Solutions Manual for
 Essentials of Chemical Reaction Engineering

Second Edition

H. Scott Fogler
Ame and Catherine Vennema Professor of Chemical Engineering and The Arthur F. Thurnau Professor at the University of Michigan, Ann Arbor, Michigan

The author and publisher have taken care in the preparation of this work, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

Visit us on the Web: informit.com
Copyright © 2018 Pearson Education, Inc.
This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

ISBN-13: 978-0-13-466396-8
ISBN-10: 0-13-466396-9

October 2017

Acknowledgments

The following students participated in the solutions to the end-of-chapter problems in the second edition of Essentials of Chemical Reaction Engineering:

Max Nori	Manosij Basu
Brian Vicente	Arpit Gupta
Sombudda Ghosh	Sneh Shriyansh
Nihat Gürman	Utkarsh Prasad
Yongzhong Lui	Darshan Shah
Duc Ahn Nguyen	Anamika Singh
Vishal Chaudhary	Sravya Jangareddy
Ravi Kapoor	Kaushik Nagaraj

Fan Zhang
Keyvan Edrisi
Richa Motwani
Prafful Bhansali
Maithri Venkat
Yimeng Lyu
Sheng Mark Zheng

Table of Contents

Screen Shot of Web Home Page i
Screen Shot of Interactive Computer Games (ICGs) ii
Algorithm to Decode ICGs v
Screen Shot of Polymath Living Example Problems (LEPs). viii
Sample Course Syllabus x
Solutions to Chapter 1, Problems P1-1 through P1-8Solutions to Chapter 2, Problems P2-1 through P2-10
Solutions to Chapter 3, Problems P3-1 through P3-15
Solutions to Chapter 4, Problems P4-1 through P4-10
Solutions to Chapter 5, Problems P5-1 through P5-26
Solutions to Chapter 6, Problems P6-1 through P6-13
Solutions to Chapter 7, Problems P7-1 through P7-11
Solutions to Chapter 8, Problems P8-1 through P8-18
Solutions to Chapter 9, Problems P9-1 through P9-21
Solutions to Chapter 10, Problems P10-1 through P10-23
Solutions to Chapter 11, Problems P11-1 through P11-10
Solutions to Chapter 12, Problems P12-1 through P12-27
Solutions to Chapter 13, Problems P13-1 through P13-9

WEB HOME PAGE

Welcome to the Elements of Chemical Reaction Engineering 5th Edition Homepage!

INTERACTIVE COMPUTER GAMES (ICGs)

Interactive Computer Games (ICGs)

俍 itie. Note that there will be a pause while the game is loaded from our servers. Aiternately, one can use the install to PC link to install each game on the PC. This instaliation will typically install an icon on the desktop. Please take the default location for the installation files. Detailed instructions for installing and using the ICGs are available.
As these interactive games are played, the player will be asked a number of questions related to the corresponding material in the textbook. The computer will keep track of al the correct answers and at the end of the game will display a codec performance number that reflects how well the player mastered the material in the text. Instructors will have a manuai to decode the performance number.
Note: The Interantive Computer Games may NOT work on approximately 10% of Windows manhines. We can't lind a speafic reason, so it it doesht woric, please try them on a different Windows computer.
Kinatics Challengel (install to PC. Installation instructions)
Quiz Show
Introduction to Kinetics
Description of the Module
Objectives for Chapter One
Staging (Install to PC , Installation instructions)
Reactor Sequencing Optimization
Description of the Module
Objectives for Chapter Two
Kinetics Challenge if (install to PC, Installation Instructions)
Quiz Show
Stolchlometry and Rate Laws
Descniption of the Module
Objectives for Chapter Four
Murder Mystery(Instali to PC. Instaliation instructions)
CSTR Volume Algorithm
Description of the Module
Objectives for Chapter Five
Tic Tac Toe (Install to PC. Installation Instructions)
sothermal Reactor Design: Ergun, Arrhenius, and Van't Hoff Equations
Description of the Module
Objectives for Chapter Six
Ecology A Wetiands Problem (Install to PC, Installation Instructions)
Collection and Analysis of Rate Date: Ecological Engineering
Description of the Module
Objectives for Chapter Sever
Great Race (install to PC , Installation instructions)
Muittiple Reactions
Description of the Module
Objectives for Chapter Eligh
Enzyme Man (Install to PC, Installation Instructions)
Enzyme Kinetics
Description of the Module
Objectives for Chapter Nine
Heterogeneous Catalysis (install to PC, Installation instructions)
Catalytic Rate Equations, Status: Alpha Release
Wsining: This module is not fully tested, You may encounter abnormal behavior,
Description of the Medule
Objectives for Chaptor Ten
Heat Effects 1 (instali 10 PC. Installation instructions)
Basketball Challenge
Mole and Energy Balances in a CSTR
Description of the Module
Objectives for Chapter Thirteen
Heat Effects 2 (Install to PC, Installation instructions)
Effect of Parameter Variation on a PFR
Mole and Energy Balances in a PFR, Status: Alpha Release
Warring: This module is not fully tested. You may encounter abnormal behavion
Description of the Module
Objectives for Chapter Thirteen

Interactive Computer Games (ICGs)
Kinetic Challenge 1

ALGORITHM TO DECODE ICGs

**** CONFIDENTIAL ****

UNIVERSITY OF MICHIGAN
 INTERACTIVE COMPUTER MODULES FOR CHEMICAL ENGINEERING CHEMICAL REACTION ENGINEERING MODULES

H. Scott Fogler, Project Director
M. Nihat Gürmen, Project Manager (2002-2004)

Susan Montgomery, Project Manager (1991-1993)
Department of Chemical Engineering
University of Michigan
Ann Arbor, MI 48109-2136
© 2005
Regents of the University of Michigan

- All Rights Reserved -

INTERPRETATION OF PERFORMANCE NUMBERS

Students should record their Performance Number for each program, along with the name of the program, and turn it in to the instructor. The Performance Number for each program is decoded as described in the following pages.

The official site for the distribution of the modules is http://www.engin.umich.edu/~cre/icm

Please report problems to icm.support@umich.edu.

ICMs with Windows ${ }^{\circledR}$ interface

Module Format
KINETIC CHALLENGE I
CzBzzAzz
\%
Interpretation

Score $=1.5$ * AB.C
$\mathrm{z}=$ random numbers

Note: 75% constitutes mastery.

Example

Perf. No. $=\underline{\mathbf{7} 5} \underline{\mathbf{2}} \mathbf{4}_{\underline{\mathbf{6}}} \mathbf{9} 2$
Score $=1.5^{*}(62.7)=94$

KINETIC CHALLENGE II

CzBzzAzz
\%
Score $=2.0$ * AB.C
Perf. No. $=\underline{\mathbf{0}} \mathbf{3} \underline{7} 76 \underline{\mathbf{4}} 67$
$\mathrm{z}=$ random numbers
Note: 75% constitutes mastery.

MURDER MYSTERY

zzAzz

A even: Killer and victim correctly identified
A odd: Killer and victim not identified
$\mathrm{z}=$ random numbers
Note: An even number for the middle digit constitutes
mastery.

TIC TAC TOE

Score $=4.0$ * AB.C $\mathrm{z}=$ random numbers

Perf. No. $=7 \underline{7} 8 \underline{0} \underline{5} 8 \underline{1}$
Score $=4 *(15.0)=60$ configuration 7
completed

Configurations

Note: Student receives 20 points for every square answered correctly. A score of 60 is needed for mastery of this module.

GREAT RACE

zzzCzABz
Score $=6.0$ * AB.C
Perf. No. $=777 \underline{3} 8 \underline{078}$
$\mathrm{z}=$ random numbers
Score $=6^{*}(07.3)=44$
Note: A score of 40 is needed for mastery of this
module.

AzBCzaaD
 $\mathrm{z}=$ random numbers
 $\mathrm{a}=$ random characters

A gives info on $r^{\wedge} 2$ value of the student's linearized plot
$\mathrm{A}=\mathrm{Y}$ if $\mathrm{r}^{\wedge} 2>=0.9$
$\mathrm{A}=\mathrm{A}$ if $0.9>\mathrm{r}^{\wedge} 2>=0.8$
$\mathrm{A}=\mathrm{X}$ if $0.8>\mathrm{r}^{\wedge} 2>=0.7$
$\mathrm{A}=\mathrm{F}$ if $0.7>\mathrm{r}^{\wedge} 2$
$\mathrm{A}=\mathrm{Q}$ if Wetland Analysis/Simulator portion has not been completed
B gives info on alpha
$\mathrm{B}=1$ to $4 \Rightarrow>$ student's alpha $<$ (simulator's alpha ± 0.5)
$\mathrm{B}=5$ to $9 \Rightarrow>$ student's alpha $>$ (simulator's alpha ± 0.5)
$\mathrm{B}=\mathrm{X}$ if Wetland Analysis/Simulator portion has not been completed
C indicates number of data points deactivated during analysis
$\mathrm{C}=$ number of deactivated data points if at least 1 point has been deactivated
$\mathrm{C}=\mathrm{a}$ randomly generated letter from A to Y if 0 points deactivated
$\mathrm{C}=\mathrm{Z}$ if Wetland Analysis/Simulator portion has not been completed
D gives info on solution method used by student
$\mathrm{D}=1$ if polynomial regression was used
$D=2$ if differential formulas were used
$\mathrm{D}=3$ if graphical differentiation was used
$\mathrm{D}=4$ to 9 if Wetland Analysis/Simulator portion has not been completed
Perf No. $=\underline{A} 7 \underline{213 D F} \underline{2}$

1) $\mathrm{A}=>0.9>\mathrm{r}^{\wedge} 2>=0.8$
2) $2 \Rightarrow$ student's alpha $<$ (simulator's alpha ± 0.5)
3) $1=>$ one data point was deactivated
4) $2=>$ differential formulas were used

STAGING

zCBzAFzED	$\mathbf{z}=$ random numbers
Final conversion $=2 *$ AB.C	Perf. No. $=\mathbf{2 \underline { \mathbf { 1 2 5 } 5 } \mathbf { 4 } \mathbf { 2 } \mathbf { 9 } \underline { \mathbf { 3 } }}$
Final flow rate $=2 *$ DE.	conversion $=2 * 42.1=84.2$
flow rate $=2 * 31.2=62.4$	

Please make a pass/fail criterion based on these values.

ICMs with Dos ${ }^{\circledR}$ interface

Module Format

Interpretation

Example

HETCAT

$$
\text { zzABzCD } \quad \mathrm{A}=2,3,5,7: \text { interaction done } \quad \text { Perf. No. }=80 \underline{27} \underline{355}
$$

$B=2,3,5,7$: intro done
A: Worked on
interaction
values,
$\mathrm{C}=2,3,5,7$: review done
B: Looked at intro
D denotes how much they
C: Looked at review did in the interaction: D: found parameter mechanism

$$
\begin{array}{ll}
\mathrm{D}<2 & \text { Not done } \\
2<\mathrm{D}: 5 & 4 \\
\text { Dependences } \\
\text { 4<D:5 } & \text { Parameter values } \\
\text { 6<D } \quad \text { Mechanism } \\
\mathrm{z}=\text { random numbers }
\end{array}
$$

Note: Performance number given only if student goes through the interaction portion of the module

HEATFX1

```
zzAzz A even: score > 85 %
\(\mathrm{z}=\) random numbers
Perf. No. \(=53 \underline{\mathbf{6}} 07\)
Score > 85 \%
```

Note: Student told they have achieved mastery if their score is greater than 85%

HEATFX2
zzzAzz
A even: completed interaction $\mathrm{z}=$ random numbers

Perf. No. $=407 \underline{5} 82$ Interaction not
completed
Note: Performance number given only if student goes through the interaction portion of the module.

LIVING EXAMPLE PROBLEMS (LEPs)

Chapter 12: Steady-State Nonisothermal Reactor Design: Flow Reactors with Heat Exchange

Living Example Problems
The following examples can be accessed with Polymath ${ }^{\text {ru }}$, MATLAB ${ }^{\text {M }}$, or Woiffam ODF Playerth

Living Example Problem	Polymath ${ }^{\text {TM }}$ Code	Maxiab Code	Woltram CDF Code	Aspentech ${ }^{\text {tm }}$
Example 12-1 isomerization of Normal Butane with Heat Exchenger	a) Co-currant: LEP-12. 1apol b) Countercurrent: LEP- 12-1b.001 c) Constant $T_{A}:$ LEP-12 1C.pol d) Adiabatic: LEP-12- 1d.pol	a) Co-current: LEP. 12-1azie b) Countercurrent: LEP-12-1b.zie c) Constant T_{3} ' LEEP. 12-1czip d) Adiabatic: LEP-T2- 1d.zle	a) Co-current: LEP-12. la.cal b) Countercurrent: LEP-12-16.caf a) Constant Ti LEP. 12-1c.cad d) Adiabatic: LEP-12- Id. Cdf	-.
Example 12-2 Production of Acetic Anhydride	a) Adiabatic: LEP-12. Rapol b) Constant T_{2} LEP- 12-2b.00\| c) Co-current LEP-12. 2c.pol d) Countercurrent: LEP- 12-2d.pol	a) Adiabatic: EP-12zazip b) Constant T_{a} : LEP- 12-2b-zip c) Co-current: LEP- 12-2czip d) Countercurrent: LEP-12-2d.210	a) Aciabatic: LEP-12. Racdf b) Constant $T_{3} \div$ LEP- 12-2b, cdf c) Co-current: LEP-12. 2c.odf d) Countercurrent: LEP-12-20.001	a) Adiabatic: Iutorial. ASPEN Backup File b) Constant Heat Exchange: Tutorie, ASPEN Backup File
Example 12-3 Production of Propylene Glycol in an Adiabatic CSTR	-	--	LEP-2-3. off	-
Example 12-4 CSTR with a Cooling Coil	LEP-12-4.001	LEP-12-4.zip	LEP-12-4.0才t	-r
Example 12-6 Parallel Reaction in a PFR with Heat Effects	LEP-12-5.pol	LEP-12-5.210	LEP-12-5.codi	-
Example 12-6 Multiple Reactions in a CSTR	LEP-12-6.pol Alternative Solution: LEP-12-6a.pol	LEEP-12-6.2ip	LEP-12-6.0.df	-
Example 12-7 Complex Reactions	a) Co-Current LEP-12: 7a.pol D) Countercurrent: LEP- 12.7 b .ool c) Constant T_{a}. LEP-12- 7raod d) Adiabatic: LEP-12- 70.001	a) Co-current: LEP-12-7az1p b) Countercurrent; LEP-12-76.2]\| c) Constant T_{n} : LEP - 12-7c.zip d) Adiabatic: LEP-12- 70.2ie	a) Co-ourrent: LEP-12Ta.cdt b) Countercurrent: LEP-12-7b.cdf C) Constant Tallep: 12-7c.codf ब) Adiabatie: LEP-12- 7a.cadr	-
Example R12-1 industrial Oxidation of SO_{2}	LEP-RET2-1.pol	LEP-RE12-121P	-	-
Example 12-T12-3 PBR with Variable Coolant Temperature	LEP-T12-3.pol	LEP-T12-9.2i9	LEP-T12-3.cdi	-
Example Lecture 19 $\mathrm{A}=\mathrm{B}$ Adiabatic	Acliabatic $A=B$ pol	...	Adiabatic A B B.cdf	-

SAMPLE COURSE SYLLABUS

ChE 344: CHEMICAL REACTION ENGINEERING

Fundamentals of chemical reaction engineering. Rate laws, kinetics, and mechanisms of homogeneous and heterogeneous reactions. Analysis of rate data, multiple reactions, heat effects, bioreactors. Design of industrial reactors.
Prerequisite: ChE 330, ChE 342
Fall 2015
Lectures: M,W 8:40 (Sharp) to 10:30 (not so sharp) - Room: 1013 Dow
Instructor:
Professor H. Scott Fogler
3168 DOW, 763-1361, sfogler@umich.edu
Office Hours: M, W 10:30a to 11:30a
Course assistants include: Instructional aids, tutor, proctors, and graders
Text Required
Elements of Chemical Reaction Engineering, $5^{\text {th }}$ edition, H. Scott Fogler
Web site: www.umich.edu/~elements/5e
Recommended Reading List

- Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB, 2nd Edition 2008, Cutlip \& Shacham
- The Elements of Style, Strunk and White
- Strategies for Creative Problem Solving, 3rd Edition 2014, Fogler, LeBlanc \& Rizzo (for OEP's)

Schedule
Note - all ICGs (Interactive Computer Games) are Individual

1) Wednesday, September 9

Topic: \quad Lecture 1 - Chapter 1, Introduction, POLYMATH, Mole balances
Read: Preface, Prerequisites, Appendix B
In-Class Problem: No In-Class Problem
2) Monday, September 14

Topic: Lecture 2 - Chapter 2, Design equations, Levenspiel plots, Reactor staging
Read: \quad Chapter 1, P1-9A, Appendix A, from the Web
Chapter 2, Sections 2.1, 2.2, and 2.3
Hand In: Problem Set 1: P1-1 ${ }_{\mathrm{A}}, \mathrm{P} 1-6_{\mathrm{B}}$
In-Class Problem: 1
Study Problems: P1-8A
3) Wednesday, September 16

Topic: \quad Lecture 3 - Chapter 3, Rate laws
Read: \quad Chapter 2, Chapter 3
Hand In: Problem Set 2: Define terms in the Arrhenius Equation, P2-2 A , Intro to Learncheme
In-Class Problem: 2 (Hint: Viewing the University of Alabama YouTube video "The Black Widow" noted in Problem P3-8 B_{B} may help you with today's in class problem)

Study Problems: \quad P2-7A
4) Monday, September 21

Topic: \quad Lecture 4 - Chapter 4, Stoichiometry Batch Systems
Read: Chapter 4 Section 4.1
Hand In: Problem Set 3: Define $\theta_{\mathrm{i}}, \theta_{\mathrm{A}}, \theta_{\mathrm{B}}$, and $\delta, \mathrm{P} 2-10_{\mathrm{B}}, \mathrm{P} 3-5_{\mathrm{A}}, \mathrm{P} 3-8_{\mathrm{B}}, \mathrm{P} 3-11_{\mathrm{B}}, \mathrm{P} 3-13_{\mathrm{A}}$
In-Class Problem: 3 - Bring $i>c l i c k e r s ~(t e n t a t i v e) ~-~ T e s t ~ R u n ~ o f ~ S y s t e m ~ i n ~ 2166 ~ D o w ~$
Study Problems: P3-14 A_{A}
5) Wednesday, September 23

Topic: Lecture 5 - Chapter 4, Stoichiometry Flow Systems
Read: Chapter 4, Section 4.1
Hand In: Problem Set 4: Define $\varepsilon, \mathrm{F}_{\mathrm{T} 0}, \mathrm{C}_{\mathrm{T} 0}, \mathrm{P} 4-2_{\mathrm{A}}$.
In-Class Problem: 4
Study Problems: $\quad \mathrm{P} 4-1_{\mathrm{A}}$ parts (c) and (d)
6) Monday, September 28

Topic: \quad Lecture 6 - Chapter 5, Isothermal reactor design
Read: Chapter 5, Chapter 5 Summary Notes on the Web site
Hand In: Problem Set 5: P4-1 (a) and (b) only, P4-3,$~ P 4-4$ B,$~ P 4-5_{B}$.
In-Class Problem: 5
Study Problems: P4-10C
7) Wednesday, September 30

Topic:	Lecture $7-$ Chapter 5, California Registration Exam Problem
Hand In:	Problem Set 6: What are you asked to find P5-18 ${ }^{\text {B }}$? What is the Ergun
	Equation? P5-2.

8) Monday, October 5

Topic:
Read:
Hand In: Problem Set 7: P5-3 A, P5-4, P5-5A, P5-8 ${ }_{B}$, P5-13 3_{B} omit parts (j) and (k), P5-16B (a).
In-Class Problem: 7 - Bring Laptops
Study Problems: $\quad \mathrm{P} 5-9_{\mathrm{A}}, \mathrm{P} 5-10_{\mathrm{B}}$ (a).
9) Wednesday, October 7

Topic: \quad Lecture 9 - Chapter 6, Membrane Reactors
Read: Chapter 6
Hand In: Problem Set 8: P5-13 ${ }_{\mathrm{B}}$ part (j) and (k), P5-22 ${ }_{\mathrm{A}}$.
In-Class Problem: 8 - Bring Laptops
Study Problems: P5-21 B
10) Monday, October 12

Topic:
Lecture 10 - Chapter 6, Semibatch Reactors
Read:
Hand In:
In-Class Problem: $\quad 9-$ Bring Laptops to carry out Polymath ODE Solver
Study Problems: $\quad \mathrm{P} 6-7_{B}$
11) Wednesday, October 14

Topic:
Read:
Hand In:
In-Class Problem: 10 - Bring Laptops to carry out Polymath Regression
Study Problems: \quad P7-6B.
12) Monday, October 19

Topic:
No Classes - Fall Study Break
13) Wednesday, October 21

Topic: Lecture 12 - Chapter 8, Multiple Reactions
Read: \quad Chapter 8, Sections 8.1, 8.2, 8.3 and 8.4;
Hand In: Problem Set 11: P7-7,$~ P 7-8_{A}$.
In-Class Problem: 11
Study Problems \quad P7-10 A
14) Monday, October 26

Topic: \quad Lecture 13 - EXAM I - Covers Chapters 1 through 7 Closed book, web, notes, in-class problems and home problems.
15) Wednesday, October 28

Topic: \quad Lecture 14 - Chapter 8: Multiple Reactions
Read: \quad Chapter 8, Sections 8.5, 8.6, 8.7 and 8.8
In-Class Problem: 12 - Bring Laptops
Hand In: \quad Problem Set 12: P8-1 A_{A} (a) part (1) only, P8-1 A_{A} (b), P8-1 A_{A} (c) part (1) only, P8-2 ${ }_{\mathrm{B}}, \mathrm{P} 8-6_{\mathrm{B}}, \mathrm{P} 8-7_{\mathrm{C}}$ (a), (b) and (c)
Study Problems \quad P8-10 ${ }_{B}$
16) Monday, November 2

Topic: \quad Lecture 15 - Derivation of Energy Balance
Read: Chapter 11, Sections 11.1, 11.2 and 11.3
Hand In: Problem Set 13: P8-12 . Comprehensive Problem
In-Class Problem: 13 - Bring Laptops
Study Problems: P8-16A
17) Wednesday, November 4

Topic: Lecture 16 - Chapter 11: Adiabatic Equilibrium Conversion and Reactor Staging
Read: Finish Reading Chapter 11, Equilibrium conversion appendix
In-Class Problem: 14
Study Problems P11-6B
18) Monday, November 9

Topic:
Read: Chapter 12 Sections 12.1 through 12.2
Hand In: Problem Set 14: P11-1 ${ }_{A}$ (b), P11-3 $\mathrm{B}_{\mathrm{B}}, \mathrm{P} 11-4_{\mathrm{A}}$.
In-Class Problem: 15
Study Problem: P12-6A
19) Wednesday, November 11

Topic:	Lecture 18 - Trends in Conversion and Temperature Profiles
Read:	Applications of the Energy Balance to PFRs
Chapter 12, Section 12.3 and 12.4	
Hand In:	Problem Set 15: P12-3 B $_{\text {LEP }}$
In-Class Problem:	$16-$ Bring Laptops

20) Monday, November 16

Topic: \quad Lecture 19 - Multiple Reactions with Heat Effects This topic is a major goal of this course, to carry out calculations for non isothermal multiple reactions.
Applications of the Energy Balance to PFRs
Hand In: Problem Set 16: P12-4 (a) and (b), P12-14 ${ }_{\mathrm{B}}, \mathrm{P} 12-17_{\mathrm{B}}, \mathrm{P} 12-21_{\mathrm{B}}$.
In-Class Problem: 17 - Bring Laptops
Study Problem: \quad P12-19 ${ }_{\mathrm{B}}$, $\mathrm{i}>$ clicker questions handed out in class
21) Wednesday, November 18

Topic: \quad Lecture 20 - CSTR and Review for Exam II
22) Monday, November 23

Topic: \quad Lecture 21 - EXAM II - Chapters 8, 11 and 12. Book and notecard are the only materials allowed
Hand In: Problem Set 17: P12-26c
23) Wednesday, November 25

Topic: \quad Lecture 22 - Multiple Steady States (MSS) Multiple Reactions with Heat Effects
Read: \quad Sections 12.6 and 12.7
In-Class Problem: 18 - Bring a Ruler/Straight Edge
Study Problems: \quad P13-4B
24) Monday, November 30

Topic: \quad Lecture 23 - Safety (CSI)
Read: Chapter 13
Hand In: Problem Set 18: P13-1 \quad (b) and (f), P13-8 B_{B}
In-Class Problem: 19 - Bring Laptops
Study Problems: P13-4B
25) Wednesday, December 2

Topic: \quad Lecture 24 -Catalysis Reactor Safety
Read: \quad Chapter 13, Sections 13.1 through 13.3, and 13.5
Hand In: Problem Set 19: P10-2 A part (d), P10-4 ${ }_{\mathrm{B}}$
In-Class Problem: 20
Study Problems: P12-16B
26) Monday, December 7

Topic:
Read:
Hand In:
In-Class Problem:
Study Problems: \quad P10-7, , P10-9
27) Wednesday, December 9

Topic:
Read
Hand In:
In-Class Problem:
Study Problems: \quad P9-12 ${ }_{\mathrm{B}}, \mathrm{P} 9-16_{\mathrm{B}}, \mathrm{P} 9-21_{\mathrm{A}}$

28) FINAL EXAM

P1-1 (a) Example 1-3

(i) C_{A} decreases and C_{B} increases with an increase in k, and a decrease in v_{0} for the same volume.
(ii) C_{A} decreases and C_{B} increases with an increase in k and K_{e}, and a decrease in v_{0} for the same volume.
(iii) Individualized solution
(iv) Refer to the polymath report below

POLYMATH Report

Ordinary Differential Equations
Calculated values of DEQ variables
Variable Initial value Minimal value Maximal value Final value

1	Ca	10.	2.849321	10.
2	Cb	0	0	7.150679
3	k	0.23	0.23	0.23
4 Ke	3.	3.	3.	0.150679
5	ra	-2.3	-2.3	-0.1071251
6	rb	2.3	0.1071251	2.3
7	V	0	0	-0.1071251
8	v 0	10.	10.	100.

Differential equations
$1 \mathrm{~d}(\mathrm{Ca}) / \mathrm{d}(\mathrm{V})=\mathrm{ra} / \mathrm{v} 0$
$2 \mathrm{~d}(\mathrm{Cb}) / \mathrm{d}(\mathrm{V})=\mathrm{rb} / \mathrm{v} 0$

Explicit equations

$1 \mathrm{k}=0.23$
$2 \mathrm{Ke}=3$
$3 \mathrm{ra}=-\mathrm{k} *(\mathrm{Ca}-\mathrm{Cb} / \mathrm{Ke})$
$4 \mathrm{rb}=-\mathrm{ra}$
$5 \mathrm{v} 0=10$

P1-2

Given

$A=2 * 10^{10} \mathrm{ft}^{2}$	$T_{\text {STP }}=491.69 \mathrm{R}$	$H=2000 \mathrm{ft}$	
$V=4 * 10^{13} \mathrm{ft}^{3}$	$\mathrm{~T}=534.7^{\circ} \mathrm{R}$	$\mathrm{P}_{\mathrm{O}}=1 \mathrm{~atm}$	
$R=0.7302 \frac{\mathrm{~atm} \mathrm{ft}^{3}}{\mathrm{lbmol} R}$	$\mathrm{Y}_{\mathrm{A}}=0.02$	$C_{S}=2.04 * 10^{-10} \frac{\mathrm{lbmol}}{\mathrm{ft}^{3}}$	$\mathrm{C}=4 * 10^{5} \mathrm{cars}$

$F_{S}=$ CO in Santa Ana winds $\quad F_{A}=$ CO emission from autos $\quad v_{A}=3000 \frac{f t^{3}}{h r}$ per car at STP

P1-2 (a)

Total number of lb moles gas in the system:
$N=\frac{P_{0} V}{R T}$
$N=\frac{1 \mathrm{~atm} \times\left(4 \times 10^{13} \mathrm{ft}^{3}\right)}{\left(0.73 \frac{\mathrm{~atm} . \mathrm{ft}^{3}}{\mathrm{lbmol} . R}\right) \times 534.69 \mathrm{R}}=1.025 \times 10^{11} \mathrm{lb} \mathrm{mol}$

P1-2 (b)

Molar flowrate of CO into L.A. Basin by cars.
$F_{A}=y_{A} F_{T}=\left.y_{A} \cdot v_{A} C_{T}\right|_{\text {STP }} ^{0 \text { no. of cars }}$
$F_{T}=\frac{3000 \mathrm{ft}^{3}}{h_{r c a r}} \times \frac{1 / \mathrm{bmol}}{359 \mathrm{ft}^{3}} \times 400000$ cars \quad (See appendix B)
$\mathrm{F}_{\mathrm{A}}=6.685 \times 10^{4} \mathrm{lb} \mathrm{mol} / \mathrm{hr}$

P1-2 (c)

Wind speed through corridor is $\mathrm{U}=15 \mathrm{mph}$
$\mathrm{W}=20$ miles
The volumetric flowrate in the corridor is
$v_{0}=$ U.W.H $=(15 \times 5280)(20 \times 5280)(2000) \mathrm{ft}^{3} / \mathrm{hr}=1.673 \times 10^{13} \mathrm{ft}^{3} / \mathrm{hr}$

P1-2 (d)

Molar flowrate of CO into basin from Sant Ana wind.

$$
\begin{aligned}
F_{S} & :=v_{0} \cdot C_{S} \\
& =1.673 \times 10^{13} \mathrm{ft}^{3} / \mathrm{hr} \times 2.04 \times 10^{-10} \mathrm{lbmol} / \mathrm{ft}^{3} \\
& =3.412 \times 10^{3} \mathrm{lbmol} / \mathrm{hr}
\end{aligned}
$$

P1-2 (e)

Rate of emission of CO by cars + Rate of CO in Wind - Rate of removal of CO $=\frac{d N_{C O}}{d t}$

$$
F_{A}+F_{S}-v_{o} C_{c o}=V \frac{d C_{c o}}{d t} \quad\left(V=\text { constant }, N_{c o}=C_{c o} V\right)
$$

P1-2 (f)

$\mathrm{t}=0, C_{c o}=C_{c o O}$
$\int_{0}^{t} d t=V \int_{C_{c o o}}^{C_{c o}} \frac{d C_{c o}}{F_{A}+F_{S}-v_{o} C_{c o}}$
$t=\frac{V}{v_{o}} \ln \left(\frac{F_{A}+F_{S}-v_{o} C_{C O O}}{F_{A}+F_{S}-v_{o} C_{c o}}\right)$

P1-2 (g)

Time for concentration to reach 8 ppm .
$C_{C O O}=2.04 \times 10^{-8} \frac{\mathrm{lbmol}}{\mathrm{ft}^{3}}, C_{C O}=\frac{2.04}{4} \times 10^{-8} \frac{\mathrm{lbmol}}{\mathrm{ft}^{3}}$
From (f),
$t=\frac{v}{v_{0}} \ln \left(\frac{F_{A}+F_{S}-v_{O} \cdot C_{C O O}}{F_{A}+F_{S}-v_{O} \cdot C_{C O}}\right)$
$=\frac{4 \mathrm{ft}^{3}}{1.673 \times 10^{13} \frac{\mathrm{ft}^{3}}{\mathrm{hr}}} \ln \left(\frac{6.7 \times 10^{4} \frac{\mathrm{lbmol}}{\mathrm{hr}}+3.4 \times 10^{3} \frac{\mathrm{lbmol}}{\mathrm{hr}}-1.673 \times 10^{13} \frac{\mathrm{ft}}{}{ }^{3}}{6 r} \times 2.04 \times 10^{-8} \frac{\mathrm{lbmol}}{\mathrm{ft}^{3}}\right)$
$\mathrm{t}=6.92 \mathrm{hr}$

P1-2 (h)

(1)

$$
\begin{array}{rlrl}
\mathrm{t}_{\mathrm{o}} & =0 & \mathrm{t}_{\mathrm{f}}=72 \mathrm{hrs} \\
C_{c o} & =2.00 \mathrm{E}-10 \mathrm{lbmol} / \mathrm{ft}^{3} & \mathrm{a}=3.50 \mathrm{E}+04 \mathrm{lbmol} / \mathrm{hr} \\
v_{o} & =1.67 \mathrm{E}+12 \mathrm{ft}^{3} / \mathrm{hr} & \mathrm{~b}=3.00 \mathrm{E}+04 \mathrm{lbmol} / \mathrm{hr} \\
\mathrm{~F}_{\mathrm{s}} & =341.23 \mathrm{lbmol} / \mathrm{hr} & \mathrm{~V}=4.0 \mathrm{E}+13 \mathrm{ft}^{3} \\
a+b \sin \left(\pi \frac{t}{6}\right)+F_{s}-v_{o} C_{c o}=V \frac{d C_{c o}}{d t}
\end{array}
$$

Now solving this equation using POLYMATH we get plot between C_{co} vs. t

See Polymath program P1-4-h-1.pol.
POLYMATH Results
Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
T	0	0	72	72
C	$2.0 \mathrm{E}-10$	$2.0 \mathrm{E}-10$	$2.134 \mathrm{E}-08$	$1.877 \mathrm{E}-08$
v0	$1.67 \mathrm{E}+12$	$1.67 \mathrm{E}+12$	$1.67 \mathrm{E}+12$	$1.67 \mathrm{E}+12$
A	$3.5 \mathrm{E}+04$	$3.5 \mathrm{E}+04$	$3.5 \mathrm{E}+04$	$3.5 \mathrm{E}+04$
B	$3.0 \mathrm{E}+04$	$3.0 \mathrm{E}+04$	$3.0 \mathrm{E}+04$	$3.0 \mathrm{E}+04$
F	341.23	341.23	341.23	341.23
V	$4.0 \mathrm{E}+13$	$4.0 \mathrm{E}+13$	$4.0 \mathrm{E}+13$	$4.0 \mathrm{E}+13$

ODE Report (RKF45)
Differential equations as entered by the user
$[1] d(C) / d(t)=\left(a+b^{*} \sin \left(3.14^{*} t / 6\right)+F-v 0^{*} C\right) / V$
Explicit equations as entered by the user
[1] $\mathrm{vO}=1.67^{*} 10^{\wedge} 12$
[2] a $=35000$
[3] $b=30000$
[4] F $=341.23$
[5] $\mathrm{V}=4^{*} 10^{\wedge} 13$

P1-2 (h) Continued

(2) $\mathrm{t}_{\mathrm{f}}=48 \mathrm{hrs} \quad F_{s}=0 \quad a+b \sin \left(\pi \frac{t}{6}\right)-v_{o} C_{c o}=V \frac{d C_{c o}}{d t}$

Now solving this equation using POLYMATH we get plot between C_{co} vs t
See Polymath program P1-4-h-2.pol.
POLYMATH Results
Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
T	0	0	72	72
C	$2.0 \mathrm{E}-10$	$2.0 \mathrm{E}-10$	$2.134 \mathrm{E}-08$	$1.877 \mathrm{E}-08$
v0	$1.67 \mathrm{E}+12$	$1.67 \mathrm{E}+12$	$1.67 \mathrm{E}+12$	$1.67 \mathrm{E}+12$
A	$3.5 \mathrm{E}+04$	$3.5 \mathrm{E}+04$	$3.5 \mathrm{E}+04$	$3.5 \mathrm{E}+04$
B	$3.0 \mathrm{E}+04$	$3.0 \mathrm{E}+04$	$3.0 \mathrm{E}+04$	$3.0 \mathrm{E}+04$
F	341.23	341.23	341.23	341.23
V	$4.0 \mathrm{E}+13$	$4.0 \mathrm{E}+13$	$4.0 \mathrm{E}+13$	$4.0 \mathrm{E}+13$

ODE Report (RKF45)
Differential equations as entered by the user
$[1] d(C) / d(t)=\left(a+b * \sin \left(3.14^{*} t / 6\right)-v 0^{*} C\right) / V$
Explicit equations as entered by the user
[1] $v 0=1.67 * 10^{\wedge} 12$
[2] $a=35000$
[3] b = 30000
[4] $V=4^{*} 10^{\wedge} 13$

P1-2 (h) Continued
(3)

Changing $a \Rightarrow$ Increasing ' a ' reduces the amplitude of ripples in graph. It reduces the effect of the sine function by adding to the baseline.

Changing $b \rightarrow$ The amplitude of ripples is directly proportional to ' b '. As b decreases amplitude decreases and graph becomes smooth.

Changing $v_{0} \rightarrow$ As the value of v_{0} is increased the graph changes to a "shifted sin-curve". And as v_{0} is decreased graph changes to a smooth increasing curve.

P1-3 (a)

Initial number of rabbits, $x(0)=500$
Initial number of foxes, $y(0)=200$
Number of days $=500$
$\frac{d x}{d t}=k_{1} x-k_{2} x y$
$\frac{d y}{d t}=k_{3} x y-k_{4} y$
Given,
$k_{1}=0.02 d a y^{-1}$
$k_{2}=0.00004 /($ day \times foxes $)$
$k_{3}=0.0004 /($ day \times rabbits $)$
$k_{4}=0.04 d a y^{-1}$
See Polymath program P1-3-a.pol.

POLYMATH Results
Calculated values of the DEQ variables

Variable	initial value	minimal value	maximal value	final value
T	0	0	500	500
X	500	2.9626929	519.40024	4.2199691
Y	200	1.1285722	4099.517	117.62928
k1	0.02	0.02	0.02	0.02
k2	$4.0 \mathrm{E}-05$	$4.0 \mathrm{E}-05$	$4.0 \mathrm{E}-05$	$4.0 \mathrm{E}-05$
k3	$4.0 \mathrm{E}-04$	$4.0 \mathrm{E}-04$	$4.0 \mathrm{E}-04$	$4.0 \mathrm{E}-04$
k 4	0.04	0.04	0.04	0.04

ODE Report (RKF45)

Differential equations as entered by the user
[1] $d(x) / d(t)=\left(k 1^{*} x\right)-\left(k 2^{*} x^{*} y\right)$
[2] $d(y) / d(t)=\left(k 3^{*} x^{*} y\right)-\left(k 4^{*} y\right)$

Explicit equations as entered by the user
[1] k1 $=0.02$
[2] k2 $=0.00004$
[3] k3 $=0.0004$
[4] k4 $=0.04$

P1-3 (a) Continued

When, $\mathrm{t}_{\text {final }}=800$ and $k_{3}=0.00004 /($ day \times rabbits $)$

Plotting rabbits vs. foxes

P1-3 (b)

POLYMATH 6.10 Educational Release

P1-3 (c)

We would have to change k 2 and k 4 for the plot to become a circle from an oval.

P1-3 (d)

P1-3 (d) Continued

- Foxes

P1-4
Individualized solution

P1-5

The correct answer is b.)
a.) Has the wrong sign for $-\int^{V} r_{A} d V$ and $-2 \int^{V} r_{A} d V$. Should be $+\int^{V} r_{A} d V$ and

$$
+2 \int^{V} r_{A} d V
$$

b.) All are correct
c.) Wrong sign for F_{c}, should be $-F_{c}$.
d.) Wrong sign for $-\int^{V} r_{C} d V$, should be $+\int^{V} r_{C} d V$

P1-6 (a)

$-r_{A}=k$ with $k=0.05 \mathrm{~mol} / \mathrm{h} \mathrm{dm}^{3}$
CSTR: The general equation is

$$
V=\frac{F_{A 0}-F_{A}}{-r_{A}}
$$

Here $\mathrm{C}_{\mathrm{A}}=0.01 \mathrm{C}_{\mathrm{A} 0}, \mathrm{~V}_{0}=10 \mathrm{dm}^{3} / \mathrm{min}, \mathrm{F}_{\mathrm{A}}=5.0 \mathrm{~mol} / \mathrm{hr}$
Also we know that $F_{A}=C_{A} v_{0}$ and $F_{A 0}=C_{A 0} v_{0}, C_{A 0}=F_{A 0} / v_{0}=0.5 \mathrm{~mol} / \mathrm{dm}^{3}$
Substituting the values in the above equation we get,
$V=\frac{C_{A 0} v_{0}-C_{A} v_{0}}{k}=\frac{(0.5) 10-0.01(0.5) 10}{0.05}$

$$
\rightarrow \mathrm{V}=99 \mathrm{dm}^{3}
$$

PFR: The general equation is

$$
\frac{d F_{A}}{d V}=r_{A}=k, \text { Now } F_{A}=C_{A} V_{0} \text { and } F_{A 0}=C_{A 0} V_{0}=>\frac{d C_{A} V_{0}}{d V}=-k
$$

Integrating the above equation we get

P1-6 (a) Continued

$$
\frac{v_{0}}{k} \int_{C_{A 0}}^{C_{A}} d C_{A}=\int_{0}^{V} d V \Rightarrow V=\frac{v_{0}}{k}\left(C_{A 0}-C_{A}\right)
$$

Hence V = $99 \mathrm{dm}^{\mathbf{3}}$
Volume of PFR is same as the volume for a CSTR since the rate is constant and independent of concentration.

P1-6 (b)

$-r_{A}=k C_{A}$ with $k=0.0001 \mathrm{~s}^{-1}$
CSTR:
We have already derived that

$$
\begin{aligned}
& V=\frac{C_{A 0} v_{0}-C_{A} v_{0}}{-r_{A}}=\frac{v_{0} C_{A 0}(1-0.01)}{k C_{A}} \\
& \mathrm{k}=0.0001 \mathrm{~s}^{-1}=0.0001 \times 3600 \mathrm{hr}^{-1}=0.36 \mathrm{hr}^{-1} \\
& \rightarrow V=\frac{\left(10 \mathrm{dm}^{3} / \mathrm{hr}\right)\left(0.5 \mathrm{~mol} / \mathrm{dm}^{3}\right)(0.99)}{\left(0.36 \mathrm{hr}^{-1}\right)\left(0.01 * 0.5 \mathrm{~mol} / \mathrm{dm}^{3}\right)} \Rightarrow \mathrm{V}=\mathbf{2 7 5 0 \mathrm { dm } ^ { 3 }}
\end{aligned}
$$

PFR:
From above we already know that for a PFR

$$
\frac{d C_{A} v_{0}}{d V}=r_{A}=-k C_{A}
$$

Integrating

$$
\begin{aligned}
& \frac{v_{0}}{k} \int_{C_{A 0}}^{C_{A}} \frac{d C_{A}}{C_{A}}=-\int_{0}^{V} d V \\
& \frac{v_{0}}{k} \ln \frac{C_{A 0}}{C_{A}}=V
\end{aligned}
$$

Again $\mathrm{k}=0.0001 \mathrm{~s}^{-1}=0.0001 \times 3600 \mathrm{hr}^{-1}=0.36 \mathrm{hr}^{-1}$
Substituting the values in above equation we get $\mathbf{V}=\mathbf{1 2 7 . 9} \mathbf{d m}^{\mathbf{3}}$

P1-6 (c)
$-r_{A}=k C_{A}^{2}$ with $k=300 \mathrm{dm}^{3} / \mathrm{mol} . \mathrm{hr}$
CSTR:

$$
V=\frac{C_{A 0} v_{0}-C_{A} v_{0}}{-r_{A}}=\frac{v_{0} C_{A 0}(1-0.01)}{k C_{A}^{2}}
$$

Substituting all the values we get

$$
\left.V=\frac{(10 \mathrm{dm}}{}{ }^{3} / \mathrm{hr}\right)\left(0.5 \mathrm{~mol} / \mathrm{dm}^{3}\right)(0.99) \mid(\mathrm{mol} . h r)\left(0.01^{*} 0.5 \mathrm{~mol} / \mathrm{dm}^{3}\right)^{2} \quad=>\mathbf{V}=660 \mathrm{dm}^{3}
$$

PFR:

$$
\frac{d C_{A} v_{0}}{d V}=r_{A}=-k C_{A}^{2}
$$

P1-6 (c) Continued
Integrating

$$
\begin{aligned}
& \frac{v_{0}}{k} \int_{C_{A 0}}^{C_{A}} \frac{d C_{A}}{C_{A}^{2}}=-\int_{0}^{V} d V \Rightarrow \frac{v_{0}}{k}\left(\frac{1}{C_{A}}-\frac{1}{C_{A 0}}\right)=V \\
& \Rightarrow V=\frac{10 d m^{3} / \mathrm{hr}}{300 \mathrm{dm}^{3} / \mathrm{mol} . h r}\left(\frac{1}{0.01 C_{A 0}}-\frac{1}{C_{A 0}}\right)=6.6 \mathrm{dm}^{3}
\end{aligned}
$$

P1-6 (d)
$\mathrm{C}_{\mathrm{A}}=0.001 \mathrm{C}_{\mathrm{AO}}$
$t=\int_{N_{A}}^{N_{A O}} \frac{d N}{-r_{A} V}$
Constant Volume $\mathrm{V}=\mathrm{V}_{0}$
$t=\int_{C_{A}}^{C_{A O}} \frac{d C_{A}}{-r_{A}}$
Zero order:
$t=\frac{1}{k}\left[C_{A 0}-0.001 C_{A 0}\right]=\frac{.999 C_{A O}}{0.05}=9.99 h$
First order:
$t=\frac{1}{k} \ln \left(\frac{C_{A 0}}{C_{A}}\right)=\frac{1}{0.0001} \ln \left(\frac{1}{.001}\right)=69078 s=19.19 h$
Second order:
$t=\frac{1}{k}\left[\frac{1}{C_{A}}-\frac{1}{C_{A 0}}\right]=\frac{1}{300}\left[\frac{1}{0.5 \cdot 0.001}-\frac{1}{0.5}\right]=6.66 h$

P1-7 Enrico Fermi Problem
P1-7(a) Population of Chicago $=4,000,000$
Size of Households $=4$
Number of Households $=1,000,000$
Fraction of Households that own a piano $=1 / 5$
Number of Pianos $=200,000$
Number of Tunes/year per Piano = 1
Number of Tunes Needed Per Year $=200,000$
Tunes per day $=2$
Tunes per year per tuner $=\frac{250 \text { days }}{y r} \times \frac{2}{d a y}=500 / \mathrm{yr} / \mathrm{tuner}$
$\frac{200,000 \text { tunes }}{y r} \times \frac{1}{500 \text { tunes } / y r / \text { tuner }}=400$ Tuners

