Solutions Manual for

Essentials of Chemical Reaction Engineering

Second Edition

H. Scott Fogler

Ame and Catherine Vennema Professor of Chemical Engineering and The Arthur F. Thurnau Professor at the University of Michigan, Ann Arbor, Michigan

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The author and publisher have taken care in the preparation of this work, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

Visit us on the Web: informit.com

Copyright © 2018 Pearson Education, Inc.

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

ISBN-13: 978-0-13-466396-8 ISBN-10: 0-13-466396-9

October 2017

Acknowledgments

The following students participated in the solutions to the end-of-chapter problems in the second edition of *Essentials of Chemical Reaction Engineering*:

Max Nori Brian Vicente Sombudda Ghosh Nihat Gürman Yongzhong Lui Duc Ahn Nguyen Vishal Chaudhary Ravi Kapoor Manosij Basu Arpit Gupta Sneh Shriyansh Utkarsh Prasad Darshan Shah Anamika Singh Sravya Jangareddy Kaushik Nagaraj

Fan Zhang Keyvan Edrisi Richa Motwani Prafful Bhansali Maithri Venkat Yimeng Lyu Sheng Mark Zheng

Table of Contents

Screen Shot of Web Home Pagei
Screen Shot of Interactive Computer Games (ICGs)ii
Algorithm to Decode ICGs
Screen Shot of Polymath Living Example Problems (LEPs)viii
Sample Course Syllabusx
Solutions to Chapter 1, Problems P1-1 through P1-8
Solutions to Chapter 2, Problems P2-1 through P2-10
Solutions to Chapter 3, Problems P3-1 through P3-15
Solutions to Chapter 4, Problems P4-1 through P4-10
Solutions to Chapter 5, Problems P5-1 through P5-26
Solutions to Chapter 6, Problems P6-1 through P6-13
Solutions to Chapter 7, Problems P7-1 through P7-11
Solutions to Chapter 8, Problems P8-1 through P8-18
Solutions to Chapter 9, Problems P9-1 through P9-21
Solutions to Chapter 10, Problems P10-1 through P10-23
Solutions to Chapter 11, Problems P11-1 through P11-10
Solutions to Chapter 12, Problems P12-1 through P12-27
Solutions to Chapter 13, Problems P13-1 through P13-9

WEB HOME PAGE

- These are topics that were streamlined out of the final draft of the text and put on the web for your reading

INTERACTIVE COMPUTER GAMES (ICGs)

Interactive Computer Games (ICGs)

The Interactive Computer Games (ICGs) listed below are contained on the website below. Game players can click on the <u>Run from the website</u> link to begin play each ICG title. Note that there will be a pause while the game is loaded from our servers. Afternately, one can use the <u>install to PC</u> link to install each game on the PC. This installation will typically install an icon on the desktop. Please take the default location for the installation files. Detailed instructions for installing and using the ICGs are available.

As these interactive games are played, the player will be asked a number of questions related to the corresponding material in the textbook. The computer will keep track of all the correct answers and at the end of the game will display a coded **performance number** that reflects how well the player mastered the material in the text. Instructors will have a manual to decode the performance number.

Note: The Interactive Computer Games may NOT work on approximately 10% of Windows machines. We can't find a specific reason, so if it doesn't work, please try them on a different Windows computer.

Kinetics Challenge I (Install to PC, Installation Instructions) Quiz Show Introduction to Kinetics

Description of the Module Objectives for <u>Chapter One</u>

Staging (Install to PC, Installation Instructions) Reactor Sequencing Optimization Description of the Module Objectives for <u>Chapter Two</u>

Kinetics Challenge II (Install to PC, Installation Instructions) Quiz Show Stolchlometry and Rate Laws Description of the Module

Objectives for Chapter Four

Murder Mystery(Install to PC, Installation Instructions) CSTR Volume Algorithm Description of the Module Objectives for Chapter Flug

Tic Tac Toe (Install to PC, Installation Instructions) Isothermal Reactor Design: Ergun, Arrhenius, and Van't Hoff Equations Description of the Module Objectives for Chapter Six

Ecology A Wetlands Problem (<u>install to PC</u>, <u>installation Instructions</u>) Collection and Analysis of Rate Date: Ecological Engineering Description of the Module Objectives for <u>Chapter Seven</u>

Great Race (Install to PC, Installation Instructions) Multiple Reactions Description of the Module Objectives for Chapter Eight

Enzyme Man (Install to PC, Installation Instructions) Enzyme Kinetics Description of the Module Objectives for Chapter Nine

Heterogeneous Catalysis (Install to PC, Installation Instructions) Catalydic Rate Equations, Status: Alpha Release Warning: This module is not fully tested. You may encounter abnormal behavior. Description of the Module Objectives for Chapter Ten

Heat Effects 1 (Install to PC.Installation Instructions) Basketball Challenge Mole and Energy Balances in a CSTR Description of the Module Objectives for Chapter Thirteen

Heat Effects 2 (Install to PC, Installation Instructions) Effect of Parameter Variation on a PFR Mole and Energy Balances in a PFR, Status: Alpha Release Warring: This module is not fully tested. You may encounter abnormal behavior. Description of the Module Objectives for Chapter Thirteen

ALGORITHM TO DECODE ICGs

**** CONFIDENTIAL ****

UNIVERSITY OF MICHIGAN INTERACTIVE COMPUTER MODULES FOR CHEMICAL ENGINEERING CHEMICAL REACTION ENGINEERING MODULES

H. Scott Fogler, Project Director

M. Nihat Gürmen, Project Manager (2002-2004) Susan Montgomery, Project Manager (1991-1993)

> Department of Chemical Engineering University of Michigan Ann Arbor, MI 48109-2136

©2005 Regents of the University of Michigan - All Rights Reserved -

INTERPRETATION OF PERFORMANCE NUMBERS

Students should record their Performance Number for each program, along with the name of the program, and turn it in to the instructor. The Performance Number for each program is decoded as described in the following pages.

The official site for the distribution of the modules is <u>http://www.engin.umich.edu/~cre/icm</u>

Please report problems to icm.support@umich.edu.

**** CONFIDENTIAL ****

ICMs with Windows® interface

Module	Format	Interpretation	Example				
KINETIC CHALLENGE I							
%	CzBzzAzz	Score = 1.5 * AB.C z = random numbers	Perf. No. = <u>7</u> 5 <u>2</u> 41 <u>6</u> 92 Score = 1.5*(62.7) = 94				
		Note: 75% constitutes mastery.					
KINETIC	CHALLENGE II						
%	CzBzzAzz	Score = $2.0 * AB.C$ z = random numbers	Perf. No. = $\underline{0}3\underline{7}76\underline{4}67$ Score = 2.0*(47.0) = 94				
70		Note: 75% constitutes mastery.					
MURDEF	R MYSTERY						
	zzAzz	A even: Killer and victim correctly identified A odd: Killer and victim not identified z = random numbers	Perf. No. = 50 <u>7</u> 32 Score: No credit				
mastery.		Note: An even number for the mide	lle digit constitutes				
TIC TAC	TOF						
ne ne	zDzCzBzA	Score = $4.0 * AB.C$ z = random numbers	Perf. No. = $7\underline{7803581}$ Score = $4*(15.0) = 60$ configuration 7				
completed		Configurations	configuration (
	8 Note: Student receives 20 p A score of 60 is needed for	points for every square answered correspondence of this module.	rectly.				

GREAT RACE

zzzCzABz

Score = 6.0 * AB.Cz = random numbers

Note: A score of 40 is needed for mastery of this

Perf. No. = 77738078Score = 6*(07.3) = 44

module.

**** CONFIDENTIAL ****

ECOLOGY

AzBCzaaD

z = random numbers a = random characters

A gives info on r² value of the student's linearized plot A=Y if $r^2 \ge 0.9$ A=A if $0.9 > r^2 \ge 0.8$ A=X if $0.8 > r^2 \ge 0.7$ A=F if $0.7 > r^2$ A=Q if Wetland Analysis/Simulator portion has not been completed

B gives info on alpha B=1 to 4 => student's alpha < (simulator's alpha ± 0.5) B=5 to 9 => student's alpha > (simulator's alpha ± 0.5) B=X if Wetland Analysis/Simulator portion has not been completed

C indicates number of data points deactivated during analysis C=number of deactivated data points if at least 1 point has been deactivated C=a randomly generated letter from A to Y if 0 points deactivated C=Z if Wetland Analysis/Simulator portion has not been completed

D gives info on solution method used by student

D=1 if polynomial regression was used

D=2 if differential formulas were used

D=3 if graphical differentiation was used

D=4 to 9 if Wetland Analysis/Simulator portion has not been completed

Perf No. = $\underline{A7213DF2}$

1) $A => 0.9 > r^2 >= 0.8$

2) $2 \Rightarrow$ student's alpha <

(simulator's alpha ± 0.5)

- 3) 1 => one data point was deactivated
- 4) 2 => differential formulas were used

STAGING

zCBzAFzED

z = random numbers

Perf. No. = $2\underline{12}5\underline{4}8\underline{2}9\underline{13}$

Final conversion = 2*AB.C Final flow rate = 2*DE.F conversion = 2*42.1 = 84.2 flow rate = 2*31.2 = 62.4

Please make a pass/fail criterion based on these values.

**** CONFIDENTIAL ****

ICMs with Dos® interface

Module Format		Interpretation	Example		
HETCAT	zzABzCD	A=2,3,5,7: interaction done B=2,3,5,7: intro done	Perf. No. = 80 <u>27</u> 4 <u>35</u> A: Worked on		
interaction		C=2,3,5,7: review done D denotes how much they did in the interaction:	B: Looked at intro C: Looked at review D: found parameter		
values,			didn't find		
mechanism		$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	Note: Performance number given only if student goes through the interaction portion of the module				
HEATFX1	zzAzz	A even: score > 85 % z = random numbers	Perf. No. = 53 <u>6</u> 07 Score > 85 %		
Note: Student told they have achieved mastery if their score is greater than 85%					
HEATFX2	zzzAzz	A even: completed interaction $z =$ random numbers	Perf. No. = 407 <u>5</u> 82 Interaction not		
· · · · ·	Note: Performance number given only if student goes through the interaction portion of the module.				

LIVING EXAMPLE PROBLEMS (LEPs)

emical Reaction Engineering 5th Edition		Problem S Updates ar	Solving	
TOC 1 2 3 4	5 6 7 8	9 10 11 12	13 14 15 16	17 18 Appendices
hapter 12: Steady-Stat xchange ving Example Problems e following examples can be accessed with Polyi			Design: Flow	Reactors with Hea
Living Example Problem	Polymath™ Code	Matlab Code	Wolfram CDF Code	AspenTech TM
Example 12-1 Isomerization of Normal Butane with Heat Exchanger	a) Co-current: <u>LEP-12-</u> <u>1a.pol</u> b) Countercurrent: <u>LEP-12-</u> <u>12-1b.pol</u> c) Constant T _a : <u>LEP-12-</u> <u>1c.pol</u> d) Adiabatic: <u>LEP-12-</u> <u>1d.pol</u>	a) Co-current: LEP- 12-1azip b) Countercurrent: LEP-12-1bzip c) Constant T _a : LEP- 12-1czip d) Adiabatic; LEP-12- 1dzip	a) Co-current: LEP-12- 1a.odf b) Countercurrent: LEP-12-1b.cdf c) Constant T_a LEP- 12-10.odf d) Adiabatic: LEP-12- 1d.odf	22
Example 12-2 Production of Acetic Anhydride	a) Adiabatic: <u>LEP-12-</u> 2a.pol b) Constant T _a : <u>LEP-</u> 12-2b.pol c) Co-current <u>LEP-12-</u> 2c.pol d) Countercurrent: <u>LEP-</u> 12-2d.pol	a) Adiabatic: LEP-12- 2azip b) Constant T _a : LEP- 12-2bzip c) Co-current: LEP- 12-2czip d) Countercurrent; LEP-12-2dzip	a) Adiabatic: <u>LEP-12-</u> 2a.cdf b) Constant T _a : <u>LEP-</u> 12-2b.cdf c) Co-current: <u>LEP-12-</u> 2c.odf d) Countercurrent: <u>LEP-12-2d.cdi</u>	a) Adiabatic; <u>Tutorial, ASPEN Backup</u> File b) Constant Heat Exchange: <u>Tutorial,</u> <u>ASPEN Backup File</u>
Example 12-3 Production of Propylene Glycol n an Adiabatic CSTR		- .	LEP-12-3.cdf	
Example 12-4 CSTR with a Cooling Coll	LEP-12-4.001	LEP-12-4.zip	LEP-12-4.cdf	
Example 12-5 Parallel Reaction in a PFR with Heat Effects	LEP-12-5.pgl	LEP-12-5izip	LEP-12-5.cdf	-
Example 12-6 Multiple Reactions in a CSTR	LEP-12-6.pol Alternative Solution: LEP-12-6a.pol	LEP-12-6.zip	LEP-12-6.odf	-
Example 12-7 Complex Reactions	a) Go-current: LEP-12- 7a.col b) Countercurrent: LEP- 12-7b.col c) Constant T _a :LEP-12- 7c.col d) Adiabatic: LEP-12- 7d.col	a) Co-current: LEP- 12-7azip b) Countercurrent: LEP-12-7bzip c) Constant T _a :LEP- 12-70zip d) Adiabatic: LEP-12- 7d.zip	a) Co-current; LEP-12- 7a.cdf b) Countercurrent: LEP-12-7b.cdf c) Constant T _a :LEP- 12-7c.cdf 0) Adiabatic: LEP-12- 7d.cdf	
Example R12-1 Industrial Oxidation of SO_2	LEP-RE12-1.pol	LEP-RE12-1.zlp	Ì	-
Example 12-T12-3 PBR with Variable Coolant Temperature	LEP-T12-3.pol	LEP-T12-3.zip	LEP-T12-3.odf	+

SAMPLE COURSE SYLLABUS

ChE 344: CHEMICAL REACTION ENGINEERING

Fundamentals of chemical reaction engineering. Rate laws, kinetics, and mechanisms of homogeneous and heterogeneous reactions. Analysis of rate data, multiple reactions, heat effects, bioreactors. Design of industrial reactors.

Prerequisite: ChE 330, ChE 342

Fall 2015

Lectures: M,W 8:40 (Sharp) to 10:30 (not so sharp) - Room: 1013 Dow

Instructor:

Professor H. Scott Fogler 3168 DOW, 763-1361, sfogler@umich.edu Office Hours: M,W 10:30a to 11:30a Course assistants include: Instructional aids, tutor, proctors, and graders

Text Required

Elements of Chemical Reaction Engineering, 5th edition, H. Scott Fogler Web site: *www.umich.edu/~elements/5e*

Recommended Reading List

- Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB, 2nd Edition 2008, Cutlip & Shacham
- The Elements of Style, Strunk and White
- Strategies for Creative Problem Solving, 3rd Edition 2014, Fogler, LeBlanc & Rizzo (for OEP's)

Schedule

Note - all ICGs (Interactive Computer Games) are Individual

1) Wednesday, September 9

Topic:	Lecture 1 – Chapter 1, Introduction, POLYMATH, Mole balances
Read:	Preface, Prerequisites, Appendix B
In-Class Problem:	No In-Class Problem

2) Monday, September 14

Topic:	Lecture 2 – Chapter 2, Design equations, Levenspiel plots, Reactor staging
Read:	Chapter 1, P1-9 _A , Appendix A, from the Web
	Chapter 2, Sections 2.1, 2.2, and 2.3
Hand In:	Problem Set 1: P1-1 _A , P1-6 _B
In-Class Problem:	1
Study Problems:	P1-8 _A

3) Wednesday, September 16

Lecture 3 – Chapter 3, Rate laws			
Chapter 2, Chapter 3			
Problem Set 2: Define terms in the Arrhenius Equation, P2-2 _A , Intro to			
Learncheme			
2 (Hint: Viewing the University of Alabama YouTube video "The Black			
Widow" noted in Problem P3-8 _B may help you with today's in class			
problem)			

Study Problems:	P2-7 _A
4) Monday, Septembe Topic: Read: Hand In: In-Class Problem: Study Problems:	er 21 Lecture 4 – Chapter 4, Stoichiometry Batch Systems Chapter 4 Section 4.1 Problem Set 3: Define θ_i , θ_A , θ_B , and δ , P2-10 _B , P3-5 _A , P3-8 _B , P3-11 _B , P3-13 _A 3 - Bring i>clickers (tentative) - Test Run of System in 2166 Dow P3-14 _A
5) Wednesday, Septer Topic: Read: Hand In: In-Class Problem: Study Problems:	 mber 23 Lecture 5 – Chapter 4, Stoichiometry Flow Systems Chapter 4, Section 4.1 Problem Set 4: Define ε, F_{T0}, C_{T0}, P4-2_A. 4 P4-1_A parts (c) and (d)
6) Monday, Septembe Topic: Read: Hand In: In-Class Problem: Study Problems:	er 28 Lecture 6 – Chapter 5, Isothermal reactor design Chapter 5, Chapter 5 Summary Notes on the Web site Problem Set 5: P4-1 _A (a) and (b) only, P4-3 _A , P4-4 _B , P4-5 _B . 5 P4-10 _C
7) Wednesday, SepterTopic:Hand In:In-Class Problem:	mber 30 Lecture 7 – Chapter 5, California Registration Exam Problem Problem Set 6: What are you asked to find P5-18 _B ? What is the Ergun Equation? P5-2 _A . 6
Study Problems:	$P5-1_B$ (a) and (b)
8) Monday, October : Topic: Read: Hand In: In-Class Problem: Study Problems:	5 Lecture 8 – Chapter 5, Pressure drop Chapter 5, Sections 5.4 and 5.5 Problem Set 7: P5-3 _A , P5-4 _B , P5-5 _A , P5-8 _B , P5-13 _B omit parts (j) and (k), P5-16 _B (a). 7 – Bring Laptops P5-9 _A , P5-10 _B (a).
9) Wednesday, Octob Topic: Read: Hand In: In-Class Problem: Study Problems:	
10) Monday, October Topic: Read: Hand In: In-Class Problem: Study Problems:	Lecture 10 – Chapter 6, Semibatch Reactors Chapter 6 Problem Set 9: $P5-1_A$ (a), $P5-11_B$, $P6-4_B$ delete part (c), $P6-5_B$. 9 – Bring Laptops to carry out Polymath ODE Solver $P6-7_B$

11) Wednesday, October 14Topic:Lecture 11 – Chapter 7, Analysis of Rate Data/Chapter 9, Pseudo SteRead:Chapter 7, Chapter 9, Section 9.1 and the cobra web moduleHand In:Problem Set 10: LEP for Example 6-1, P6-2 _B , P6-11 _B omit part (c)In-Class Problem:10 – Bring Laptops to carry out Polymath RegressionStudy Problems:P7-6 _B .				
12) Monday, October Topic:	r 19 No Classes – Fall Study Break			
13) Wednesday, OctoTopic:Read:Hand In:In-Class Problem:Study Problems	bber 21 Lecture 12 – Chapter 8, Multiple Reactions Chapter 8, Sections 8.1, 8.2, 8.3 and 8.4; Problem Set 11: P7-7 _A , P7-8 _A . 11 P7-10 _A			
14) Monday, October Topic:	r 26 Lecture 13 – EXAM I – Covers Chapters 1 through 7 Closed book, web, notes, in-class problems and home problems.			
15) Wednesday, OctoTopic:Read:In-Class Problem:Hand In:Study Problems	ber 28 Lecture 14 – Chapter 8: Multiple Reactions Chapter 8, Sections 8.5, 8.6, 8.7 and 8.8 12 - Bring Laptops Problem Set 12: P8-1 _A (a) part (1) only, P8-1 _A (b), P8-1 _A (c) part (1) only, P8-2 _B , P8-6 _B , P8-7 _C (a), (b) and (c) P8-10 _B			
16) Monday, Novem Topic: Read: Hand In: In-Class Problem: Study Problems:	ber 2 Lecture 15 – Derivation of Energy Balance Chapter 11, Sections 11.1, 11.2 and 11.3 Problem Set 13: P8-12 _B . Comprehensive Problem 13 – Bring Laptops P8-16 _A			
17) Wednesday, Nov Topic:Read:In-Class Problem:Study Problems	ember 4 Lecture 16 – Chapter 11: Adiabatic Equilibrium Conversion and Reactor Staging Finish Reading Chapter 11, Equilibrium conversion appendix 14 P11-6 _B			
18) Monday, Novem Topic: Read: Hand In: In-Class Problem: Study Problem:	ber 9 Lecture 17 – Heat Exchange, Adiabatic Reactors ICPs Chapter 12 Sections 12.1 through 12.2 Problem Set 14: P11-1 _A (b), P11-3 _B , P11-4 _A . 15 P12-6 _A			

19) Wednesday, November 11Topic:Lecture 18 – Trends in Conversion and Temperature Profiles					
Read: Hand In: In-Class Problem:	Applications of the Energy Balance to PFRs Chapter 12, Section 12.3 and 12.4 Problem Set 15: P12-3 _B LEP 16 – Bring Laptops				
20) Monday, Novem Topic:	ber 16 Lecture 19 – Multiple Reactions with Heat Effects				
Topic.	This topic is a major goal of this course, to carry out calculations for non isothermal multiple reactions.				
Hand In: In-Class Problem: Study Problem:	Applications of the Energy Balance to PFRs Problem Set 16: P12-4 _A (a) and (b), P12-14 _B , P12-17 _B , P12-21 _B . 17 – Bring Laptops P12-19 _B , i>clicker questions handed out in class				
21) Wednesday, Nov Topic:	vember 18 Lecture 20 – CSTR and Review for Exam II				
22) Monday, Novem					
Topic: Hand In:	Lecture 21 – EXAM II – Chapters 8, 11 and 12. Book and notecard are the only materials allowed Problem Set 17: P12-26 _C				
23) Wednesday, Nov					
Topic:	Lecture 22 – Multiple Steady States (MSS) Multiple Reactions with Heat Effects				
Read: In-Class Problem: Study Problems:	Sections 12.6 and 12.7 18 – Bring a Ruler/Straight Edge P13-4 _B				
24) Monday, Novem					
Topic: Read:	Lecture 23 – Safety (CSI) Chapter 13				
Hand In: In-Class Problem:	Problem Set 18: P13-1 _B (b) and (f), P13-8 _B 19 – Bring Laptops				
Study Problems:	P13-4 _B				
25) Wednesday, Dec Topic:	Lecture 24 – Catalysis Reactor Safety				
Read: Hand In:	Chapter 13, Sections 13.1 through 13.3, and 13.5 Problem Set 19: P10- 2_A part (d), P10- 4_B				
In-Class Problem: Study Problems:	20 P12-16 _B				
26) Monday, Decem					
Topic: Read:	Lecture 25 – Catalysis Chapter 10, Sections 10.1 through 10.2.2				
Hand In: In-Class Problem:	Problem Set 20: P10-3 _A , P10-8 _B , P10-10 _B 21				
Study Problems:	Р10-7 _в , Р10-9 _в				

27) Wednesday, December 9Topic:Lecture 23 - PSSH and EnzymeReadChapter 9Hand In:Problem Set 21: P9-4A, P9-5B, P9-9B, P9-14B P9-19AIn-Class Problem:22Study Problems:P9-12B, P9-16B, P9-21A

28) FINAL EXAM

P1-1 (a) Example 1-3

(i) C_A decreases and C_B increases with an increase in k, and a decrease in v_0 for the same volume.

(ii) C_A decreases and C_B increases with an increase in k and K_e , and a decrease in ν_0 for the same volume.

(iii) Individualized solution

(iv) Refer to the polymath report below

POLYMATH Report

Ordinary Differential Equations

Calculated values of DEQ variables

	Variable	Initial value	Minimal value	Maximal value	Final value
1	Са	10.	2.849321	10.	2.849321
2	Cb	0	0	7.150679	7.150679
3	k	0.23	0.23	0.23	0.23
4	Ke	3.	3.	3.	3.
5	ra	-2.3	-2.3	-0.1071251	-0.1071251
6	rb	2.3	0.1071251	2.3	0.1071251
7	V	0	0	100.	100.
8	v0	10.	10.	10.	10.

Differential equations

1 d(Ca)/d(V) = ra / v0 2 d(Cb)/d(V) = rb / v0

Explicit equations

1 k = 0.23 2 Ke = 3 3 ra = -k * (Ca-Cb/Ke) 4 rb = -ra 5 v0 = 10

P1-2 Given		
$A = 2 * 10^{10} ft^2$	$T_{STP} = 491.69R$	H = 2000 ft
$V = 4 * 10^{13} ft^3$	T = 534.7 ° R	P _o = 1atm
$R = 0.7302 \frac{atm ft^3}{lbmol R}$	$C_{\rm S} = 2.04 * 10^{-1}$ y _A = 0.02	$\frac{bmol}{ft^3} \qquad C = 4*10^5 \text{ cars}$
F _S = CO in Santa Ana winds	F _A = CO emission from autos	$v_A = 3000 \frac{ft^3}{hr}$ per car at STP

P1-2 (a)

Total number of lb moles gas in the system:

$$N = \frac{P_0 V}{RT}$$

$$N = \frac{1atm \times (4 \times 10^{13} ft^3)}{\left(0.73 \frac{atm.ft^3}{lbmol.R}\right) \times 534.69R} = 1.025 \times 10^{11} \text{ lb mol}$$

P1-2 (b)

Molar flowrate of CO into L.A. Basin by cars.

$$F_{A} = y_{A}F_{T} = y_{A} \cdot v_{A}C_{T} \Big|_{\text{STP}}^{\text{o no. of cars}}$$

$$F_{T} = \frac{3000 ft^{3}}{hr \, car} \times \frac{1/bmol}{359 ft^{3}} \times 400000 \, cars \qquad \text{(See appendix B)}$$

$$F_{A} = 6.685 \times 10^{4} \, \text{lb mol/hr}$$

P1-2 (c)

Wind speed through corridor is U = 15mph W = 20 miles The volumetric flowrate in the corridor is $v_0 = U.W.H = (15x5280)(20x5280)(2000) \text{ ft}^3/\text{hr} = 1.673 \times 10^{13} \text{ ft}^3/\text{hr}$

P1-2 (d)

Molar flowrate of CO into basin from Sant Ana wind.

 $F_{S} := v_{0} \cdot C_{S}$ = 1.673 x 10¹³ ft³/hr ×2.04×10⁻¹⁰ lbmol/ft³ = 3.412 x 10³ lbmol/hr

P1-2 (e)

Rate of emission of CO by cars + Rate of CO in Wind - Rate of removal of CO = $\frac{dN_{CO}}{dt}$

$$F_A + F_S - v_o C_{co} = V \frac{dC_{co}}{dt}$$
 (V=constant, $N_{co} = C_{co}V$)

P1-2 (f)

$$t = 0 , C_{co} = C_{coO}$$

$$\int_{0}^{t} dt = V \int_{C_{coO}}^{C_{co}} \frac{dC_{co}}{F_{A} + F_{S} - v_{o}C_{co}}$$

$$t = \frac{V}{v_{o}} ln \left(\frac{F_{A} + F_{S} - v_{o}C_{coO}}{F_{A} + F_{S} - v_{o}C_{coO}} \right)$$

P1-2 (g)

Time for concentration to reach 8 ppm.

$$C_{CO0} = 2.04 \times 10^{-8} \frac{lbmol}{ft^3}, \ C_{CO} = \frac{2.04}{4} \times 10^{-8} \frac{lbmol}{ft^3}$$

From (f),

$$t = \frac{V}{v_o} \ln \left(\frac{F_A + F_S - v_o.C_{COO}}{F_A + F_S - v_o.C_{CO}} \right)$$

= $\frac{4ft^3}{1.673 \times 10^{13} \frac{ft^3}{hr}} \ln \left(\frac{6.7 \times 10^4 \frac{lbmol}{hr} + 3.4 \times 10^3 \frac{lbmol}{hr} - 1.673 \times 10^{13} \frac{ft^3}{hr} \times 2.04 \times 10^{-8} \frac{lbmol}{ft^3}}{6.7 \times 10^4 \frac{lbmol}{hr} + 3.4 \times 10^3 \frac{lbmol}{hr} - 1.673 \times 10^{13} \frac{ft^3}{hr} \times 0.51 \times 10^{-8} \frac{lbmol}{ft^3}}{ft^3} \right)$
t = 6.92 hr

P1-2 (h)

(1)

$$t_{o} = 0 t_{f} = 72 \text{ hrs}$$

$$C_{co} = 2.00\text{E}-10 \text{ lbmol/ft}^{3} a = 3.50\text{E}+04 \text{ lbmol/hr}$$

$$v_{o} = 1.67\text{E}+12 \text{ ft}^{3}/\text{hr} b = 3.00\text{E}+04 \text{ lbmol/hr}$$

$$F_{s} = 341.23 \text{ lbmol/hr} V = 4.0\text{E}+13 \text{ ft}^{3}$$

$$a + b \sin \left(\pi \frac{t}{6}\right) + F_{s} - v_{o}C_{co} = V \frac{dC_{co}}{dt}$$

Now solving this equation using POLYMATH we get plot between $C_{co}\,vs.\,t$

See Polymath program P1-4-h-1.pol.

POLYMATH Results

Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
Т	0	0	72	72
С	2.0E-10	2.0E-10	2.134E-08	1.877E-08
v0	1.67E+12	1.67E+12	1.67E+12	1.67E+12
Α	3.5E+04	3.5E+04	3.5E+04	3.5E+04
В	3.0E+04	3.0E+04	3.0E+04	3.0E+04
F	341.23	341.23	341.23	341.23
V	4.0E+13	4.0E+13	4.0E+13	4.0E+13

ODE Report (RKF45)

Differential equations as entered by the user

[1] d(C)/d(t) = (a+b*sin(3.14*t/6)+F-v0*C)/V
Explicit equations as entered by the user
[1] v0 = 1.67*10^12
[2] a = 35000
[3] b = 30000
[4] F = 341.23

[5] V = 4*10^13

Now solving this equation using POLYMATH we get plot between C_{co} vs t See Polymath program P1-4-h-2.pol.

POLYMATH Results

Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
Т	0	0	72	72
С	2.0E-10	2.0E-10	2.134E-08	1.877E-08
v0	1.67E+12	1.67E+12	1.67E+12	1.67E+12
А	3.5E+04	3.5E+04	3.5E+04	3.5E+04
В	3.0E+04	3.0E+04	3.0E+04	3.0E+04
F	341.23	341.23	341.23	341.23
V	4.0E+13	4.0E+13	4.0E+13	4.0E+13

ODE Report (RKF45)

Differential equations as entered by the user [1] d(C)/d(t) = (a+b*sin(3.14*t/6)-v0*C)/V

Explicit equations as entered by the user [1] v0 = 1.67*10^12 [2] a = 35000 [3] b = 30000 [4] V = 4*10^13

P1-2 (h) Continued

	-	•
1	2	۱.
	Э	

- Changing a → Increasing 'a' reduces the amplitude of ripples in graph. It reduces the effect of the sine function by adding to the baseline.
- Changing b → The amplitude of ripples is directly proportional to 'b'. As b decreases amplitude decreases and graph becomes smooth.
- Changing $v_0 \rightarrow$ As the value of v_0 is increased the graph changes to a "shifted sin-curve". And as v_0 is decreased graph changes to a smooth increasing curve.

P1-3 (a)

Initial number of rabbits, x(0) = 500Initial number of foxes, y(0) = 200Number of days = 500

Given,

 $k_1 = 0.02 day^{-1}$ $k_2 = 0.00004 / (day \times foxes)$ $k_3 = 0.0004 / (day \times rabbits)$ $k_4 = 0.04 day^{-1}$

See Polymath program P1-3-a.pol.

POLYMATH Results

Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value	
Т	0	0	500	500	
Х	500	2.9626929	519.40024	4.2199691	
Y	200	1.1285722	4099.517	117.62928	
k1	0.02	0.02	0.02	0.02	
k2	4.0E-05	4.0E-05	4.0E-05	4.0E-05	
k3	4.0E-04	4.0E-04	4.0E-04	4.0E-04	
k4	0.04	0.04	0.04	0.04	

ODE Report (RKF45)

Differential equations as entered by the user [1] $d(x)/d(t) = (k1^*x)-(k2^*x^*y)$ [2] $d(y)/d(t) = (k3^*x^*y)-(k4^*y)$

Explicit equations as entered by the user [1] k1 = 0.02 [2] k2 = 0.00004 [3] k3 = 0.0004 [4] k4 = 0.04

P1-3 (a) Continued

When, t_{final} = 800 and $k_3 = 0.00004/(day \times rabbits)$

Plotting rabbits vs. foxes

P1-3 (b)

Edit Window Help				
66 - X B B 0 A L [N X I I	靈?	
Nonlinear Equations Solver	🧐 Nonlinear E	quations Solu	tich #0	
f ⁶⁴ × ↓ │ ① 📧 🔶 safenewt 💌 Nonlinear Equations: 2 Auxiliary Equations: 0 🗸	POLYMATH Nonlinear Equa			
fix) = x^3-4*y*2+3*x-1 xi0) = 2	Calculated	values of N	LE variable	is is
$f(y) = 2^{-3}y^{*}2 \cdot 9^{*}x^{*}y \cdot 5$	Variable	Value	f(x)	Initial Guess
<i>i</i> (0) = 2	1 x	0.6456525	1,987E-09	2.
and the share	2 y	-0.5491149	-3.658E-09	.2.
	Nonlinear e 1 f(x) = x^3 2 f(y) = 6*) General Sel	3-4*y^2+3* y^2-9*x*y-5		
	Total number of	fequations	2	
	Number of imp			
	Number of exp		the second se	
	Elapsed time Solution metho		0.0000 sec SAFENEWT	
	Solution metho	u.	SALEMENT	
e Im	How Recetions		ica	

P1-3 (c)

We would have to change k2 and k4 for the plot to become a circle from an oval.

P1-3 (d)

P1-3 (d) Continued

P1-5

The correct answer is b.)

- a.) Has the wrong sign for $-\int^{V} r_A dV$ and $-2\int^{V} r_A dV$. Should be $+\int^{V} r_A dV$ and
 - $+2\int^{V} r_{A}dV$
- b.) All are correct
- c.) Wrong sign for F_c , should be $-F_c$.
- d.) Wrong sign for $-\int^V r_C dV$, should be $+\int^V r_C dV$

P1-6 (a)

 $-r_A = k$ with k = 0.05 mol/h dm³ CSTR: The general equation is

$$V = \frac{F_{A0} - F_A}{-r_A}$$

Here $C_A = 0.01C_{A0}$, $v_0 = 10 \text{ dm}^3/\text{min}$, $F_A = 5.0 \text{ mol/hr}$ Also we know that $F_A = C_A v_0$ and $F_{A0} = C_{A0} v_0$, $C_{A0} = F_{A0}/v_0 = 0.5 \text{ mol/dm}^3$ Substituting the values in the above equation we get,

$$V = \frac{C_{A0}v_0 - C_Av_0}{k} = \frac{(0.5)10 - 0.01(0.5)10}{0.05}$$

 \rightarrow V = 99 dm³

PFR: The general equation is

$$\frac{dF_A}{dV} = r_A = k \text{ , Now } F_A = C_A v_0 \text{ and } F_{A0} = C_{A0} v_0 \Longrightarrow \frac{dC_A v_0}{dV} = -k$$

Integrating the above equation we get

P1-6 (a) Continued

$$\frac{v_0}{k} \int_{C_{A0}}^{C_A} dC_A = \int_{0}^{V} dV \implies V = \frac{v_0}{k} (C_{A0} - C_A)$$

Hence $V = 99 \text{ dm}^3$

Volume of PFR is same as the volume for a CSTR since the rate is constant and independent of concentration.

P1-6 (b)

We have already derived that

$$V = \frac{C_{A0}v_0 - C_Av_0}{-r_A} = \frac{v_0C_{A0}(1 - 0.01)}{kC_A}$$

k = 0.0001s⁻¹ = 0.0001 x 3600 hr⁻¹ = 0.36 hr⁻¹
$$\Rightarrow V = \frac{(10dm^3 / hr)(0.5mol / dm^3)(0.99)}{(0.36hr^{-1})(0.01*0.5mol / dm^3)} => V = 2750 \text{ dm}^3$$

PFR:

From above we already know that for a PFR

$$\frac{dC_A v_0}{dV} = r_A = -kC_A$$

Integrating

$$\frac{v_0}{k} \int_{C_{A0}}^{C_A} \frac{dC_A}{C_A} = -\int_{0}^{V} dV$$
$$\frac{v_0}{k} \ln \frac{C_{A0}}{C_A} = V$$

Again k = $0.0001s^{-1}$ = $0.0001 \times 3600 \text{ hr}^{-1}$ = 0.36 hr^{-1} Substituting the values in above equation we get $V = 127.9 \text{ dm}^3$

P1-6 (c)

 $-r_{A} = kC_{A}^{2}$ with k = 300 dm³/mol.hr

CSTR:

$$V = \frac{C_{A0}v_0 - C_A v_0}{-r_A} = \frac{v_0 C_{A0}(1 - 0.01)}{k C_A^2}$$

Substituting all the values we get

$$V = \frac{(10dm^3 / hr)(0.5mol / dm^3)(0.99)}{(300dm^3 / mol.hr)(0.01*0.5mol / dm^3)^2} \implies V = 660 \text{ dm}^3$$

PFR:

_

$$\frac{dC_A v_0}{dV} = r_A = -kC_A^2$$

P1-6 (c) Continued

Integrating

$$\frac{v_0}{k} \int_{C_{A0}}^{C_A} \frac{dC_A}{C_A^2} = -\int_0^V dV => \frac{v_0}{k} (\frac{1}{C_A} - \frac{1}{C_{A0}}) = V$$
$$=> V = \frac{10dm^3 / hr}{300dm^3 / mol.hr} (\frac{1}{0.01C_{A0}} - \frac{1}{C_{A0}}) = 6.6 \text{ dm}^3$$

P1-6 (d)

 $C_{A} = 0.001C_{A0}$ $t = \int_{0}^{N} \frac{dN}{dN}$

$$t = \mathbf{J}_{N_A} \quad \frac{1}{-r_A V}$$

Constant Volume V=V₀

$$t = \int_{C_A}^{C_{A0}} \frac{dC_A}{-r_A}$$

Zero order:

$$t = \frac{1}{k} \left[C_{A0} - 0.001 C_{A0} \right] = \frac{.999 C_{A0}}{0.05} = 9.99 h$$

First order:

$$t = \frac{1}{k} \ln \left(\frac{C_{A0}}{C_A} \right) = \frac{1}{0.0001} \ln \left(\frac{1}{.001} \right) = 69078 \, s = 19.19 \, h$$

Second order:

$$t = \frac{1}{k} \left[\frac{1}{C_A} - \frac{1}{C_{A0}} \right] = \frac{1}{300} \left[\frac{1}{0.5 \cdot 0.001} - \frac{1}{0.5} \right] = 6.66 h$$

P1-7 Enrico Fermi Problem

P1-7(a) Population of Chicago = 4,000,000
Size of Households = 4
Number of Households = 1,000,000
Fraction of Households that own a piano = 1/5
Number of Pianos = 200,000
Number of Tunes/year per Piano = 1
Number of Tunes Needed Per Year = 200,000
Tunes per day = 2
Tunes per year per tuner =
$$\frac{250 \text{ days}}{yr} \times \frac{2}{day} = 500/\text{yr/tuner}$$

 $\frac{200,000 \text{ tunes}}{yr} \times \frac{1}{500 \text{ tunes / yr / tuner}} = 400 \text{ Tuners}$