. Answers will vary.
135. ten-thousands
136. 23,753 ; twenty three thousand, seven hundred fiftythree
137. 8500
$\begin{array}{r}-796 \\ \hline\end{array}$
7704
138. 743

$$
\begin{array}{r}
\times 96 \\
4,458 \\
+66,870 \\
\hline 71,328
\end{array}
$$

139. $6^{2}=6 \cdot 6=\underline{36}$
140. $4^{3}=4 \cdot 4 \cdot 4=\underline{64}$
141. $2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=\underline{32}$

1.6 Check Points

1. a. $5 \cdot 5 \cdot 5=5^{3}$; five to the third power or five cubed
b. $6 \cdot 6=6^{2}$; six to the second power or six squared
c. $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=2^{6}$; two to the sixth power
d. $7 \cdot 7 \cdot 3 \cdot 3 \cdot 3=7^{2} \cdot 3^{3}$; seven to the second power times three to the third power or seven squared times three cubed
2. a. $6^{2}=6 \cdot 6=36$
b. $2^{3}=2 \cdot 2 \cdot 2=8$
c. $3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81$
d. $2 \cdot 7^{2}=2 \cdot 7 \cdot 7=98$
3. $20+4 \cdot 3-17=20+12-17$

$$
\begin{aligned}
& =32-17 \\
& =15
\end{aligned}
$$

4. $20-8 \cdot 4 \div 2=20-32 \div 2$

$$
\begin{aligned}
& =20-16 \\
& =4
\end{aligned}
$$

5. $7^{2}-48 \div 2^{4}=49-48 \div 16$

$$
\begin{aligned}
& =49-3 \\
& =46
\end{aligned}
$$

6. a. $(3 \cdot 2)^{2}=6^{2}=36$

$$
\text { b. } 3 \cdot 2^{2}=3 \cdot 4=12
$$

7. $(9-6)^{4}+4 \cdot 5^{2}=3^{4}+4 \cdot 5^{2}$
$=81+4 \cdot 25$

$$
=81+100
$$

$$
=181
$$

8. $4[3(11-6)+5]=4[3(5)+5]$

$$
\begin{aligned}
& =4[15+5] \\
& =4[20] \\
& =80
\end{aligned}
$$

9. $25 \div 5+3\left[4+2(9-7)^{3}\right]=25 \div 5+3\left[4+2(2)^{3}\right]$

$$
\begin{aligned}
& =25 \div 5+3[4+2(8)] \\
& =25 \div 5+3[4+16] \\
& =25 \div 5+3[20] \\
& =5+60 \\
& =65
\end{aligned}
$$

10. $\frac{5(9-4)+10 \cdot 3}{4^{2}-5}=\frac{5(5)+10 \cdot 3}{16-5}$

$$
=\frac{25+30}{11}
$$

$$
=\frac{55}{11}
$$

$$
=5
$$

11. a. Males 19-30 are in Group 4 Substitute 4 for x.

$$
\begin{aligned}
590+998 x-120 x^{2} & =590+998(4)-120(4)^{2} \\
& =590+3992-1920 \\
& =2662
\end{aligned}
$$

According to the model, males between the ages of 19 and 30 with this lifestyle need 2662 calories per day.
b. This underestimates the actual value shown in the bar graph by 38 calories.

1.6 Concept and Vocabulary Check

1. $4 \cdot 4 \cdot 4 \cdot 4$
2. base; exponent
3. multiply
4. add
5. divide
6. subtract
7. multiply

1.6 Exercise Set

1. $5 \cdot 5=5^{2}$; five to the second power or five squared
2. $4 \cdot 4=4^{2}$; four to the second power or four squared
3. $2 \cdot 2 \cdot 2=2^{3}$; two to the third power or two cubed
4. $4 \cdot 4 \cdot 4=4^{3}$; four to the third power or four cubed
5. $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{5}$; three to the fifth power
6. $6 \cdot 6 \cdot 6 \cdot 6 \cdot 6=6^{5}$; six to the fifth power
7. $9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9 \cdot 9=9^{8} ;$ nine to the eighth power
8. $7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7=7^{8}$; seven to the eighth power
9.

$10 \cdot 10 \cdot 10=10^{13}$ ten to the thirteenth power
10. $10 \cdot 10 \cdot 10=10^{12}$; ten to the twelfth power
11. $4 \cdot 4 \cdot 2 \cdot 2 \cdot 2=4^{2} \cdot 2^{3}$; four to the second power times two to the third power or four squared times two cubed
12. $5 \cdot 5 \cdot 3 \cdot 3 \cdot 3=5^{2} \cdot 3^{3}$; five to the second power times three to the third power or five squared times three cubed
13. $9^{2}=9 \cdot 9=81$
14. $5^{2}=5 \cdot 5=25$
15. $4^{3}=4 \cdot 4 \cdot 4=64$
16. $5^{3}=5 \cdot 5 \cdot 5=125$
17. $2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$
18. $2^{6}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=64$
19. $1^{7}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1$
20. $1^{8}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1$
21. $10^{4}=10 \cdot 10 \cdot 10 \cdot 10=10,000$
22. $10^{5}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=100,000$
23. $15^{1}=15$
24. $17^{1}=17$
25. $3 \cdot 2^{3}=3 \cdot 2 \cdot 2 \cdot 2=24$
26. $3 \cdot 2^{4}=3 \cdot 2 \cdot 2 \cdot 2 \cdot 2=48$
27. $5 \cdot 3^{4}=5 \cdot 3 \cdot 3 \cdot 3 \cdot 3=405$
28. $2 \cdot 3^{4}=2 \cdot 3 \cdot 3 \cdot 3 \cdot 3=162$
29. $7+6 \cdot 3=7+18$

$$
=25
$$

30. $3+4 \cdot 5=3+20$

$$
=23
$$

31. $45 \div 5 \cdot 3=9 \cdot 3$

$$
=27
$$

32. $40 \div 4 \cdot 2=10 \cdot 2$

$$
=20
$$

33. $6 \cdot 8 \div 4=48 \div 4$

$$
=12
$$

34. $8 \cdot 6 \div 2=48 \div 2$

$$
=24
$$

35. $14-2 \cdot 6+3=14-12+3$

$$
\begin{aligned}
& =2+3 \\
& =5
\end{aligned}
$$

36. $36-12 \div 4+2=36-3+2$

$$
=33+2
$$

$$
=35
$$

37. $4 \cdot 3^{2}-3 \cdot 2^{2}=4 \cdot 9-3 \cdot 4$

$$
\begin{aligned}
& =36-12 \\
& =24
\end{aligned}
$$

38. $5 \cdot 3^{2}-2 \cdot 4^{2}=5 \cdot 9-2 \cdot 16$

$$
\begin{aligned}
& =45-32 \\
& =13
\end{aligned}
$$

39. $(4 \cdot 5)^{2}-4 \cdot 5^{2}=20^{2}-4 \cdot 5^{2}$

$$
=400-4 \cdot 25
$$

$$
=400-100
$$

$$
=300
$$

$$
\text { 40. } \begin{aligned}
(3 \cdot 5)^{2}-3 \cdot 5^{2} & =15^{2}-3 \cdot 5^{2} \\
& =225-3 \cdot 25 \\
& =225-75 \\
& =150
\end{aligned}
$$

41. $8^{2}-16 \div 2^{2} \cdot 4-3=64-16 \div 4 \cdot 4-3$

$$
\begin{aligned}
& =64-4 \cdot 4-3 \\
& =64-16-3 \\
& =45
\end{aligned}
$$

42. $10^{2}-100 \div 5^{2} \cdot 2-1=100-100 \div 25 \cdot 2-1$

$$
\begin{aligned}
& =100-4 \cdot 2-1 \\
& =100-8-1 \\
& =91
\end{aligned}
$$

43. $(6-2)^{2}-(7-3)^{2}=4^{2}-4^{2}$

$$
\begin{aligned}
& =16-16 \\
& =0
\end{aligned}
$$

44. $(8-3)^{2}-(11-6)^{2}=5^{2}-5^{2}$

$$
\begin{aligned}
& =25-25 \\
& =0
\end{aligned}
$$

45. $3(5-3)^{3}-2(7-6)^{5}=3(2)^{3}-2(1)^{5}$

$$
\begin{aligned}
& =3 \cdot 8-2 \cdot 1 \\
& =24-2 \\
& =22
\end{aligned}
$$

46. $4(7-5)^{3}-4(9-8)^{6}=4(2)^{3}-4(1)^{6}$

$$
\begin{aligned}
& =4 \cdot 8-4 \cdot 1 \\
& =32-4 \\
& =28
\end{aligned}
$$

47. $[2(6-2)]^{2}=[2(4)]^{2}$

$$
\begin{aligned}
& =[8]^{2} \\
& =64
\end{aligned}
$$

48. $[3(6-4)]^{2}=[3(2)]^{2}$

$$
\begin{aligned}
& =[6]^{2} \\
& =36
\end{aligned}
$$

49. $2[5+2(9-4)]=2[5+2(5)]$

$$
\begin{aligned}
& =2[5+10] \\
& =2[15] \\
& =30
\end{aligned}
$$

50. $3[4+3(10-8)]=3[4+3(2)]$

$$
=3[4+6]
$$

$$
=3[10]
$$

$$
=30
$$

51. $3^{4}-[28-(13-7)]=3^{4}-[28-6]$ $=3^{4}-22$

$$
=81-22
$$

$$
=59
$$

52. $4^{3}-[58-(15-7)]=4^{3}-[58-8]$ $=4^{3}-50$ $=64-50$ $=14$
53. $5 \cdot\left[2^{2}+(8-3) \cdot 2\right]-10 \cdot 6=5 \cdot[4+(8-3) \cdot 2]-10 \cdot 6$

$$
=5 \cdot[4+5 \cdot 2]-10 \cdot 6
$$

$$
=5 \cdot[4+10]-10 \cdot 6
$$

$$
=5 \cdot 14-10 \cdot 6
$$

$$
=70-60
$$

$$
=10
$$

54. $4\left[3^{2}+(6-1) \cdot 2\right]-10 \cdot 3=4[9+(6-1) \cdot 2]-10 \cdot 3$

$$
\begin{aligned}
& =4[9+5 \cdot 2]-10 \cdot 3 \\
& =4[9+10]-10 \cdot 3 \\
& =4 \cdot 19-10 \cdot 3 \\
& =76-30 \\
& =46
\end{aligned}
$$

55. $\frac{(18+32) \div 5}{48 \div 2-11 \cdot 2}=\frac{50 \div 5}{48 \div 2-11 \cdot 2}$

$$
\begin{aligned}
& =\frac{10}{24-22} \\
& =\frac{10}{2} \\
& =5
\end{aligned}
$$

56. $\frac{(9-7)(12+18)}{144 \div(100-76)}=\frac{(2)(30)}{144 \div 24}$

$$
\begin{aligned}
& =\frac{60}{6} \\
& =10
\end{aligned}
$$

57. $\frac{23+(17-14)^{3}}{135-5^{3}}=\frac{23+3^{3}}{135-5^{3}}$

$$
=\frac{23+27}{135-125}
$$

$$
=\frac{50}{10}
$$

$$
=5
$$

58. $\frac{5^{2}-(8-6)^{3}+1^{6}}{[40-(9-3)]-2^{5}}=\frac{5^{2}-2^{3}+1^{6}}{[40-6]-2^{5}}$

$$
\begin{aligned}
& =\frac{5^{2}-2^{3}+1^{6}}{34-2^{5}} \\
& =\frac{25-8+1}{34-32} \\
& =\frac{18}{2} \\
& =9
\end{aligned}
$$

59. $\frac{3^{2}-2 \cdot 3+7}{5(4-3)}+42+3(8-4)+5^{2}=\frac{9-2 \cdot 3+7}{5(1)}+42+3(4)+5^{2}$

$$
\begin{aligned}
& =\frac{9-6+7}{5}+42+3(4)+5^{2} \\
& =\frac{10}{5}+42+3(4)+25 \\
& =2+42+12+25 \\
& =81
\end{aligned}
$$

60. $\frac{5 \cdot 2^{4}+5-1^{3}}{2(7-6)}+18-6 \cdot 2+(4+2)^{2}=\frac{5 \cdot 16+5-1}{2(1)}+18-6 \cdot 2+(6)^{2}$

$$
\begin{aligned}
& =\frac{80+5-1}{2}+18-6 \cdot 2+(6)^{2} \\
& =\frac{84}{2}+18-6 \cdot 2+36 \\
& =42+18-12+36 \\
& =84
\end{aligned}
$$

61. $10-2^{3}=10-8$

$$
=2
$$

62. $200-5^{3}=200-125$

$$
=75
$$

63. $\frac{5^{2}+7}{2^{3} \cdot 4}=\frac{25+7}{8 \cdot 4}$

$$
\begin{aligned}
& =\frac{32}{32} \\
& =1
\end{aligned}
$$

64. $\frac{18+6}{2^{4}-2^{2}}=\frac{18+6}{16-4}$

$$
\begin{aligned}
& =\frac{24}{12} \\
& =2
\end{aligned}
$$

65. $3 \cdot 2^{3}-\frac{100}{10}=3 \cdot 8-10$

$$
\begin{aligned}
& =24-10 \\
& =14
\end{aligned}
$$

66. $(5+3)^{2}+\frac{20}{5}=8^{2}+4$

$$
=64+4
$$

$$
=68
$$

67. $[2(10-7)]^{2}=[2(3)]^{2}$

$$
\begin{aligned}
& =6^{2} \\
& =36
\end{aligned}
$$

68. $[2(11-9)]^{4}=[2(2)]^{4}$

$$
\begin{aligned}
& =4^{4} \\
& =256
\end{aligned}
$$

69. a. Females between the ages of 19 and 30 are in group 4; let $x=4$.

$$
\begin{aligned}
620+654 x-82 x^{2} & =620+654(4)-82(4)^{2} \\
& =620+2616-1312 \\
& =1924
\end{aligned}
$$

They will need 1924 calories.
b. underestimates by 76 calories
70. a. Males between the ages of 19 and 30 are in group 4; let $x=4$.

$$
\begin{aligned}
660+802 x-96 x^{2} & =660+802(4)-96(4)^{2} \\
& =660+3208-1536 \\
& =2332
\end{aligned}
$$

They will need 2332 calories.
b. underestimates by 68 calories
71. a. $s^{2}=10^{2}=100$ square feet
b. $100 \cdot \$ 15=\$ 1500$
c. $100 \cdot \$ 12=\$ 1200$
d. $\$ 1500-\$ 1200=\$ 300$
72. a. $s^{2}=20^{2}=400$ square feet
b. $400 \cdot \$ 16=\$ 6400$
c. $400 \cdot \$ 13=\$ 5200$
d. $\$ 6400-\$ 5200=\$ 1200$
73. - 75. Answers will vary.
76. makes sense
77. does not make sense; Explanations will vary. Sample explanation: $10^{4}=10,000$.
78. does not make sense; Explanations will vary. Sample explanation: One to any power equals one.
79. makes sense
80. false; Changes to make the statement true will vary. A sample change is: $14 \div 7 \cdot 2=2 \cdot 2=4$.
81. false; Changes to make the statement true will vary.

A sample change is: $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$.
82. false; Changes to make the statement true will vary.

A sample change is: $5 \cdot 2^{2}=5 \cdot 4=20$.
83. false; Changes to make the statement true will vary.

A sample change is: $\frac{15+13}{9-2}<\frac{3^{2}+5-2^{2}}{10 \div 5}$.
84. $3 \cdot(6-2)+8=3 \cdot 4+8=12+8=20$
85. $(2 \cdot 3+3) \cdot 5=(6+3) \cdot 5=9 \cdot 5=45$
86. Answer will vary.
87. $412 \times 58 \approx 400 \times 60=24,000$
88. $412 \times 58=23,896$ Yes this answer seems reasonable.
89. $2 2 \longdiv { 1 1 7 1 2 }$
$\underline{110}$
71
$\frac{66}{52}$
$\frac{44}{8}$
$11,712 \div 22=532 \mathrm{R} 8$
90. a. $5 x+3=5(4)+3$

$$
\begin{aligned}
& =20+3 \\
& =23
\end{aligned}
$$

b. $5(x+3)=5(4+3)$

$$
\begin{aligned}
& =5(7) \\
& =35
\end{aligned}
$$

91. $2(8)-6=16-6=10$
92. $\frac{18}{6}+5=3+5=8$

1.7 Check Points

1. a. We begin by substituting 10 for x. Then we follow the order of operations: Multiply first, and then add.

$$
\begin{aligned}
6+2 x & =6+2(10) \\
& =6+20 \\
& =26
\end{aligned}
$$

b. We begin by substituting 10 for x. Then we follow the order of operations: Parentheses first, and then multiply.

$$
\begin{aligned}
2(x+6) & =2(10+6) \\
& =2(16) \\
& =32
\end{aligned}
$$

2. a. $7 x+2 y=7(3)+2(8)$

$$
\begin{aligned}
& =21+16 \\
& =37
\end{aligned}
$$

b. $\frac{6 x-y}{2 y-x-8}=\frac{6(3)-8}{2(8)-3-8}$

$$
=\frac{18-8}{16-3-8}
$$

$$
=\frac{10}{5}
$$

$$
=2
$$

3. a. The algebraic expression for "the product of 6 and a number" is $6 \cdot x$ or $6 x$.
b. The algebraic expression for "a number added to $4^{\prime \prime}$ is $4+x$.
c. The algebraic expression for "three times a number, increased by $5^{\prime \prime}$ is $3 x+5$.
d. The algebraic expression for "twice a number subtracted from 12 " is $12-2 x$.
e. The algebraic expression for "the quotient of 15 and a number" is $\frac{15}{x}$.
4. a. To determine whether 6 is a solution, substitute 6 for x.

$$
9 x-3=42
$$

$9(6)-3=42$
$54-3=42$

$$
51 \neq 42
$$

Because the values on both sides of the equation are not the same, the number 6 is not a solution of the equation.
b. To determine whether 3 is a solution, substitute 3 for y.

$$
\begin{aligned}
2(y+3) & =5 y-3 \\
2(3+3) & =5(3)-3 \\
2(6) & =15-3 \\
12 & =12
\end{aligned}
$$

Because the values on both sides of the equation are the same, the number 3 is a solution of the equation.
5. a. The equation for "the quotient of a number and 6
is $5 "$ is $\frac{x}{6}=5$.
b. The equation for "seven decreased by twice a number yields 1 " is $7-2 x=1$.
6. a. $P=2 l+2 w$
$P=2(10)+2(3)$
$P=20+6$
$P=26$
The perimeter of the rectangle is 26 inches.
b. $A=l w$
$A=(10)(3)$
$A=30$
The area of the rectangle is 30 square inches.
7. a. Because 2010 is 10 years after 2000, we substitute 10 for x in the given formula. Then we use the order of operations to find T, the average cost of tuition and fees for the school year ending in 2010.
$T=6 x^{2}+319 x+3234$
$T=6(10)^{2}+319(10)+3234$
$T=6(100)+319(10)+3234$
$T=600+3190+3234$
$T=7024$
The formula indicates that for the school year ending in 2014, the average cost of tuition and fees at public U.S. colleges was $\$ 7024$.
b. The actual cost shown in the figure is $\$ 7020$.

Using subtraction: $7024-7020=4$, the mathematical model overestimates the actual cost by $\$ 4$.

1.7 Concept and Vocabulary Check

1. variable
2. expression
3. substituting; evaluating
4. equation; solution
5. formula
6. modeling; models
7. $12-x=12-4=8$
8. $16-x=16-4=12$
9. $5 x=5 \cdot 4=20$
10. $6 x=6 \cdot 4=24$
11. $\frac{28}{x}=\frac{28}{4}=7$
12. $\frac{36}{x}=\frac{36}{4}=9$
13. $5+3 x=5+3 \cdot 4=5+12=17$
14. $3+5 x=3+5 \cdot 4=3+20=23$
15. $2(x+5)=2(4+5)=2(9)=18$
16. $5(x+3)=5(4+3)=5(7)=35$
17. $\frac{12 x-8}{2 x}=\frac{12 \cdot 4-8}{2 \cdot 4}=\frac{48-8}{8}=\frac{40}{8}=5$
18. $\frac{5 x+52}{3 x}=\frac{5 \cdot 4+52}{3 \cdot 4}=\frac{20+52}{12}=\frac{72}{12}=6$
19. $2 x+y=2 \cdot 7+5=14+5=19$
20. $3 x+y=3 \cdot 7+5=21+5=26$
21. $2(x+y)=2(7+5)=2(12)=24$
22. $3(x+y)=3(7+5)=3(12)=36$
23. $4 x-3 y=4 \cdot 7-3 \cdot 5=28-15=13$
24. $5 x-4 y=5 \cdot 7-4 \cdot 5=35-20=15$
25. $\frac{21}{x}+\frac{35}{y}=\frac{21}{7}+\frac{35}{5}=3+7=10$
26. $\frac{50}{y}-\frac{14}{x}=\frac{50}{5}-\frac{14}{7}=10-2=8$
27. $\frac{2 x-y+6}{2 y-x}=\frac{2 \cdot 7-5+6}{2 \cdot 5-7}=\frac{14-5+6}{10-7}=\frac{15}{3}=5$
28. $\frac{2 y-x+24}{2 x-y}=\frac{2 \cdot 5-7+24}{2 \cdot 7-5}=\frac{10-7+24}{14-5}=\frac{27}{9}=3$
29. $x+4$
30. $x+6$
31. $x-4$
32. $x-6$
33. $x+4$
34. $x+6$
35. $x-9$
36. $x-3$
37. $9-x$
38. $3-x$
39. $3 x-5$
40. $5 x-3$
41. $12 x-1$
42. $13 x-3$
43. $\frac{10}{x}+\frac{x}{10}$
44. $\frac{20}{x}+\frac{x}{20}$
45. $\frac{x}{30}+6$
46. $\frac{30}{x}+4$
47. $x+14=20$
$6+14=20$
$20=20$, true
The number is a solution.
48. $x+17=22$
$5+17=22$
$22=22$, true
The number is a solution.
49. $30-y=10$
$30-20=10$
$10=10$, true
The number is a solution.
50. $50-y=20$
$50-30=20$
$20=20$, true
The number is a solution.
51. $4 z=20$
$4(10)=20$
$40=20$, false
The number is not a solution.
52. $5 z=30$
$5(8)=30$
$40=30$, false
The number is not a solution.
53. $\frac{r}{6}=8$
$\frac{48}{6}=8$
$8=8$, true
The number is a solution.
54. $\frac{r}{9}=7$
$\frac{63}{9}=7$
$7=7$, true
The number is a solution.
55. $4 m+3=23$
$4(6)+3=23$
$24+3=23$
$27=23$, false
The number is not a solution.
56. $3 m+4=19$
$3(6)+4=19$
$18+4=19$
$22=19$, false
The number is not a solution.
57. $5 a-4=2 a+5$
$5(3)-4=2(3)+5$

$$
\begin{aligned}
15-4 & =6+5 \\
11 & =11, \text { true }
\end{aligned}
$$

The number is a solution.
54. $5 a-3=2 a+6$
$5(3)-3=2(3)+6$
$15-3=6+6$
$12=12$, true
The number is a solution.
55. $6(p-4)=3 p$
$6(8-4)=3(8)$ $6(4)=24$
$24=24$, true
The number is a solution.
56. $4(p+3)=6 p$
$4(6+3)=6(6)$

$$
4(9)=36
$$

$$
36=36, \text { true }
$$

The number is a solution.
57. $2(w+1)=3(w-1)$
$2(7+1)=3(7-1)$
$2(8)=3(6)$
$16=18$, false
The number is not a solution.
58. $3(w+2)=4(w-3)$
$3(10+2)=4(10-3)$

$$
\begin{aligned}
3(12) & =4(7) \\
36 & =28, \text { false }
\end{aligned}
$$

The number is not a solution.
59. $4 x=28$
60. $5 x=35$
61. $\frac{14}{x}=2$
62. $\frac{x}{8}=3$
63. $20-x=5$
64. $40-x=10$
65. $2 x+6=16$
66. $2 x+9=29$
67. $3 x-5=7$
68. $4 x-3=29$
69. $4 x+5=33$
70. $6 x+3=33$
71. $4(x+5)=33$
72. $6(x+3)=33$
73. $5 x=24-x$
74. $4 x=25-x$
75. First find x.
$x=7 y+2$
$x=7(5)+2=37$
Evaluate the expression.
$\frac{x-y}{4}=\frac{37-5}{4}=\frac{32}{4}=8$
76. First find x.
$x=5 y+2$
$x=5(4)+2=22$
Evaluate the expression.
$\frac{x-y}{3}=\frac{22-4}{3}=\frac{18}{3}=6$
77. First find x.
$x=\frac{y}{4}-1$
$x=\frac{12}{4}-1=3-1=2$
Evaluate the expression.

$$
\begin{aligned}
4 x+3(y+5) & =4(2)+3(12+5) \\
& =8+3(17) \\
& =8+51 \\
& =59
\end{aligned}
$$

78. First find x.
$x=\frac{y}{3}-1$
$x=\frac{15}{3}-1=5-1=4$
Evaluate the expression.

$$
\begin{aligned}
3 x+4(y+6) & =3(4)+4(15+6) \\
& =12+4(21) \\
& =12+84 \\
& =96
\end{aligned}
$$

79. a. $2(x+3 y)=2(4+3 \cdot 1)=2(7)=14$
b. $\quad 5 z-30=40$
$5(14)-30=40$
$70-30=40$
$40=40$, true
Yes, it is a solution.
80. a. $3(2 x+y)=3(2 \cdot 1+5)=3(7)=21$

$$
\text { b. } \begin{aligned}
4 z-30 & =54 \\
4(21)-30 & =54 \\
84-30 & =54 \\
54 & =54, \text { true }
\end{aligned}
$$

Yes, it is a solution.
81. a. $H=\frac{4(200-A)}{5}$
$H=\frac{4(200-145)}{5}$
$H=\frac{4(55)}{5}$
$H=\frac{220}{5}$
$H=44$
b. $120+44=164$
82. a. $H=\frac{4(200-A)}{5}$
$H=\frac{4(200-165)}{5}$
$H=\frac{4(35)}{5}$
$H=\frac{140}{5}$
$H=28$
b. $140+28=168$
83. $h=4+60 t-16 t^{2}$
$h=4+60(2)-16(2)^{2}$
$h=4+120-64$
$h=60$
60 feet
84. $h=4+60 t-16 t^{2}$
$h=4+60(3)-16(3)^{2}$
$h=4+180-144$
$h=40$
40 feet
85. a. $T=21 x^{2}+862 x+15,552$
$T=21(10)^{2}+862(10)+15,552$
$T=2100+8620+15,552$
$T=26,272$
\$26,272 tuition in 2010
b. underestimates by $\$ 1$
c. $T=21 x^{2}+862 x+15,552$
$T=21(20)^{2}+862(20)+15,552$
$T=8400+17,240+15,552$
$T=41,192$
$\$ 41,192$ tuition in 2020
86. a. $T=21 x^{2}+862 x+15,552$
$T=21(14)^{2}+862(14)+15,552$
$T=4116+12,068+15,552$
$T=31,736$
\$31,736 tuition in 2014
b. overestimates by $\$ 35$
c. $T=21 x^{2}+862 x+15,552$
$T=21(22)^{2}+862(22)+15,552$
$T=10,164+18,964+15,552$
$T=44,680$
\$44,680 tuition in 2022
87. - 96. Answers will vary.
97. does not make sense; Explanations will vary.

Sample explanation: Equations have solutions, not expressions.

98．makes sense

99．makes sense
100．makes sense
101．true
102．false；Changes to make the statement true will vary． A sample change is：Only equations contain the equality symbol，$=$ ．

103．true

104．false；Changes to make the statement true will vary． A sample change is：The algebraic expression for ＂the quotient of a number and 6 ＂is not the same as the algebraic expression for＂the quotient of 6 and a number．＂

105．eight billion，seventy－five million，three hundred twenty－one thousand，six

106． $19 \lcm{8100}$
$\frac{76}{5}$
38
120
$\frac{114}{6}$
$8100 \div 19=426$ R 6
Check： 426
$\times 19$
3834
+4260
+8094
$\begin{array}{r}8 \\ +\quad 6 \\ \hline 8100\end{array}$
107．$\frac{73+85+88}{3}=\frac{246}{3}=82$

108． 3
109． 0
110．-2

Chapter 1 Review Exercises

Note that exercises \＃1－6 use the following table：

Millions Pcriod		
	$\frac{\stackrel{n}{5}}{\underline{E}}$	$\begin{aligned} & \text { 品 } \\ & \frac{1}{3} \end{aligned}$

Thousands Pcriod		

Ones Period		
$\begin{aligned} & \text { 吕 } \\ & \text { 总 } \\ & \text { 兰 } \\ & \end{aligned}$	$\stackrel{n}{\stackrel{n}{3}}$	E

1．hundred－thousands
2．ten－millions
3．nine thousand，five hundred seventy
4．seventy－eight million，three hundred thousand，one hundred fifty

5．The standard form is 64,005 ．
6．The standard form is $35,042,106$ ．
7．The expanded form is $4000+200+60+7$ ．
8．The expanded form is $40,000,000+3,000,000+200,000+20,000+60$ ．

9． $0<17$ because 0 is to the left of 17 on the number line．

10． $23>17$ because 23 is to the right of 17 on the number line．

11． 847 rounded to the nearest ten is 850 ．
12． 356,294 rounded to the nearest thousand is 356,000 ．
13． 65,599 rounded to the nearest ten－thousand is 70，000．

14． $359,863,217$ rounded to the nearest million is 360，000，000．

15．English and Arabic
16． $223,000,000$ ；two hundred twenty－three million
17．Hindi； 4 countries

18． $406,000,000$
19．Chinese； $1,197,000,000$ ；one billion，one hundred ninety－seven million
20. 35
$+42$
21. 29

$$
\frac{+56}{85}
$$

22. 3407
$\begin{array}{r}+2695 \\ \hline 6102\end{array}$
23. 843

326
$+892$
2061
24. 804,325

19,207
$\begin{array}{r}+6,003 \\ \hline 829,535\end{array}$
25. Exact Estimate

39	≈ 40
18	≈ 20
+51	$\approx \frac{+50}{110}$

26. Exact Estimate
$6893 \approx 6900$
$537 \approx 500$
$+1784 \approx \frac{+1800}{9200}$
27. associative property of addition
28. identity property of addition
29. commutative property of addition
30. $11+8+9+2=\overbrace{11+9}^{20}+\overbrace{8+2}^{10}$

$$
\begin{aligned}
& =20+10 \\
& =30
\end{aligned}
$$

31. $86+7+14+193=\overbrace{86+14}^{100}+\overbrace{7+193}^{200}$

$$
\begin{aligned}
& =100+200 \\
& =300
\end{aligned}
$$

32. $23,976+234=24,210$
33. $12,715+796=13,511$
34. $82+2657+231=2970$
35. 36 feet

36 feet
25 feet
+41 feet
138 feet
The perimeter is 138 feet.
36. 16 yards

10 yards
+9 yards
35 yards
The perimeter is 35 yards.
37. 48 inches

96 inches
48 inches
+96 inches
288 inches
The perimeter is 288 inches.
38. 33

31
101
4
$+59$
228
The world's top-five languages are spoken in 228 countries.
39. 467
-52
415
40. 83
-59
41. $\begin{array}{r}826 \\ -\quad 297 \\ \hline 529\end{array}$
42. 7000
$\begin{array}{r}-\quad 46 \\ \hline 6954\end{array}$
43. 8203
$\begin{array}{r}-2479 \\ \hline 5724\end{array}$
44. $5913-5271 \approx 5900-5300$

$$
=600
$$

45. $29,673-14,218 \approx 30,000-14,000$
$=16,000$
46. $103-79=24$
47. $29,006-5394=23,612$
48. $649-226=423$
49. $4300-31=4269$
50. $1565-360=1205$
51. $1326-(133+101+39)=1326-273$ $=1053$
52. 74,608
$\begin{array}{r}-40,500 \\ \hline 34,108\end{array}$
There were 34,108 more pages in 2014 than in 1995.
53. 2005
54. 2012
55. $12-3=9$

There were 9 more hurricanes in 2010 than 2009.
56. $12-7=5$

There were 5 less hurricanes in 2010 than 2011.
57. 2008
58. commutative property of multiplication
59. distributive property
60. associative property of multiplication
61. 62
$\begin{array}{r}\times \quad 4 \\ \hline 248\end{array}$
62. 46
$\begin{array}{r}\times \quad 9 \\ \hline 414\end{array}$
63. 849
$\begin{array}{r}\times \quad 5 \\ \hline 4245\end{array}$
64. 97
$\begin{array}{r}\times 63 \\ \hline 291\end{array}$
$\begin{array}{r}+5820 \\ \hline 6111\end{array}$
65. $37 \cdot 1000=37,000$
66. 705
$\frac{\times 26}{4230}$
$\begin{array}{r}+14100 \\ \hline 18,330\end{array}$
67. 3275
$22 \underline{\times 87}$
$\begin{array}{r}+262000 \\ \hline 284,925\end{array}$
68. $63 \cdot 48 \cdot 0=0$
69. 743

$\times 126$
4458

14860
$\begin{array}{r}+74300 \\ \hline 93,618\end{array}$
70. 3025
$\begin{array}{r}\times 401 \\ \hline 3025\end{array}$
$\begin{array}{r}+121000 \\ \hline 1,213,025\end{array}$
71. $8 \times 3=24$

Attach $2+3$, or 5 zeros to 24 .
$800 \cdot 3000=2,400,000$
72. 438

$\times 230$
13140

$\begin{array}{r}+87600 \\ \hline 100,740\end{array}$
73. $3 \times 15=45$

Attach $3+3$, or 6 zeros to 45 .
$3000 \cdot 15,000=45,000,000$
74. $73 \times 38 \approx 70 \times 40$

$$
=2800
$$

75. $479 \times 72 \approx 500 \times 70$

$$
=35,000
$$

76. $(517)(652) \approx 500 \times 700$

$$
=35,000
$$

77. $73 \cdot 12=876$
78. $688 \cdot 0=0$
79. $6 \cdot 740=4440$
80. $2(129)=258$
81. $3(908)=2724$
82. 12
$\begin{array}{r}\times 5 \\ \hline 60\end{array}$
The area is 60 square feet.
83. 25
$\begin{array}{r}\times 25 \\ \hline 125\end{array}$
$\begin{array}{r}+500 \\ \hline 625\end{array}$
The area is 625 square inches.
84. Total cost $=\overbrace{23 \cdot 115}^{\text {orchestra }}+\overbrace{17 \cdot 86}^{\text {balcony }}$

$$
\begin{aligned}
& =2645+1462 \\
& =4107
\end{aligned}
$$

85. a. Cost if using monthly payments $=12 \cdot 84$

$$
=1008
$$

The total cost under the installment plan is $\$ 1008$.
b. Savings: 1008

$$
\frac{-925}{83}
$$

Paying the total amount at the time of the purchase will save $\$ 83$.
86. 18
$\begin{array}{r}\times 11 \\ \hline 18\end{array}$
$\begin{array}{r}+180 \\ \hline 198\end{array}$
The area of the floor is 198 square feet.

$$
198
$$

$\begin{array}{r}\times \quad 10 \\ \hline 1980\end{array}$
The cost of the carpeting is $\$ 1980$.
87. $24 \div 6=4$ because $4 \cdot 6=24$.
88. $\frac{42}{7}=6$ because $6 \cdot 7=42$.
89. $28 \div 1=28$ because $28 \cdot 1=28$.
90. $9 \longdiv { 9 }$ because $1 \cdot 9=9$.
91. $0 \div 8=0$ because $0 \cdot 8=0$.
92. $9 \div 0=$ undefined
93. $5 \longdiv { 2 3 5 }$
$\frac{20}{35}$
35
94. $8 \longdiv { 5 8 9 }$
$\begin{array}{r}\frac{56}{29} \\ 24 \\ \hline 5\end{array}$

The total cost is $\$ 4107$.
95. $7 \begin{array}{r}962 \\ \underline{63}\end{array}$

43
$\frac{42}{14}$
$\begin{array}{r}14 \\ \hline 0\end{array}$

6092
96. $3 \longdiv { 1 8 2 7 8 }$

18
02
$\stackrel{0}{27}$
$\underline{27}$ 08 $\frac{6}{2}$

$$
18,278 \div 3=6092 \text { R } 2
$$

97. $2 6 \longdiv { 1 9 2 4 }$

182
104
104
98. $1 9 2 4 \longdiv { 1 9 2 4 }$
99. $1 9 2 4 \longdiv { 0 }$
100. $0 \longdiv { 1 9 2 4 } =$ undefined
101. $4 3 \longdiv { 3 0 3 7 9 }$

301
27
$\frac{0}{279}$
$\underline{258}$
21
$30,379 \div 43=706$ R 21
102. $3 0 7 \longdiv { 8 0 2 5 3 8 }$
$\underline{614}$
1885
$\underline{1842}$
433
$\frac{307}{1268}$
$\underline{1228}$
$802,538 \div 307=2614 \mathrm{R} 40$
103. $\frac{36,000}{400}=\frac{360 \varnothing \varnothing}{4 \varnothing \varnothing}=\frac{360}{4}=90$
104. $18,000,000 \div 3000=18000 \not \varnothing \not \varnothing \square 3 \varnothing \varnothing \varnothing \varnothing=18000 \div 3=6000$
105. $1508 \div 29 \approx 1500 \div 30=150 \not \emptyset \div 3 \not 0=150 \div 3=50$
106. $24,762 \div 47 \approx 25,000 \div 50=2500 \not \emptyset \div 5 \emptyset=2500 \div 5=500$
107. $83,509 \div 407 \approx 84,000 \div 400=840 \not \varnothing \emptyset \div 4 \not \varnothing \varnothing=840 \div 4=210$
108. $\frac{735}{7}$

$$
\begin{gathered}
105 \\
7 \lcm{735} \\
\frac{7}{0} 3 \\
\frac{0}{35} \\
\hline 35 \\
\hline 0
\end{gathered}
$$

109. $459 \div 9$
$9 \begin{gathered}51 \\ \frac{459}{0} 9\end{gathered}$
-9
110. $798 \div 21$
$\begin{array}{r}38 \\ 2 1 \longdiv { 7 9 8 } \\ 63\end{array}$ $\overline{168}$ $\frac{168}{0}$
111. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{74+76+88+94}{4}=\frac{332}{4}$
$4 \longdiv { 3 3 }$
$\frac{32}{12}$
$\frac{12}{0}$
The mean score for the four tests is 83 .
112. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{42+79+87+91+96}{5}=\frac{395}{5}$
$5 \longdiv { 3 9 5 }$
35
$\frac{35}{45}$
$\frac{45}{0}$
The mean score for the five tests is 79 .
113. $3 6 \longdiv { 2 5 2 7 2 }$
$\stackrel{252}{07}$
$\xrightarrow[7]{7}$
$\frac{72}{0}$
Each monthly payment will be $\$ 702$.
114. a. $5 \longdiv { 1 8 0 0 0 }$

15
30
30
00
$\stackrel{0}{0} 0$
$\frac{0}{0}$
$\$ 18,000 \div 5=\$ 3600$ per person

2250
b. $8 \longdiv { 1 8 0 0 0 }$
$\frac{16}{20}$
$\frac{16}{40}$
$\frac{40}{00}$
00
$\frac{0}{0}$

$$
\$ 18,000 \div 8=\$ 2250 \text { per person }
$$

c. $\$ 3600-\$ 2250=\$ 1350$ per person
115. a. $4 6 \longdiv { \frac { 1 7 } { 8 0 2 } }$ $\frac{46}{342}$ $\frac{322}{20}$
$802 \div 46=17 \mathrm{R} 20$
So, 18 buses are needed.
b. Using an $18^{\text {th }}$ bus means that there will be empty seats. There are 46 seats per bus and 20 leftover people. Thus, there will be $46-20=26$ empty seats on the bus.
116. $7^{2}=7 \cdot 7=49$
117. $5^{3}=5 \cdot 5 \cdot 5=125$
118. $3 \cdot 2^{4}=3 \cdot 2 \cdot 2 \cdot 2 \cdot 2=48$
119. $40 \div 5 \cdot 2=8 \cdot 2$

$$
=16
$$

120. $6+2 \cdot 5=6+10$

$$
=16
$$

121. $2 \cdot 5^{2}-4 \cdot 3^{2}=2 \cdot 25-4 \cdot 9$

$$
\begin{aligned}
& =50-36 \\
& =14
\end{aligned}
$$

122. $(2 \cdot 3)^{2}-2 \cdot 3^{2}=6^{2}-2 \cdot 3^{2}$

$$
\begin{aligned}
& =36-2 \cdot 9 \\
& =36-18 \\
& =18
\end{aligned}
$$

123. $28 \div\left(4^{2}-2\right)=28 \div(16-2)$

$$
\begin{aligned}
& =28 \div 14 \\
& =2
\end{aligned}
$$

124. $36-24 \div 4 \cdot 3-1=36-6 \cdot 3-1$

$$
\begin{aligned}
& =36-18-1 \\
& =17
\end{aligned}
$$

$$
\text { 125. } \quad \begin{aligned}
4[6+2(11-6)] & =4[6+2(5)] \\
& =4[6+10] \\
& =4[16] \\
& =64
\end{aligned}
$$

126. $3(7-5)^{3}-2(8-7)^{4}=3(2)^{3}-2(1)^{4}$
$=3 \cdot 8-2 \cdot 1$
$=24-2$
$=22$
127. $\frac{6(10-3)}{2 \cdot 15-9 \cdot 3}=\frac{6(7)}{2 \cdot 15-9 \cdot 3}$

$$
\begin{aligned}
& =\frac{42}{30-27} \\
& =\frac{42}{3} \\
& =14
\end{aligned}
$$

128. $\frac{2\left(5^{2}-10\right)+10(4-1)}{2^{3}+4}=\frac{2(25-10)+10(4-1)}{2^{3}+4}$

$$
=\frac{2(15)+10(3)}{8+4}
$$

$$
=\frac{60}{12}
$$

$$
=5
$$

129. $10+5 x=10+5 \cdot 6=10+30=40$
130. $8(x-2)+3 x=8(6-2)+3 \cdot 6$

$$
\begin{aligned}
& =8(4)+18 \\
& =32+18 \\
& =50
\end{aligned}
$$

131. $\frac{40}{x}-\frac{y}{5}=\frac{40}{8}-\frac{10}{5}=5-2=3$
132. $3(2 y+x)=3(2 \cdot 10+8)=3(28)=84$
133. $7 x-6$
134. $\frac{x}{5}-2=18$
135. $9-2 x=14$
136. $3(x+7)$
137. $4 x+5=13$
$4(3)+5=13$

$$
12+5=13
$$

$$
17=13, \text { false }
$$

The number is not a solution.
138. $2 y+7=4 y-5$
$2(6)+7=4(6)-5$
$12+7=24-5$
$19=19$, true
The number is a solution.
139. $3(w+1)+11=2(w+8)$

$$
\begin{aligned}
3(2+1)+11 & =2(2+8) \\
3 \cdot 3+11 & =2 \cdot 10 \\
9+11 & =20 \\
20 & =20, \text { true }
\end{aligned}
$$

The number is a solution.
140. a. $C=\frac{400 x+500,000}{x}$

$$
C=\frac{400(10,000)+500,000}{10,000}
$$

$$
C=\frac{4,000,000+500,000}{10,000}
$$

$$
C=\frac{4,500,000}{10,000}
$$

$C=450$
To manufacture 10,000 bikes per month the average cost per bike is $\$ 450$.
b. $C=\frac{400 x+500,000}{x}$
$C=\frac{400(50,000)+500,000}{50,000}$
$C=\frac{20,000,000+500,000}{50,000}$
$C=\frac{20,500,000}{50,000}$
$C=410$
To manufacture 50,000 bikes per month the average cost per bike is $\$ 410$.
c. $\quad C=\frac{400 x+500,000}{x}$
$C=\frac{400(100,000)+500,000}{100,000}$
$C=\frac{40,000,000+500,000}{100,000}$
$C=\frac{40,500,000}{100,000}$
$C=405$
To manufacture 100,000 bikes per month the average cost per bike is $\$ 405$.
d. The average cost decreases.
141. a. Formula 1
$I=65,482+4002 x-312 x^{2}$
$I=65,482+4002(0)-312(0)^{2}$
$I=65,482+0+0$
$I=65,482$
Formula 1 describes the median income for Asians.

Formula 2
$I=54,403+2771 x-213 x^{2}$
$I=54,403+2771(0)-213(0)^{2}$
$I=54,403+0+0$
$I=54,403$
Formula 2 describes the median income for white, non-Hispanics.
b. $I=54,403+2771 x-213 x^{2}$
$I=54,403+2771(10)-213(10)^{2}$
$I=54,403+27,710-21,300$
$I=60,813$
The median household income is $\$ 60,813$.
c. underestimates by $\$ 18$

Chapter 1 Test

1. sixty-two thousand, eight hundred seventy-five
2. $23,502,439$
3. 74,000
4. distributive property
5. 893
$\begin{array}{r}+58 \\ \hline 951\end{array}$
6. 625

$$
\frac{-297}{328}
$$

7. 491
$\begin{array}{r}\times 36 \\ \hline 2946\end{array}$
$\begin{array}{r}+14730 \\ \hline 17,676\end{array}$
8. $5 \times 9=45$

Attach $2+3$, or 5 zeros to 45 .
$500 \cdot 9000=4,500,000$
9. $7 \longdiv { 5 3 6 } \begin{array} { r } { 5 7 5 7 } \\ { \hline } \end{array}$

35
25
$\frac{21}{47}$
$\frac{42}{5}$

$$
3757 \div 7=536 \text { R } 5
$$

$\frac{111}{0}$
11. $60 \div 10 \cdot 2=6 \cdot 2$

$$
=12
$$

12. $35-20 \div 5 \cdot 3-1=35-4 \cdot 3-1$

$$
\begin{aligned}
& =35-12-1 \\
& =22
\end{aligned}
$$

13. $(2 \cdot 5)^{2}-2 \cdot 5^{2}=10^{2}-2 \cdot 5^{2}$

$$
=100-2 \cdot 25
$$

$$
=100-50
$$

$$
=50
$$

14. $\frac{3\left[(7-5)^{2}+(20-18)^{3}\right]}{5^{2}-13}=\frac{3\left[2^{2}+2^{3}\right]}{5^{2}-13}$

$$
=\frac{3[4+8]}{25-13}
$$

$$
=\frac{3[12]}{25-13}
$$

$$
=\frac{36}{12}
$$

$$
=3
$$

15. 307

$$
\begin{array}{r}
+21 \\
\hline 328
\end{array}
$$

16. 800

$$
\frac{-563}{237}
$$

17. 14
$\begin{array}{r}\times 206 \\ \hline 84\end{array}$
$\begin{array}{r}+2800 \\ \hline 2884\end{array}$
18. $80,000 \div 200=800 \not \varnothing \varnothing \div 2 \not \varnothing \varnothing=800 \div 2=400$
19. $2^{3} \cdot 4-5=8 \cdot 4-5$

$$
\begin{aligned}
& =32-5 \\
& =27
\end{aligned}
$$

20. $5874+1142+459 \approx 5900+1100+500$

$$
=7500
$$

21. $24,809 \div 407 \approx 24,800 \div 400=248 \not \varnothing \emptyset \div 4 \varnothing \emptyset=248 \div 4=62$
22. Perimeter:

30 yards
10 yards
30 yards
+10 yards
80 yards

Area:
30 yards
$\times 10$ yards
300 square yards
23. Mean $=\frac{\text { sum of values }}{\text { number of values }}=\frac{70+78+96+100}{4}=\frac{344}{4}$
$4 \longdiv { 3 4 4 }$
$\frac{32}{24}$
$\frac{24}{0}$
The mean score for the four tests is 86 .
24. 26,513

423
316
150
$+\quad 1$
27,402
The odometer reading was 27,402 miles.
25. Total cost $=\overparen{4 \cdot 35}+\overparen{3 \cdot 18}$

$$
\begin{aligned}
& =140+54 \\
& =194
\end{aligned}
$$

The total cost is $\$ 194$.
26. The total cost $=157+25=182$
7) $\begin{gathered}\frac{26}{182} \\ 14\end{gathered}$
$\stackrel{14}{42}$
$\frac{42}{0}$
Each person's share is $\$ 26$.
27. a. $6 \cdot 20=120$

Plan A costs $\$ 120$.
b. $5 \cdot 15+40=75+40=115$

Plan B costs $\$ 115$.
c. $\quad 120$
$-\frac{115}{5}$
Plan B is the better deal by $\$ 5$.
28. $5(x-7)+3 x=5(13-7)+3(13)=5(6)+3(13)=30+39=69$
29. $2 l+2 w=2(8)+2(3)=16+6=22$
30. $x+5=13$
31. $9 x-4$
32. $5 x+2=19$
$5(3)+2=19$
$15+2=19$
$17=19$, false
The number is not a solution.
33. $3(x+2)=5 x-2$
$3(4+2)=5(4)-2$
$3(6)=20-2$
$18=18$, true
The number is a solution.
34. a. $I=31,806+4019 x-324 x^{2}$
$I=31,806+4019(10)-324(10)^{2}$
$I=31,806+40,190-32,400$
$I=39,596$
The median income for African-Americans in 2000 is $\$ 39,596$.
b. overestimates by $\$ 40$
c. $I=38,029+1099 x-48 x^{2}$
$I=38,029+1099(22)-48(22)^{2}$
$I=38,029+24,178-23,232$
$I=38,975$
The median income for Hispanics in 2012 is $\$ 38,975$. This model underestimates the actual median income by $\$ 30$.

