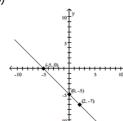
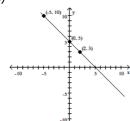
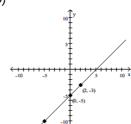
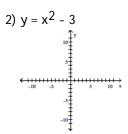

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

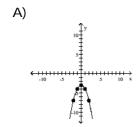
Use point-by-point plotting to sketch the graph of the equation.

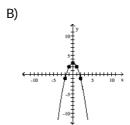

1)
$$y = x - 5$$

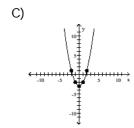

A)

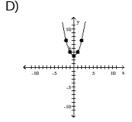

B)

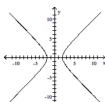

C)



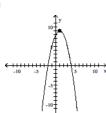

D)




Answer: D



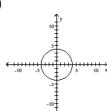
Determine whether the graph is the graph of a function.


3)

A) function

Answer: B

4)



B) not a function

A) function

Answer: A

5)

B) not a function

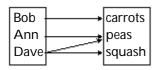
A) function

Answer: B

B) not a function

Determine whether the relation represents a function. If it is a function, state the domain and range.

6)



A) function domain:{20, 45, 70, 95} range: {4, 9, 14, 19}

B) function domain: {4, 9, 14, 19} range: {20, 45, 70, 95} C) not a function

Answer: B

7)

A) function

domain: {carrots, peas, squash}
range: {Bob, Ann, Dave}

B) function domain: {Bob, Ann, Dave} range: {carrots, peas, squash}

C) not a function

Answer: C

8) {(41, -3), (5, -2), (5, 0), (9, 2), (21, 4)}

A) function domain: {-3, -2, 0, 2, 4} range: {41, 9, 5, 21} B) function domain: {41, 9, 5, 21} range: {-3, -2, 0, 2, 4}

C) not a function

Answer: C

Answer: A

9) {(-3, 10), (-2, 5), (0, 1), (2, 5), (4, 17)}

A) function domain: {-3, -2, 0, 2, 4} range: {10, 5, 1, 17} B) function domain: {10, 5, 1, 17} range: {-3, -2, 0, 2, 4}

C) not a function

Determine whether the function is linear, constant, or neither

10)
$$y = \frac{x+3}{7}$$

A) Linear

B) Constant

C) Neither

Answer: A

11) $y = x^3 - x^2 + 8$ A) Linear

B) Constant

C) Neither

12)
$$y = \frac{2 \pi}{3}$$

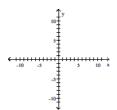
A) Linear

B) Constant

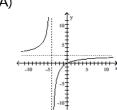
C) Neither

Answer: B

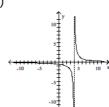
13) y - 12 = 0 A) Linear

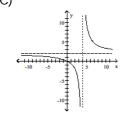

B) Constant

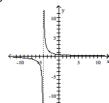
C) Neither


Answer: B

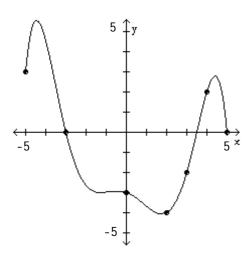
Use point-by-point plotting to sketch the graph of the equation.


14)
$$f(x) = \frac{2x}{x-4}$$


Α


B)

C



D)

The graph of a function f is given. Use the graph to answer the question.

15) Use the graph of f given below to find f(-5).

A) 0

B) 8

C) -5

D) 3

Answer: D

Find the function value.

16) Find f(-9) when $f(x) = 5 - 7x^2$.

A) 68

B) 572

C) 131

D) -562

Answer: D

17) $f(x) = \frac{x^2 - 8}{x^3 + 7x}$; f(-2)

A) 4

D) $-\frac{2}{11}$

Answer: B

18) Given that $f(x) = 5x^2 - 2x$, find f(t + 2).

A)
$$t^2 + 2t - 6$$

C)
$$5t^2$$
 - 18t + 16

D) 3t + 6

Answer: B

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

19) If $g(x) = -4x^2 + x - 9$, find g(-2), g(1), and $g(\frac{3}{2})$.

Answer: -27, -12, $-\frac{33}{2}$

20) For f(t) = 3t + 2 and $g(t) = 2 - t^2$, find 4f(3) - g(-3) + g(0).

Answer: 53

21) For
$$f(t) = 3 - 5t$$
, find $\frac{f(a + h) - f(a)}{h}$.

Answer: -5

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Compute and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$, $h \neq 0$.

22)
$$f(x) = 5x^2 + 7x$$

A)
$$10x + 5h + 7$$

D)
$$10x^2 + 5h + 7x$$

Answer: A

Determine the domain of the function.

23)
$$f(x) = -7x + 9$$

A) No solution

B) All real numbers

C)
$$x \le \frac{9}{7}$$

D) All real numbers except $\frac{9}{7}$

Answer: B

24)
$$f(x) = \frac{x}{x - 2}$$

A) All real numbers

B) x < 2

C) All real numbers except 2

D) No solution

Answer: C

25)
$$f(x) = \sqrt{3 - x}$$

A)
$$x < 3$$

Answer: B

C) No solution

B) $x \le 3$

D) All real numbers except 3

26)
$$f(x) = \frac{8}{x^3}$$

A) No solution

C) x < 0

B) All real numbers

D) All real numbers except 0

Answer: D

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

27) Only one of the following functions has domain which is not equal to all real numbers. State which function and

(A)
$$h(x) = 4x^2 - 3x - 5$$
 (B) $f(x) = \frac{2x}{48 - x}$ (C) $g(x) = \frac{x + 7}{2}$

(B)
$$f(x) = \frac{2x}{48 - x}$$

(C) g(x) =
$$\frac{x + 7}{2}$$

7

Answer: $f(x) = \frac{2x}{48 - x}$ has domain all real numbers except x = 48.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine if the equation specifies a function with independent variable x. If so, find the domain. If not, find a value of x to which there corresponds more than one value of y.

28) $x - y^2 = 9$

A) A function with domain \mathcal{R}

B) Not a function; for example, when x = 10, $y = \pm 1$

Answer: B

29) $y = x^2 - 9$

A) A function with domain \mathcal{R}

B) Not a function; for example, when x = -9, then $y = \pm 1$

Answer: A

30) xy = -7

A) A function with domain all real numbers except x = 0

B) Not a function; for example, when x = -7, $y = \pm 1$

Answer: A

31) xy + 3y = 5

A) A function with domain all real numbers except x = -3

B) Not a function; for example, when x = 5, $y = \pm 3$

Answer: A

32) $x^2 + y^2 = 49$

A) A function with domain $\mathcal R$

B) Not a function; for example, when x = 0, $y = \pm 7$

Answer: B

33) $x^2 - y^2 = 9$

A) A function with domain all real numbers except x = 5

B) Not a function; for example, when x = 5, $y = \pm 4$

Answer: B

Solve the problem.

34) The function F described by F(x) = 2.75x + 71.48 can be used to estimate the height, in centimeters, of a woman whose humerus (the bone from the elbow to the shoulder) is x cm long. Estimate the height of a woman whose humerus is 30.93 cm long. Round your answer to the nearest four decimal places.

A) 156.5375 cm

B) 43.3000 cm

C) 105.1600 cm

D) 13.5775 cm

Answer: A

35) The function M described by M(x) = 2.89x + 70.64 can be used to estimate the height, in centimeters, of a male whose humerus (the bone from the elbow to the shoulder) is x cm long. Estimate the height of a male whose humerus is 30.93 cm long. Round your answer to the nearest four decimal places.

A) 157.3400 m

B) 30.9300 cm

C) 160.0277 cm

D) 156.5375 cm

Answer: C

36) To estimate the ideal minimum weight of a woman in pounds multiply her height in inches by 4 and subtract 130. Let W = the ideal minimum weight and h = height. W is a linear function of h. Find the ideal minimum weight of a woman whose height is 62 inches.

A) 378 lb

B) 130 lb

C) 118 lb

D) 120 lb

37) The point at which a company's costs equals its revenue is the break-even. C represents cost, in dollars, of x units of a product. R represents the revenue, in dollars, for the sale of x units. Find the number of units that must be pr and sold in order to break even.

C = 15x + 12,000

R = 18x - 6000

A) 800

B) 12,000

C) 545

D) 6000

Answer: D

38) The function P, given by $P(d) = \frac{1}{33}d + 1$, gives the pressure, in atmospheres (atm), at a depth d, in feet, under

the sea. Find the pressure at 200 feet. Round your answer to the nearest whole number.

- A) 201 atm
- B) 8 atm

C) 7 atm

D) 200 atm

Answer: C

39) To estimate the ideal minimum weight of a woman in pounds multiply her height in inches by 4 and subtract 130. Let W = the ideal minimum weight and h = height. Express W as a linear function of h.

A) W(h) = 4 (h + 130)

- B) W(h) = 4h 130
- C) W(h) = 130
- D) W(h) = 130h + 4

Answer: B

Provide an appropriate response.

- 40) In a profit-loss analysis, point where revenue equals cost.
 - A) profit-loss point
- B) inflection point
- C) turning point
- D) break-even point

Answer: D

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 41) Let T be the set of teachers at a high school and let S be the set of students enrolled at that school. Determine which the following correspondences define a function. Explain.
 - (A) A student corresponds to the teacher if the student is enrolled in the teacher's class.
 - (B) A student corresponds to every teacher of the school.

Answer: Choice (A) defines a function. To each element (student) of the first set (or domain), there corresponds exa one element (teacher) of the second set (or range).

Choice (B) does not define a function. An element (student) of the first set (or domain) corresponds to morone element (teacher) of the second set (or range).

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Give the domain and range of the function.

- 42) $f(x) = x^2 + 2$
 - A) Domain: [0, ∞); Range: [0, ∞)

- B) Domain: all real numbers; Range: [2, ∞)
- C) Domain: all real numbers; Range: [5, ∞)
- D) Domain: [2, ∞); Range: all real numbers

Answer: B

- 43) $q(x) = x^2 4$
 - A) Domain: all real numbers; Range: [2, ∞)
- B) Domain: [4, ∞); Range: all real numbers
- C) Domain: all real numbers; Range: [-4, ∞)
- D) Domain: [0, ∞); Range: [0, ∞)

44)
$$h(x) = -4|x|$$

- A) Domain: (-∞, 0]; Range: all real numbers
- C) Domain: all real numbers; Range: $(-\infty, -3]$

B) Domain: [0, ∞); Range: [0, ∞)

D) Domain: all real numbers; Range: $(-\infty, 0]$

Answer: D

45) $s(x) = \sqrt{1 - x}$

- A) Domain: $(\sqrt{1}, \infty)$; Range: $(-\infty, 0]$
- C) Domain: $(-\infty, 1]$; Range: $[0, \infty)$

B) Domain: $(-\infty, 1) \cup (1, \infty)$; Range: $(-\infty, 0) \cup (0, \infty)$

D) Domain: all real numbers; Range: [0, ∞)

Answer: C

46) r(x) = |x - 7| - 9

- A) Domain: all real numbers; Range: [0, ∞)
- B) Domain: all real numbers; Range: all real numbers
- C) Domain: [- 9, ∞); Range: all real numbers
- D) Domain: all real numbers; Range: [- 9, ∞)

Answer: D

Provide an appropriate response.

- 47) How can the graph of $f(x) = -\sqrt{x+1}$ be obtained from the graph of $y = \sqrt{x}$?
 - A) Shift it horizontally -1 units to the left. Reflect it across the x-axis.
 - B) Shift it horizontally 1 units to the right. Reflect it across the x-axis.
 - C) Shift it horizontally 1 units to the left. Reflect it across the y-axis.
 - D) Shift it horizontally 1 units to the left. Reflect it across the x-axis.

Answer: D

- 48) How can the graph of $f(x) = -(x-1)^2$ 6 be obtained from the graph of $y = x^2$?
 - A) Shift it horizontally 1 units to the left. Reflect it across the x-axis. Shift it 6 units up.
 - B) Shift it horizontally 1 units to the right. Reflect it across the y-axis. Shift it 6 units down.
 - C) Shift it horizontally 1 units to the right. Reflect it across the y-axis. Shift it 6 units up.
 - D) Shift it horizontally 1 units to the right. Reflect it across the x-axis. Shift it 6 units up.

Answer: D

Write an equation for a function that has a graph with the given transformations.

49) The shape of $y = \sqrt{x}$ is shifted 5 units to the left. Then the graph is shifted 7 units upward.

A)
$$f(x) = \sqrt{x-5} + 7$$
 B) $f(x) = \sqrt{x+7} + 5$ C) $f(x) = 7\sqrt{x+5}$

B)
$$f(x) = \sqrt{x + 7 + 5}$$

C)
$$f(x) = 7\sqrt{x+5}$$

D)
$$f(x) = \sqrt{x+5} + 7$$

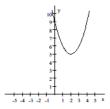
Answer: D

50) The shape of $y = x^2$ is vertically stretched by a factor of 10, and the resulting graph is reflected across the x-axis.

A)
$$f(x) = -10x^2$$

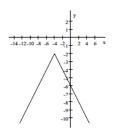
B)
$$f(x) = 10x^2$$

B)
$$f(x) = 10x^2$$
 C) $f(x) = 10(x - 10)^2$ D) $f(x) = (x - 10)^2$


D)
$$f(x) = (x - 10)^2$$

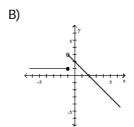
Answer: A

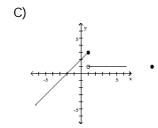
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

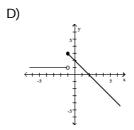

Provide an appropriate response.

51) The following graph represents the result of applying a sequence of transformations to the graph of a basic function. Identify the basic function and describe the transformation(s). Write the equation for the given graph.

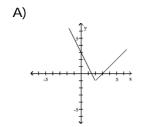
Answer: Basic function is $f(x) = x^2$; shift right 2 units, shift up 5 units. $f(x) = (x - 2)^2 + 5$

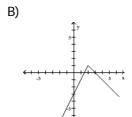

52) The following graph represents the result of applying a sequence of transformations to the graph of a basic function. Identify the basic function and describe the transformation(s). Write the equation for the given graph.

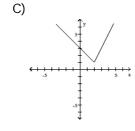


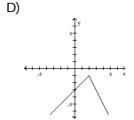

Answer: Basic function is f(x) = |x|; reflect over the x-axis, shift left 4 units, shift down 2 units. f(x) = -|x + 4| - 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the function.

53)
$$f(x) = \begin{cases} x + 2 & \text{if } x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

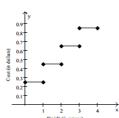


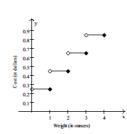




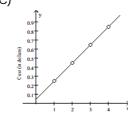

Answer: A

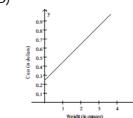
54)
$$f(x) = \begin{cases} -x + 3 & \text{if } x < 2 \\ 2x - 3 & \text{if } x \ge 2 \end{cases}$$





55) Assume it costs 25 cents to mail a letter weighing one ounce or less, and then 20 cents for each additional ounce or fraction of an ounce. Let L(x) be the cost of mailing a letter weighing x ounces. Graph y = L(x). Use the interval (0, 4].


A)


B)

C)

D)

Answer: B

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

56) If $f(x) = \begin{cases} x - 3 & \text{if } x < 2 \\ x^2 & \text{if } x \ge 2 \end{cases}$, what is the definition of g(x), the function whose graph is obtained by shifting f(x)'s graph right 5 units and down 1 unit?

Answer: $g(x) = \begin{cases} x - 9 & x < 7 \\ (x - 5)^2 - 1 & x \ge 7 \end{cases}$

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solve the problem.

57) A retail chain sells washing machines. The retail price p(x) (in dollars) and the weekly demand x for a particular model are related by the function $p(x) = 625 - 5\sqrt{x}$, where $50 \le x \le 500$. (i) Describe how the graph of the

function p can be obtained from the graph of one of the six basic functions: y = x, $y = x^2$, $y = x^3$, $y = \sqrt{x}$, $y = \sqrt[3]{x}$, or y = |x|. (ii) Sketch a graph of function p using part (i) as an aid.

A) (i) The graph of the basic function $y = \sqrt{x}$ is reflected in the x-axis, vertically expanded by a factor of 5, and shifted up 625 units.

(ii)

Ty

1000

800

400

200

B) (i) The graph of the basic function $y = \sqrt{x}$ is reflected in the x-axis and vertically expanded by a factor of 5.

(ii)

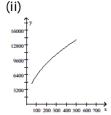
100

y

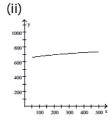
100

200

300


400

500

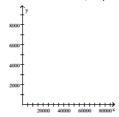

-100

-150

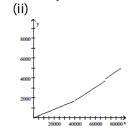
C) (i) The graph of the basic function $y = \sqrt{x}$ is vertically expanded by a factor of 625, and shifted up 5 units.

D) (i) The graph of the basic function $y = \sqrt{x}$ is vertically expanded by a factor of 5, and shifted up 625 units.

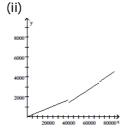
Answer: A


58) The following table shows a recent state income tax schedule for married couples filing a joint return in State X.

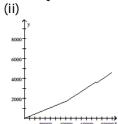
State X Income Tax

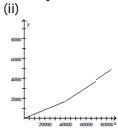

SCHEDULE I - MARRIED FILING JOINTLY

If taxable income is		
Over	But not over	Tax due is
\$0	\$40,000	4.25% of taxable incomes
\$40,000	\$70,000	\$3700 plus 6.75% of excess over \$40,000
\$70,000		\$3875 plus 7.05% of excess over \$70,000


(i) Write a piecewise definition for the tax due T(x) on an income of x dollars. (ii) Graph T(x). (iii) Find the tax due taxable income of \$50,000. Of \$95,000.

A) (i)
$$T(x) = \begin{cases} 0.0425x & \text{if } 0 \le x \le 40,000 \\ 0.0675x - 990 & \text{if } 40,000 < x \le 70,000 \\ 0.0705x - 1000 & \text{if } x > 70,000 \end{cases}$$

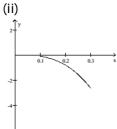

B) (i)
$$T(x) = \begin{cases} 0.0425x & \text{if } 0 \le x \le 40,000 \\ 0.0675x - 1300 & \text{if } 40,000 < x \le 70,000 \\ 0.0705x - 1427 & \text{if } x > 70,000 \end{cases}$$


(iii) \$2385; \$5697.50

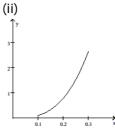
(iii) \$2075; \$5270.50

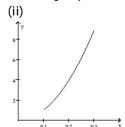
C) (i)
$$T(x) = \begin{cases} 0.0425x & \text{if } 0 \le x \le 40,000 \\ 0.0675x - 1025 & \text{if } 40,000 < x \le 70,000 \\ 0.0705x - 1375 & \text{if } x > 70,000 \end{cases}$$

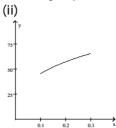
D) (i)
$$T(x) = \begin{cases} 0.0425x & \text{if } 0 \le x \le 40,000 \\ 0.0675x - 1000 & \text{if } 40,000 < x \le 70,000 \\ 0.0705x - 1060 & \text{if } x > 70,000 \end{cases}$$



Answer: D


59) The average weight of a particular species of frog is given by $w(x) = 98x^3$, $0.1 \le x \le 0.3$, where x is length (with legs stretched out) in meters and w(x) is weight in grams. (i) Describe how the graph of function w can be obtained from one of the six basic functions: y = x, $y = x^2$, $y = x^3$, $y = \sqrt{x}$, $y = \sqrt[3]{x}$, or y = |x|. (ii) Sketch a graph of function w using part (i) as an aid.


A) (i) The graph of the basic function $y = x^3$ is reflected on the x-axis and is vertically expanded by a factor of 98.


B) (i) The graph of the basic function $y = x^3$ is vertically expanded by a factor of 98.

C) (i) The graph of the basic function $y = x^2$ is vertically expanded by a factor of 98.

D) (i) The graph of the basic function $y = \sqrt[3]{x}$ is vertically expanded by a factor of 98.

Answer: B

Find the x-intercept(s) if they exist.

60)
$$x^2 + 6x + 5 = 0$$

D)
$$\sqrt{5}$$
, - $\sqrt{5}$

Answer: A

61)
$$6x^2 = 42x$$

A) 0

For the given function, find each of the following:

- (A) Intercepts
- (B) Vertex
- (C) Maximum or minimum
- (D) Range

62)
$$f(x) = (x + 2)^2 - 9$$

- A) (A) x-intercepts: -1, 5; y-intercept: -5
 - (B) Vertex (-2, -9)
 - (C) Minimum: -9
 - (D) $y \ge -9$
- C) (A) x-intercepts: 5, 1; y-intercept: -5
 - (B) Vertex (2, -9)
 - (C) Minimum: -9
 - (D) $y \ge -9$

Answer: B

- 63) $q(x) = (x 3)^2 1$
 - A) (A) x-intercepts: 2, 4; y-intercept: 8
 - (B) Vertex (3, -1)
 - (C) Minimum: -1
 - (D) $y \ge -1$
 - C) (A) x-intercepts: -4, 2; y-intercept: 8
 - (B) Vertex (3, -1)
 - (C) Minimum: -1
 - (D) $y \ge -1$

Answer: A

- 64) $m(x) = -(x + 1)^2 + 4$
 - A) (A) x-intercepts: 3, 1; y-intercept: 3
 - (B) Vertex (1, -4)
 - (C) Maximum: 4
 - (D) $y \le 4$
 - C) (A) x-intercepts: 3, 1; y-intercept: 3
 - (B) Vertex (-1, 4)
 - (C) Minimum: 4
 - (D) $y \ge 4$

Answer: B

- B) (A) x-intercepts: -5, 1; y-intercept: -5
 - (B) Vertex (-2, -9)
 - (C) Minimum: -9
 - (D) $y \ge -9$
- D) (A) x-intercepts: 5, 1; y-intercept: -5
 - (B) Vertex (-2, -9)
 - (C) Maximum: -9
 - (D) $y \le -9$
- B) (A) x-intercepts: 2, 4; y-intercept: 8
 - (B) Vertex (3, -1)
 - (C) Maximum: -1
 - (D) $y \le -1$
- D) (A) x-intercepts: 2, 4; y-intercept: 8
 - (B) Vertex (-3, -1)
 - (C) Minimum: -1
 - (D) $y \ge -1$
- B) (A) x-intercepts: 3, 1; y-intercept: 3
 - (B) Vertex (-1, 4)
 - (C) Maximum: 4
 - (D) $y \le 4$
- D) (A) x-intercepts: -1, 3; y-intercept: 3
 - (B) Vertex (-1, 4)
 - (C) Maximum: 4
 - (D) $y \le 4$

65) $n(x) = -(x - 1)^2 + 4$

- A) (A) x-intercepts: 1, 3; y-intercept: 3
 - (B) Vertex (1, 4)
 - (C) Maximum: 4
 - (D) $y \le 4$
- C) (A) x-intercepts: 1, 3; y-intercept: 3
 - (B) Vertex (-1, -4)
 - (C) Maximum: 4
 - (D) $y \le 4$

Answer: A

B) (A) x-intercepts: -3, 1; y-intercept: 3

(B) Vertex (1, 4)

(C) Maximum: 4

(D) $y \le 4$

D) (A) x-intercepts: - 1, 3; y-intercept: 3

(B) Vertex (1, 4)

(C) Minimum: 4

(D) $y \ge 4$

Find the vertex form for the quadratic function. Then find each of the following:

- (A) Intercepts
- (B) Vertex
- (C) Maximum or minimum
- (D) Range

66)
$$f(x) = x^2 + 2x - 8$$

- A) Standard form: $f(x) = (x 1)^2 9$
 - (A) x-intercepts: 4, 2; y-intercept: -8
 - (B) Vertex (-1, -9)
 - (C) Maximum: -9
 - (D) $y \le -9$
- C) Standard form: $f(x) = (x + 1)^2 9$
 - (A) x-intercepts: 4, 2; y-intercept: -8
 - (B) Vertex (-1, -9)
 - (C) Minimum: -9
 - (D) $y \ge -9$

B) Standard form: $f(x) = (x - 1)^2 - 9$

- (A) x-intercepts: -2, 4; y-intercept: -8
- (B) Vertex (-1, -9)
- (C) Minimum: -9
- (D) $y \ge -9$

D) Standard form: $f(x) = (x + 1)^2 - 9$

- (A) x-intercepts: 4, 2; y-intercept: -8
- (B) Vertex (1, -9)
- (C) Minimum: -9
- (D) $y \ge -9$

Answer: C

67) $a(x) = x^2 - 2x - 3$

- A) Standard form: $q(x) = (x + 1)^2 4$
 - (A) x-intercepts: -3, 1; y-intercept: -3
 - (B) Vertex (1, -4)
 - (C) Minimum: -4
 - (D) $y \ge -4$

C) Standard form: $g(x) = (x + 1)^2 - 4$

- (A) x-intercepts: 1, 3; y-intercept: -3
- (B) Vertex (1, -4)
- (C) Maximum: -4
- (D) $y \le -4$

Answer: B

- B) Standard form: $g(x) = (x 1)^2 4$
 - (A) x-intercepts: 1, 3; y-intercept: -3
 - (B) Vertex (1, -4)
 - (C) Minimum: -4
 - (D) $y \ge -4$
- D) Standard form: $g(x) = (x 1)^2 4$
 - (A) x-intercepts: 1, 3; y-intercept: -3
 - (B) Vertex (-1, -4)
 - (C) Minimum: -4
 - (D) $y \ge -4$

68) $m(x) = -x^2 - 6x - 8$

A) Standard form: $m(x) = -(x - 3)^2 + 1$

(A) x-intercepts: - 4, -2; y-intercept: -8

(B) Vertex (-3, 1)

(C) Minimum: 1

(D) $y \ge 1$

C) Standard form: $m(x) = -(x + 3)^2 + 1$

(A) x-intercepts: - 4, -2; y-intercept: -8

(B) Vertex (-3, 1)

(C) Maximum: 1

(D) $y \le 1$

Answer: C

69) $n(x) = -x^2 + 8x - 7$

A) Standard form: $n(x) = -(x - 4)^2 + 9$

(A) x-intercepts: 1, 7; y-intercept: -7

(B) Vertex (4, 9)

(C) Maximum: 9

(D) $y \le 9$

C) Standard form: $n(x) = -(x + 4)^2 + 9$

(A) x-intercepts: -7, - 1; y-intercept: -7

(B) Vertex (4, 9)

(C) Maximum: 9

(D) $y \le 9$

Answer: A

B) Standard form: $m(x) = -(x - 3)^2 + 1$

(A) x-intercepts: 2, 4; y-intercept: -8

(B) Vertex (-3, 1)

(C) Maximum: 1

(D) $y \le 1$

D) Standard form: $m(x) = -(x + 3)^2 + 1$

(A) x-intercepts: - 4, -2; y-intercept: -8

(B) Vertex (3, -1)

(C) Maximum: 1

(D) $y \le 1$

B) Standard form: $n(x) = -(x + 4)^2 + 9$

(A) x-intercepts: 1, 7; y-intercept: -7

(B) Vertex (4, 9)

(C) Minimum: 9

(D) $y \ge 9$

D) Standard form: $n(x) = -(x - 4)^2 + 9$

(A) x-intercepts: 1, 7; y-intercept: -7

(B) Vertex (-4, -9)

(C) Maximum: 9

(D) $y \le 9$

Determine whether there is a maximum or minimum value for the given function, and find that value.

70) $f(x) = x^2 - 20x + 104$

A) Minimum: 4

B) Minimum: 0

C) Maximum: -4

D) Maximum: 10

Answer: A

71) $f(x) = -x^2 - 18x - 90$

A) Minimum: 0

B) Maximum: - 9

C) Minimum: 9

D) Minimum: -9

Answer: B

Find the range of the given function. Express your answer in interval notation.

72) $f(x) = 4x^2 + 16x + 19$

A) [- 2, ∞)

B) (-∞, 2]

C) (-∞, -3]

D) [3, ∞)

Answer: D

73) $f(x) = -2x^2 + 12x - 23$

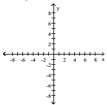
A) (-∞, -3]

B) [5, ∞)

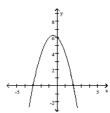
C) [-3, ∞)

D) $(-\infty, -5]$

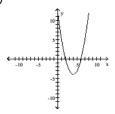
Answer: D


SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

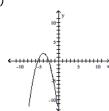

74) Find the vertex and the maximum or minimum of the quadratic function $f(x) = -x^2 - 4x + 5$ by first writing f in standard form. State the range of f and find the intercepts of f.

Answer: $f(x) = -(x + 2)^2 + 9$; vertex: (-2, 9); maximum: f(-2) = 9; Range of $f = \{y | y \le 9\}$; y-intercept: (0, 5); x-intercepts: (-5, 0), (1, 0).


75) Graph $f(x) = -x^2 - x + 6$ and indicate the maximum or minimum value of f(x), whichever exists.

Answer: Max $f(x) = \frac{25}{4}$

Write an equation for the graph in the form $y = a(x - h)^2 + k$, where a is either 1 or -1 and h and k are integers.


A)
$$y = (x - 4)^2 - 4$$
 B) $y = (x - 4)^2 - 6$ C) $y = (x + 4)^2 + 6$ D) $y = (x - 6)^2 - 4$

B)
$$y = (x - 4)^2 - 6$$

C)
$$y = (x + 4)^2 + 6$$

O)
$$y = (x - 6)^2 - 4$$

77)

Answer: A

A)
$$y = (x + 4)^2 - \frac{1}{3}$$
 B) $y = -(x + 4)^2 + 2$ C) $y = (x + 4)^2 + 2$ D) $y = -(x - 4)^2 - 2$

B)
$$y = -(x + 4)^2 + 2$$

C)
$$y = (x + 4)^2 + 2$$

D)
$$y = -(x - 4)^2 - 2$$

Answer: B

Solve graphically to two decimal places using a graphing calculator.

78)
$$1.7x^2 - 2.6x - 3.9 > 0$$

A)
$$-0.93 < x < 2.46$$

C)
$$x < -2.46$$
 or $x > 0.93$

B)
$$-2.46 < x < 0.93$$

D)
$$x < -0.93$$
 or $x > 2.46$

Answer: D

79)
$$1.5x^2 - 4.7x - 2.9 \le 0$$

A)
$$x < -0.53$$
 or $x > 3.66$

C)
$$-3.66 < x < 0.53$$

B)
$$-0.53 < x < 3.66$$

D)
$$x < -3.66$$
 or $x > 0.53$

Solve the equation graphically to four decimal places.

O) Let
$$I(x) = -0.6x^4$$

A) 0.7922

80) Let $f(x) = -0.6x^2 + 3x + 1$, find f(x) = 3.

$$I(X) = -0.0X^2 + 3X + 1, IIIIU I(X) =$$

B) 4.2078

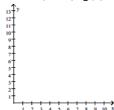
C) No solution

D) 0.7922, 4.2078

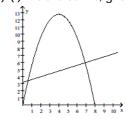
Answer: D

81) Let
$$f(x) = -0.4x^2 + 2x + 3$$
, find $f(x) = -5$.

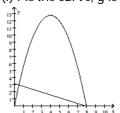
Answer: D


82) Let
$$f(x) = -0.5x^2 + 4x + 2$$
, find $f(x) = 11$.

A) 10.0000

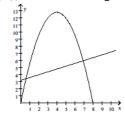

Answer: D

For the following problem, (i) graph f and g in the same coordinate system; (ii) solve f(x) = g(x) algebraically to two decimal places; (iii) solve f(x) > g(x) using parts i and ii; (iv) solve f(x) < g(x) using parts i and ii.

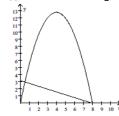

83)
$$f(x) = -0.8x(x - 8), g(x) = 0.4x + 3.2; 0 \le x \le 10$$

A) (i) f is the curve, g is the line

B) (i) f is the curve, g is the line


(iii)
$$0.61 < x < 7.02$$

(iv)
$$0 \le x < 0.61$$
 or $7.02 < x \le 8$


(iii)
$$0.61 < x < 7.98$$

(iv)
$$0 \le x < 0.61$$
 or $7.98 < x \le 8$

C) (i) f is the curve, g is the line

D) (i) f is the curve, g is the line

(iii)
$$0.58 < x < 6.92$$

(iv)
$$0 \le x < 0.58$$
 or $6.92 < x \le 8$

(iii)
$$0.58 < x < 7.98$$

(iv)
$$0 \le x < 0.58$$
 or $7.98 < x \le 8$

Answer: C

Solve the problem.

84) In economics, functions that involve revenue, cost and profit are used. Suppose R(x) and C(x) denote the total revenue and the total cost, respectively, of producing a new high-tech widget. The difference P(x) = R(x) - C(x) represents the total profit for producing x widgets. Given $R(x) = 60x - 0.4 x^2$ and C(x) = 3x + 13, find the equation for P(x).

A)
$$P(x) = -0.4 x^2 + 63x + 13$$

C)
$$P(x) = 3x + 13$$

B)
$$P(x) = 60x - 0.4 x^2$$

D)
$$P(x) = -0.4 x^2 + 57x - 13$$

Answer: D

- 85) In economics, functions that involve revenue, cost and profit are used. Suppose R(x) and C(x) denote the total revenue and the total cost, respectively, of producing a new high-tech widget. The difference P(x) = R(x) C(x) represents the total profit for producing x widgets. Given R(x) = $60x 0.4x^2$ and C(x) = 3x + 13, find P(100).
 - A) 55687

B) 313

C) 2000

D) 1687

Answer: D

- 86) A professional basketball player has a vertical leap of 37 inches. A formula relating an athlete's vertical leap V, in inches, to hang time T, in seconds, is $V=48T^2$. What is his hang time? Round to the nearest tenth.
 - A) 0.8 sec

B) 1 sec

C) 0.9 sec

D) 0.6 sec

Answer: C

- 87) Under certain conditions, the power P, in watts per hour, generated by a windmill with winds blowing v miles per hour is given by $P(v) = 0.015v^3$. Find the power generated by 18-mph winds.
 - A) 58.32 watts per hour

B) 0.00006075 watts per hour

C) 4.86 watts per hour

D) 87.48 watts per hour

Answer: D

88) The U. S. Census Bureau compiles data on population. The population (in thousands) of a southern city can be approximated by $P(x) = 0.08x^2 - 13.08x + 927$, where x corresponds to the years after 1950. In what calendar year was the population about 804,200?

A) 2000

B) 1955

C) 1965

D) 1960

Answer: D

89) Assume that a person's critical weight W, defined as the weight above which the risk of death rises dramatically, is given by W(h) = $\left(\frac{h}{11.9}\right)^3$, where W is in pounds and h is the person's height in inches.

Find the tcritical weight for a person who is 6 ft 11 in. tall. Round to the nearest tenth.

A) 377.4 lb

B) 221.5 lb

C) 339.3 lb

D) 212.4 lb

Answer: C

90) The polynomial $0.0053x^3 + 0.003x^2 + 0.108x + 1.54$ gives the approximate total earnings of a company, in millions of dollars, where x represents the number of years since 1996. This model is valid for the years from 1996 to 2000. Determine the earnings for 2000. Round to 2 decimal places.

A) \$2.36 million

B) \$2.03 million

C) \$2.26 million

D) \$2.82 million

Answer: A

Use the REGRESSION feature on a graphing calculator.

91) The average retail price in the Spring of 2000 for a used Camaro Z28 coupe depends on the age of the car as shown in the following table.

Age, x									
Price, y	18,325	15,925	13,685	11,805	10,490	8885	8015	6480	5710

Find the quadratic model that best estimates this data. Round your answer to whole numbers.

A) $y = 102x^2 - 2576x + 20,669$

B) v = -1551x + 18.790x

C) $y = 102x^2 - 2576x$

D) $y = -9x^3 + 235x^2 - 3134x + 21,252$

Answer: A

92) As the number of farms has decreased in South Carolina, the average size of the remaining farms has grown larg shown below.

	AVERAGE ACREAGE
YEAR	PER FARM
1900 (x = 0)	127
1910 (x = 10)	119
1920	135
1930	137
1940	155
1950	196
1960	283
1970	353
1980	406
1990	440
2000 (x = 100)	420

Let x represent the number of years since 1900. Use a graphing calculator to fit a quadratic function to the data. R your answer to five decimal places.

A)
$$y = 0.02536x^3 + 1.21114 + 102.5874$$

B)
$$y = 0.02536x^2 + 1.21114x + 102.58741$$

A)
$$y = 0.02536x^3 + 1.21114 + 102.58741$$
 B) $y = 0.02536x^2 + 1.21114 x + 102.58741$ C) $y = -.00114x^3 + 0.19605x^2 - 5.29775 + 143.55245$ D) $y = 0.02536x^3 + 1.21114 x + 102.58741$

Answer: B

93) Since 1984 funeral directors have been regulated by the Federal Trade Commission. The average cost of a funera adult in a Midwest city has increased, as shown in the following table.

	AVERAGE COST
YEAR	OF FUNERAL
1980	\$ 1926
1985	\$ 2841
1991	\$ 3842
1995	\$ 4713
1996	\$ 4830
1998	\$ 5120
2001	\$ 5340

Let x represent the number of years since 1980. Use a graphing calculator to fit a quartic function to the data. Rou your answer to five decimal places.

A)
$$y = 170.5971x + 1991.5213$$

B)
$$y = -0.04268x^4$$

C)
$$y = -2.047489x^2 + 212.82699x + 1879.85469$$

D)
$$y = -0.04268x^4 + 1.53645x^3 - 16.76289x^2 + 231.82723x + 1927.58518$$

Answer: D

Solve the problem.

94) The population P, in thousands, of Fayetteville is given by $P(t) = \frac{300t}{2t^2 + 7}$, where t is the time, in months. Find

the population at 9 months.

Answer: B

95) If the average cost per unit C(x) to produce x units of plywood is given by C(x) = $\frac{1200}{x + 40}$, what is the unit cost for

10 units?

A) \$3.00

B) \$24.00

C) \$80.00

D) \$120.00

Answer: B

96) Suppose the cost per ton, y, to build an oil platform of x thousand tons is approximated by $C(x) = \frac{212,500}{x + 425}$.

What is the cost per ton for x = 30?

A) \$16.67

B) \$467.03

C) \$7083.33

D) \$425.00

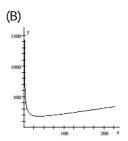
Answer: B

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

97) The financial department of a company that produces digital cameras arrived at the following price-demand function and the corresponding revenue function:

p(x) = 95.4 - 6x

price-demand


 $R(x) = x \cdot p(x) = x(95.4 - 6x)$ revenue function

The function p(x) is the wholesale price per camera at which x million cameras can be sold and R(x) is the corresponder (in million dollars). Both functions have domain $1 \le x \le 15$. They also found the cost function to be C(x) = +15.1x (in million dollars) for manufacturing and selling x cameras. Find the profit function and determine the approximate number of cameras, rounded to the nearest hundredths, that should be sold for maximum profit.

Answer: $P(x) = -6x^2 + 80.3x - 150$, must sell approximately 6.69 million cameras.

- 98) The financial department of a company that manufactures portable MP3 players arrived at the following daily cost equation for manufacturing x MP3 players per day: $C(x) = 1500 + 105x + x^2$. The average cost per unit at a production level of players per day is $\overline{C}(x) = \frac{C(x)}{x}$.
 - (A) Find the rational function \overline{C} .
 - (B) Graph the average cost function on a graphing utility for $10 \le x \le 200$.
 - (C) Use the appropriate command on a graphing utility to find the daily production level (to the nearest integer) which the average cost per player is a minimum. What is the minimum average cost (to the nearest cent)?

Answer: (A) $\overline{C}(x) = \frac{1500}{x} + 105 + x$

(C) 39; \$182.46

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

For the polynomial function find the following: (i) Degree of the polynomial; (ii) All x intercepts; (iii) The y intercept.

99)
$$y = 8x + 5$$

- A) (i) 1 (ii) 5
 - (iii) $\frac{5}{8}$

- B) (i) 1
 - (ii) $\frac{5}{8}$
 - (iii) 5

- C) (i) 1
 - (ii) $\frac{5}{8}$
 - (iii) 5

- D) (i) 1
 - (ii) $-\frac{8}{5}$
 - (iii) 8

Answer: C

100)
$$y = x^2 - 49$$

- A) (i) 1
 - (ii) 24.5
 - (iii) -49
- B) (i) 2
 - (ii) -7, 7
 - (iii) -49
- C) (i) 2
- (ii) -8,8
 - (iii) -49
- D) (i) 1
 - (ii) 7
 - (iii) -49

Answer: B

101)
$$y = x^2 + 5x - 50$$

- A) (i) 2
 - (ii) 10, -5
 - (iii) -50
- B) (i) 2
 - (ii) 10, 5
 - (iii) -50
- C) (i) 2
- (ii) -10, 5
 - (iii) -50
- D) (i) 2
 - (ii) -10, 1
 - (iii) -50

102) $y = 18 - x^2 + 3x$

A) (i) 2

(ii) 6, -3

(iii) 18

B) (i) 2

(ii) 6, 3 (iii) 18 C) (i) 2

(ii) -3, -6

(iii) -18

D) (i) 2

(ii) 3, -6 (iii) -18

Answer: A

103) y = (x + 10)(x + 6)(x + 6)

A) (i) 3

(ii) -10, -6, -6

(iii) -36

B) (i) 3 (ii) -10, -6, -6

(iii) 360

C) (i) 3

(ii) 10, 6, 6

(iii) 360

D) (i) 3

(ii) 10, 6, 6

(iii) 36

Answer: B

104) $f(x) = (x^6 + 7)(x^{10} + 9)$

A) (i) 60

(ii) none

(iii) -63

B) (i) 16

(ii) none

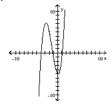
(iii) 63

C) (i) 16

(ii) 7, 9

(iii) 63

D) (i) 60


(ii) 7, 9

(iii) -63

Answer: B

The graph that follows is the graph of a polynomial function. (i) What is the minimum degree of a polynomial function that could have the graph? (ii) Is the leading coefficient of the polynomial negative or positive?

105)

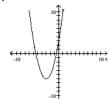
A) (i) 2

Answer: B

(ii) Negative

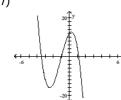
B) (i) 3

(ii) Positive


C) (i) 3

(ii) Negative

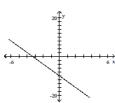
D) (i) 2


(ii) Positive

106)

- A) (i) 2 (ii) Negative
- B) (i) 3 (ii) Negative
- C) (i) 3 (ii) Positive
- D) (i) 2 (ii) Positive

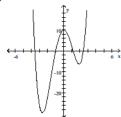
107)


Answer: D

A) (i) 4 (ii) Negative

Answer: C

- B) (i) 3 (ii) Positive
- C) (i) 3 (ii) Negative
- D) (i) 4 (ii) Positive


108)

A) (i) 2 (ii) Positive

- B) (i) 2
 - (ii) Negative
- C) (i) 1
 - (ii) Negative
- D) (i) 1
 - (ii) Positive

109)

- A) (i) 3 (ii) Negative
- B) (i) 4

- C) (i) 3 (ii) Positive
- D) (i) 4 (ii) Positive

Answer: D

Provide an appropriate response.

110) What is the maximum number of x intercepts that a polynomial of degree 10 can have?

(ii) Negative

A) 11

B) 10

C) 9

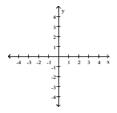
D) Not enough information is given.

Answer: B

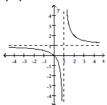
111) What is the minimum number of x intercepts that a polynomial of degree 11 can have? Explain.

- A) 1 because a polynomial of odd degree crosses the x axis at least once.
- B) 11 because this is the degree of the polynomial.
- C) 0 because a polynomial of odd degree may not cross the x axis at all.
- D) Not enough information is given.

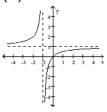
Answer: A


112) What is the minimum number of x intercepts that a polynomial of degree 8 can have? Explain.

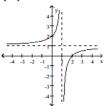
- A) 1 because a polynomial of even degree crosses the x axis at least once.
- B) 0 because a polynomial of even degree may not cross the x axis at all.
- C) 8 because this is the degree of the polynomial.
- D) Not enough information is given.


Answer: B

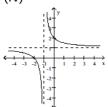
For the rational function below (i) Find the intercepts for the graph; (ii) Determine the domain; (iii) Find any vertical or horizontal asymptotes for the graph; (iv) Sketch any asymptotes as dashed lines. Then sketch the graph of y = f(x).


113) $f(x) = \frac{x+2}{x+1}$

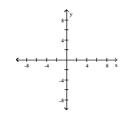
- A) (i) x intercept: 0; y intercept: 0
 - (ii) Domain: all real numbers except 1
 - (iii) Vertical asymptote: x = 1; horizontal asymptote: y = 1
 - (iv)



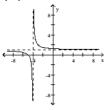
- B) (i) x intercept: 0; y intercept: 0
 - (ii) Domain: all real numbers except -1
 - (iii) Vertical asymptote: x = -1; horizontal asymptote: y = 1
 - (iv)


- C) (i) x intercept: 2; y intercept: 2
 - (ii) Domain: all real numbers except 1
 - (iii) Vertical asymptote: x = 1; horizontal asymptote: y = 1

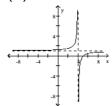
(iv)

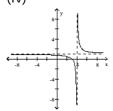

- D) (i) x intercept: -2; y intercept: 2
 - (ii) Domain: all real numbers except -1
 - (iii) Vertical asymptote: x = -1; horizontal asymptote: y = 1

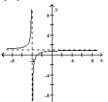
(iv)

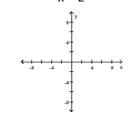


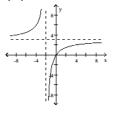
Answer: D


114)
$$f(x) = \frac{x-3}{x-4}$$

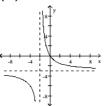

- A) (i) x intercept: -5; y intercept: $\frac{3}{4}$
 - (ii) Domain: all real numbers except -4
 - (iii) Vertical asymptote: x = -4; horizontal asymptote: y = 1
 - (iv)


- B) (i) x intercept: 5; y intercept: $\frac{3}{4}$
 - (ii) Domain: all real numbers except 4
 - (iii) Vertical asymptote: x = 4; horizontal asymptote: y = 1
 - (iv)

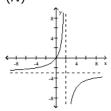

- C) (i) x intercept: 3; y intercept: $\frac{3}{4}$
 - (ii) Domain: all real numbers except 4
 - (iii) Vertical asymptote: x = 4; horizontal asymptote: y = 1
 - (iv)


- D) (i) x intercept: -3; y intercept: $\frac{3}{4}$
 - (ii) Domain: all real numbers except -4
 - (iii) Vertical asymptote: x = -4; horizontal asymptote: y = 1
 - (iv)

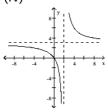
- Answer: C
- 115) $f(x) = \frac{3x}{x-2}$



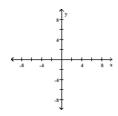
- A) (i) x intercept: 0; y intercept: 0
 - (ii) Domain: all real numbers except -2
 - (iii) Vertical asymptote: x = -2; horizontal asymptote: y = 3
 - (iv)


- B) (i) x intercept: 0; y intercept: 0
 - (ii) Domain: all real numbers except -2
 - (iii) Vertical asymptote: x = -2; horizontal asymptote: y = -3

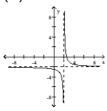
(iv)


- C) (i) x intercept: 0; y intercept: 0
 - (ii) Domain: all real numbers except 2
 - (iii) Vertical asymptote: x = 2; horizontal asymptote: y = -3

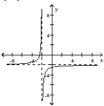
(iv)

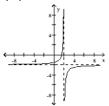

- D) (i) x intercept: 0; y intercept: 0
 - (ii) Domain: all real numbers except 2
 - (iii) Vertical asymptote: x = 2; horizontal asymptote: y = 3

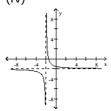
(iv)



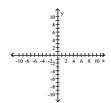
Answer: D

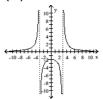

116)
$$f(x) = \frac{-2x - 3}{x + 2}$$


- A) (i) x intercept: $\frac{3}{2}$; y intercept: $-\frac{3}{2}$
 - (ii) Domain: all real numbers except 2
 - (iii) Vertical asymptote: x = 2; horizontal asymptote: y = -2
 - (iv)

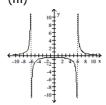

- B) (i) x intercept: $-\frac{3}{2}$; y intercept: $-\frac{3}{2}$
 - (ii) Domain: all real numbers except -2
 - (iii) Vertical asymptote: x = -2; horizontal asymptote: y = -2
 - (iv)

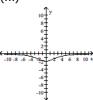
- C) (i) x intercept: $\frac{3}{2}$; y intercept: $-\frac{3}{2}$
 - (ii) Domain: all real numbers except 2
 - (iii) Vertical asymptote: x = 2; horizontal asymptote: y = -2
 - (iv)

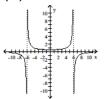

- D) (i) x intercept: $-\frac{3}{2}$; y intercept: $-\frac{3}{2}$
 - (ii) Domain: all real numbers except -2
 - (iii) Vertical asymptote: x = -2; horizontal asymptote: y = -2
 - (iv/)

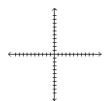

Answer: D

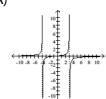
For the rational function below (i) Find any intercepts for the graph; (ii) Find any vertical and horizontal asymptotes for the graph; (iii) Sketch any asymptotes as dashed lines. Then sketch a graph of f.


117)
$$y = \frac{18}{x^2 - 9}$$


- A) (i) y intercept: 2
 - (ii) horizontal asymptote: y = 0; vertical asymptotes: x = 3 and x = -3
 - (iii)

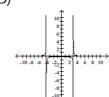

- B) (i) y intercept: -6
 - (ii) horizontal asymptote: y = 0; vertical asymptotes: x = 6 and x = -6
 - (iii)

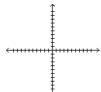

- C) (i) y intercept: 2
 - (ii) horizontal asymptote: y = 0
 - (iii)

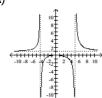


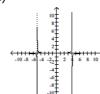
- D) (i) y intercept: 6 (ii) horizontal asymptote: y = 0; vertical asymptotes: x = 6 and x = -6

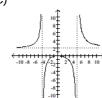
Sketch the graph of the function.
118)
$$f(x) = \frac{x+1}{x^2 + x - 12}$$

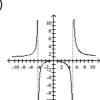





D)




Answer: B


119)
$$f(x) = \frac{x^2}{x^2 - x - 20}$$

Find the equation of any horizontal asymptote.

$$120) f(x) = \frac{2x^2 - 7x - 9}{5x^2 - 3x + 6}$$

A)
$$y = \frac{7}{3}$$

B)
$$y = 0$$

C)
$$y = \frac{2}{5}$$

Answer: C

121)
$$f(x) = \frac{6x^2 + 6}{6x^2 - 6}$$

A)
$$y = 1$$

B)
$$y = -6$$

C)
$$y = 6$$

D) None

Answer: A

122)
$$f(x) = \frac{x^2 + 4x - 8}{x - 8}$$

A)
$$y = 3$$

Answer: C

B)
$$y = 8$$

D)
$$y = -4$$

Find the equations of any vertical asymptotes.

123)
$$f(x) = \frac{3x - 11}{x^2 + 3x - 4}$$

A)
$$y = 1$$
, $y = -4$

B)
$$x = 1$$
, $x = -4$

B)
$$x = 1$$
, $x = -4$ C) $x = -1$, $x = 4$

D)
$$y = 3$$

Answer: B

124)
$$f(x) = \frac{x^2 - 100}{(x - 5)(x + 8)}$$

A)
$$x = 5$$
, $x = -8$

B)
$$x = -5$$

C)
$$y = 5$$
, $y = -8$

D)
$$x = 10$$
, $x = -10$

Answer: A

125)
$$f(x) = \frac{x^2 + 4x}{x^2 - 2x - 24}$$

A)
$$x = 6$$
, $x = -4$

B)
$$x = -6$$
, $x = 4$

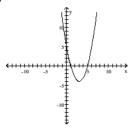
C)
$$x = 6$$

D) None

Answer: C

126)
$$f(x) = \frac{x-4}{x^2+8}$$

A)
$$x = 8$$


B)
$$x = -8$$

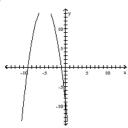
C)
$$x = 2, x = -2$$

D) None

Answer: D

Write an equation for the lowest-degree polynomial function with the graph and intercepts shown in the figure. 127)

A)
$$f(x) = x^2 + 6x + 5$$
 B) $f(x) = x^2 + 5x - 6$ C) $f(x) = x^2 + 5x + 6$ D) $f(x) = x^2 - 6x + 5$


Answer: D

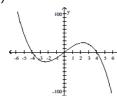
B)
$$f(x) = x^2 + 5x - 6$$

C)
$$f(x) = x^2 + 5x + 6$$

D)
$$f(x) = x^2 - 6x + 5$$

128)

A)
$$f(x) = x^2 + 9x - 10$$


C)
$$f(x) = x^2 + 10x + 9$$

Answer: B

B)
$$f(x) = -x^2 - 10x - 9$$

D)
$$f(x) = x^2 + 9x + 10$$

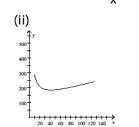
129)

A)
$$f(x) = x^3 + 16x$$

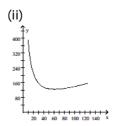
B)
$$f(x) = -x^3 - 16x$$

A)
$$f(x) = x^3 + 16x$$
 B) $f(x) = -x^3 - 16x$ C) $f(x) = -x^3 + 16x$ D) $f(x) = -x^3 - 16x$

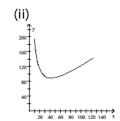
D)
$$f(x) = -x^3 - 16x$$

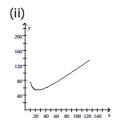

Answer: C

Solve the problem.


130) Financial analysts in a company that manufactures ovens arrived at the following daily cost equation for manufacturing x ovens per day: $C(x) = x^2 + 4x + 1800$. The average cost per unit at a production level of x ovens per day is $\overline{C}(x) = C(x)/x$. (i) Find the rational function \overline{C} . (ii) Sketch a graph of $\overline{C}(x)$ for $10 \le x \le 125$. (iii) For what daily production level (to the nearest integer) is the average cost per unit at a minimum, and what is the minimum average cost per oven (to the nearest cent)? HINT: Refer to the sketch in part (ii) and evaluate $\overline{C}(x)$ at appropriate integer values until a minimum value is found.

A) (i)
$$\overline{C}(x) = \frac{x^2 + 4x + 1800}{x}$$

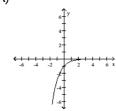

B) (i)
$$\overline{C}(x) = \frac{x^2 + 4x + 1800}{x}$$


(iii) 44 units; \$185.61 per oven

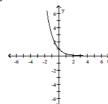
(iii) 61 units; \$133.29 per oven

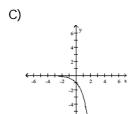
C) (i)
$$\overline{C}(x) = \frac{x^2 + 4x + 1800}{x}$$

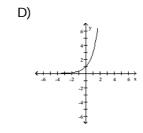
D) (i)
$$\overline{C}(x) = \frac{x^2 + 4x + 1800}{x}$$



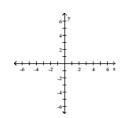
(iii) 22 units; \$48.93 per oven

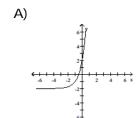

Graph the function.

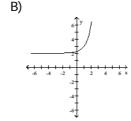

131)
$$f(x) = \left(\frac{1}{3}\right)^{X}$$


A

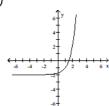
B)

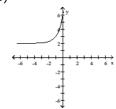


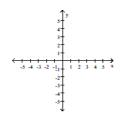




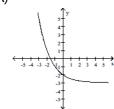
Answer: B


132)
$$f(x) = 4^{(x + 1)} + 2$$

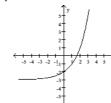


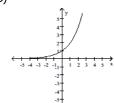


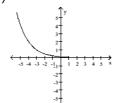
D)

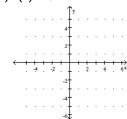


Answer: D

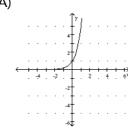

133)
$$f(x) = 2^{-X} - 3$$


A)

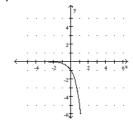

B)

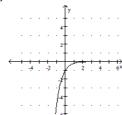


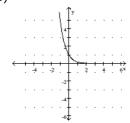
D)

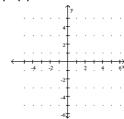


Answer: A

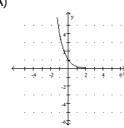

134)
$$f(x) = 0.2^X$$


A)

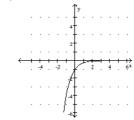

B)

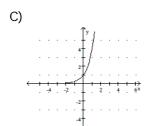


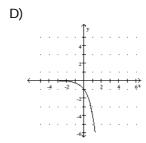
D)



Answer: D


135) $f(x) = 4^X$




A)

B)

Answer: C

Solve the equation.

136) Solve for x:
$$3(1 + 2x) = 27$$

A) 1

B) 3

C) -1

D) 9

Answer: A

137) Solve for x:
$$2^{4x} = 8^{x+5}$$

A) -5

B) -15

C) 5

D) 15

Answer: D

138) Solve for x:
$$(e^{x})^{x} \cdot e^{20} = e^{9x}$$

A) $\{-5, -4\}$

B) {5}

C) {4}

D) {5, 4}

Answer: D

139) Solve for t: $e^{-0.07t} = 0.05$

A) -70.1312

Round your answer to four decimal places. B) 44.321

C) -66.4815

D) 42.7962

Answer: D

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Solve the problem.

140) In the table below, the amount of the U.S. minimum wage is listed for selected years.

U.S. Minimum Wage

	1961								
Wage	\$1.15	\$1.40	\$2.00	\$3.10	\$3.35	\$3.80	\$4.25	\$4.75	\$5.15

Find an exponential regression model of the form $y = a \cdot b^X$, where y represents the U.S. minimum wage x years after 1960. Round a and b to four decimal places. According to this model, what will the minimum wage be in 2005? In 2010?

Answer: $y = 1.1389(1.0429^{X}); \$7.54; \$9.30$

MULTIPL	E CHOICE. Choose the o	ne alternative that best o	completes the statement or ans	swers the question.
	the target market that buys	s water is estimated by th	impaign in Miami to market a r ne function w(t) = 100(1 - e ^{-0.0} of the target market have bough C) 90 days	^{02t}), t represents the number
·	The number of books in a dis measured in years. How A) 9153 Answer: A	3 0	ry increases according to the fu rary have after 8 year(s)? C) 7200	nction B = 7200e ^{0.03t} , where t D) 4462
	dramatically. The number 2000, it has been found that	of patients in the United at the data can be modele	ory, the number of Alzheimer's States reached 4 million in 200 d by the exponential function you positients in 2025. Round to the n C) 8.0 million	0. Using data collected since $y = 4.19549 \cdot (1.02531)^{X}$, where
	A sample of 800 grams of the time in years. How mu whole gram. A) 800 grams Answer: C	radioactive substance dec uch of the substance will l B) 9 grams	cays according to the function able left in the sample after 10 ye C) 605 grams	A(t) = 800e ^{-0.028t} , where t is ars? Round to the nearest D) 1 gram
		g the function r(t) = 207 e	sed exponentially since 1960. T o.005t, where t is the number of C) 240	
	An initial investment of \$1 quarterly. Find the amoun A) \$12,865.62 Answer: B		ars in an account that earns 4% t at the end of the period. C) \$994.28	D) \$12,979.20
·	Suppose that \$2200 is inverse money after t years. A) $A = 2200 (1.015)^{2t}$ C) $A = 2200 (1.03)^{2t}$ Answer: A	sted at 3% interest, comp	bounded semiannually. Find the B) A = $2200 (1.0125)^2$ D) A = $2200 (1.015)^{\dagger}$	

Use the REGRESSION feature on a graphing calculator.

148) A strain of E-coli Beu-recA441 is placed into a petri dish at 30 Celsius and allowed to grow. The following data are collected. Theory states that the number of bacteria in the petri dish will initially grow according to the law of uninhibited growth. The population is measured using an optical device in which the amount of light that passes through the petri dish is measured.

Time in hours , x	Population, y		
0	0.09		
2.5	0.18		
3.5	0.26		
4.5	0.35		
6	0.50		

Find the exponential equation in the form $y = a \cdot b^X$, where x is the hours of growth. Round to four decimal places.

A)
$$y = 1.3384^{X}$$

B)
$$y = 1.3384 \cdot 0.0903^{X}$$

C)
$$y = 0.0903 \cdot 1.3384^{X}$$

D)
$$y = 0.0903^{X}$$

Answer: C

149) The total cost of the Democratic and the Republican national conventions has increased 596% over the 20-year period between 1980 and 2004. The following table lists the total cost, in millions of dollars, for selected years.

Year, x	Cost, y		
1980, $x = 0$	\$ 23.1		
1984, $x = 4$	31.8		
1988, $x = 8$	44.4		
1992, $x = 12$	58.8		
1996, $x = 16$	90.6		
2000, x = 20	160.8		
2004, $x = 24$	170.5		

Find the exponential functions that best estimates this data. Round your answer to four decimal places

A)
$$y = 22.2887 \cdot (1.0929)^X$$

B)
$$y = 22.2887x \cdot (1.0929)^X$$

C)
$$y = 1.0929 \cdot (22.2887)^X$$

D)
$$y = 6.6643x + 2.8857$$

Answer: A

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

150) A particular bacterium is found to have a doubling time of 20 minutes. If a laboratory culture begins with a population of 300 of this bacteria and there is no change in the growth rate, how many bacteria will be present in 55 minutes? Use six decimal places in the interim calculation for the growth rate.

Answer: 2,018 bacteria

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Convert to a logarithmic equation.

151)
$$2^3 = 8$$

A)
$$log_2 3 = 8$$

B)
$$\log_{8} 2 = 3$$

C)
$$\log_2 8 = 3$$

D)
$$\log_3 8 = 2$$

Answer: C

152)
$$5^2 = 25$$

A)
$$2 = \log_5 25$$

B)
$$5 = \log_2 25$$

C)
$$25 = \log_5 2$$

D)
$$2 = \log_{25} 5$$

153)
$$10^{0.4771} = 3$$

A) $3 = \log 0.4771$

Answer: B

154)
$$e^t = 7$$

A)
$$ln t = 7$$

Answer: A

B)
$$\log 7 e = t$$

C) In
$$7 = t$$

D)
$$log 7 t = e$$

Convert to an exponential equation.

155)
$$\log_9 27 = \frac{3}{2}$$

A)
$$27 = 9^{3/2}$$

B)
$$27 = \left(\frac{3}{2}\right)^9$$

C)
$$\frac{3}{2} = \sqrt[9]{27}$$

D)
$$9 = 27^{3/2}$$

Answer: A

156)
$$\log 8512 = t$$

A)
$$t^8 = 512$$

B)
$$512^8 = t$$

C)
$$8^{512} = t$$

D)
$$8^{t} = 512$$

Answer: D

157) In
$$44 = 3.7842$$

A)
$$e^{44} = 3.7842$$

B)
$$e^{3.7842} = In 44$$

C)
$$e^{3.7842} = 1$$

D)
$$e^{3.7842} = 44$$

Answer: D

Evaluate.

158) log₈ 8⁴

A) 8 Answer: D B) 32

C) 8⁴

D) 4

Use a calculator to evaluate the expression. Round the result to five decimal places.

159) log 0.17

Answer: B

160) log 0.234

A) -0.63074

B) 1.26364

C) -1.45243

D) 0.234

Answer: A

161) log 51.237

A) 51.237

B) 3.93646

C) 1.70958

D) Undefined

Answer: C

162) log (-10.25) A) 2.32728	B) 1.01072	C) -1.01072	D) Undefined
Answer: D			
163) log ₈ 36.8			
A) 1.73388	B) 1.56585	C) 0.57674	D) 3.60550
Answer: A			
164) In 0.027			
A) 0.56864	B) -3.61192	C) -1.56864	D) Undefined
Answer: B			
165) In 1097			
A) 7.00033	B) 9.30292	C) 4.69775	D) 3.04021
Answer: A			
Write in terms of simpler forms. 166) log ₄ XY			
A) $\log_2 X + \log_2 Y$	B) log ₂ X - log ₂ Y	C) $\log_4 X + \log_4 Y$	D) $\log_4 X - \log_4 Y$
Answer: C			
167) log _b			
A) log _b b - y	B) log _b b - log _b y	C) log _b b + log _b y	D) $\log_{2b} \frac{b}{y}$
Answer: B			
168) log _b M ⁹			
A) 9 log _b M	B) M + log _b 9	C) 9 + log _b M	D) M log _b 9
Answer: A			
169) 4 ^{a log} 4 b			
A) b ^{4a}	B) a ^{4b}	C) b ^a	D) a ^b
Answer: C	,	,	,
Solve for x to two decimal places (usi	ng a calculator).		
170) $700 = 500(1.04)^{X}$			
A) 8.58	B) 1.35	C) 520	D) 1.40
Answer: A			
171) 5.2 = 1.006 ¹² x			
A) 5.17	B) 22.97	C) 2.32	D) 1.07
Answer: B			

Use the properties of logarithms to solve.

172)
$$\log_7 x + \log_7 (x - 2) = \log_7 24$$

A) 7

B) 24

C) 6

D) 2

Answer: C

173) $\log_b x - \log_b 5 = \log_b 2 - \log_b (x - 3)$

A) 3

B) 2, 5

C) 5

D) 2

Answer: C

174) $\log_b(x + 3) + \log_b x = \log_b 54$

A) 3

B) 6

C) -6, -3

D) -6

Answer: B

175) $\log_6 (4x - 5) = 1$

A) $\frac{\log 5}{4}$

B) 7

C) $\frac{11}{4}$

D) $\frac{11}{4}$

Answer: D

176) $\ln (3x - 4) = \ln 20 - \ln (x - 5)$

A) -5, $-\frac{19}{3}$

B) 5, $\frac{5}{3}$

C) $0, \frac{19}{3}$

D) $\frac{19}{3}$

Answer: D

177) $\log (x + 10) - \log (x + 4) = \log x$

A) -5

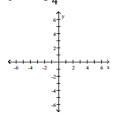
B) 6

C) 2, - 5

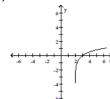
D) 2

Answer: D

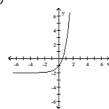
178) $\log (x - 9) = 1 - \log x$

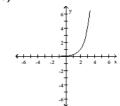

A) 10 Answer: A B) -10

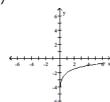
C) -1, 10

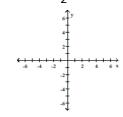

D) -10, 1

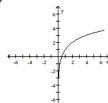
Graph by converting to exponential form first.

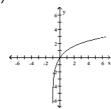

179)
$$y = \log_4 (x - 2)$$

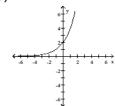

A)


В


C)

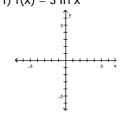

D)


180)
$$y = \log_2 (x + 1)$$

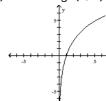

A)

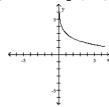
B)

C)

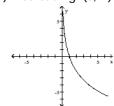


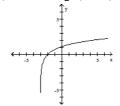
D)

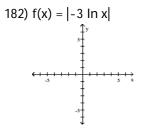



Answer: B

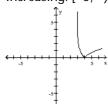
Graph the function using a calculator and point-by-point plotting. Indicate increasing and decreasing intervals. 181) $f(x) = 3 \ln x$

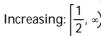


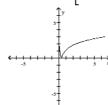

A) Increasing: (0, ∞)



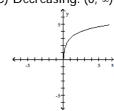
C) Decreasing: (0, ∞)



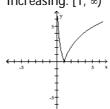

182)
$$f(y) = |-3 \ln y|$$

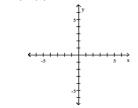


A) Decreasing: (0, -3] Increasing: [-3, ∞)

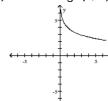


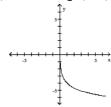
B) Decreasing: $\left(0, \frac{1}{2}\right)$

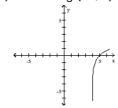


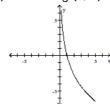

C) Decreasing: (0, ∞)

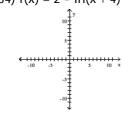
D) Decreasing: (0, 1] Increasing: $[1, \infty)$




- Answer: D
- 183) $f(x) = -4 \ln x$


61

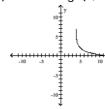

A) Decreasing: (0, ∞)

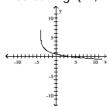

C) Increasing (-4, ∞)

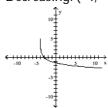




Answer: B


184)
$$f(x) = 2 - In(x + 4)$$




B) Decreasing: (4, ∞)

C) Decreasing: (-4, ∞)

D) Decreasing: (-4, ∞)

Answer: C

Solve the problem.

185) If \$1250 is invested at a rate of $8\frac{1}{4}\%$ compounded monthly, what is the balance after 10 years?

$$[\mathsf{A}=\mathsf{P}(1+i)^{\mathsf{n}}]$$

Answer: D

186) If \$4,000 is invested at 7% compounded annually, how long will it take for it to grow to \$6,000, assuming no with are made? Compute answer to the next higher year if not exact.

$$[A = P(1 + r)^{t}]$$

Answer: D

187) In North America, coyotes are one of the few species with an expanding range. The future population of coyotes in a region of Mississippi valley can be modeled by the equation P = 59 + 12 · In(18t + 1), where t is time in years. Use the equation to determine when the population will reach 170. (Round your answer to the nearest tenth year.)

A) 578.0 years

B) 586.2 years

C) 583.1 years

D) 581.3 years

Answer: A

188)	A country has a population growth rate of 2.4% compounded continuously. At this rate, how long will it take for the population of the country to double? Round your answer to the nearest tenth.						
	A) .29 years	B) 30 years	C) 2.9 years	D) 28.9 years			
	Answer: D						
189)	89) A carbon-14 dating test is performed on a fossil bone, and analysis finds that 15.5% of the original amount carbon-14 is still present in the bone. Estimate the age of the fossil bone. (Recall that carbon-14 decays according to the equation $A = A_0e^{-0.000124t}$).						
	A) 1,500 years	B) 15, 000 years	C) 15,035 years	D) 150 years			
	Answer: C						
190)	Assume that a savings account earns interest at the rate of 2% compounded monthly. If this account contains \$1000 now, how many months will it take for this amount to double if no withdrawals are made?						
	A) 417 months	B) 12 months	C) 408 months	D) 450 months			
	Answer: A						
191)	U. S. Census Bureau data show	rs that the number of families	in the United States (in millio	ons) in year x is given			
by $h(x) = 51.42 + 15.473 \cdot \log x$, where $x = 0$ is 1980. How many families were there in 2002?							
	A) 48 million	B) 72 million	C) 21 million	D) 90 million			
	Answer: B						
192)	The level of a sound in decibels	(db) is determined by the fo	rmula N = 10 · log(l × 10 ¹²) d	b, where I is the			
	intensity of the sound in watts meter. What is the sound level			10 ⁻⁴ watts per square			
	A) 89 db	B) 206 db	C) 79 db	D) 9 db			
	Answer: A						
193)	Book sales on the Internet (in b 0 corresponds to 2000. How mu		• •				
	A) 8.0 billion	B) 6.2 billion	C) 6.0 billion	D) 3.9 billion			
	Answer: B						