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Preface

This Tnstructor’s Manual containg solutions to the exercises in the second edition of Flementary Linear
Algebra: A Matriz Approach. Tt is intended for the use of instructors rather than students, and
50 many solutions are written more snecinetly than those in the Student Solations Mannal (ISBIN
(-13-239734-X}. In a cluster of shilar exereises (sneh as Excreises 27-34 in Scetion 1.4), we nsnally
work only one or two in detail and provide answers to the others. The Student Solntions Maamal,
which is available for student purchase, contains detailed solutions to sclected odd-numbered exercises.

Additional materiads for use with our book are asallable at

www.nath.ilstu.edu/matrix

On this site, you will find data files for the technology exercises in our book that can be used with
MATT.AB or Texas Instrument calculators. There is also an appendix on mathematical proof, written
by the anthors, for use it a lincar algebra conrse in which matheinatical proof is an cinphasis.

(ther resonrees for an instructor are avaitable ot the publishor’s wehsite, whose address i

www.prenhall.com/spence

Planning Your Course

The chart below lists the scetions of the text, categorized as essential material and supplemen-
fary material fapplications. The 26 sections listed as esseutial materinl contain the material deseribed
in the Linear Algebra Corricndmn Study Gronp's core syllabus ag woll as o thorough ntroduction
to linear transformations.  Some of these scctions contain optional subsections (for example, Sce-
tions 3.1, 3.2, and 5.2} that can be included or excluded al the discretion of the ingtructor, The
sections listed as supplementary material/applications may also be omilled depending on the na-
ture amed objecltives of yvour course, In a semester course of 3 or 4 hours, there should be time o
include some of the supplementary material or applications. We helieve that a fivst course in lin-
ear algebra is strengthened significantly by the inclusion of applcations and therefore recommend
that, whenever poasible, at least one application fromi cach of Scetions 1.5, 2.2, and 5.5 be included.
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Chapter 1

Matrices, Vectors, and
Systems of Linear

Equati
1.1 MATRICES AND VECTORS (12 4 -7 -1
i 22. _g 32 23. g g
1 8 —4 20 9 —2 1 -5 B a
Cli2 16 4 g [ R 16 -8 -4
g [6 —4 2 L8 31 i
" s 10 -4 T3 1 2a. | 3 0| 252 260
2 4 4 7 —4 4
5 0 6 6. [—1 10 -
4 8 1 9 3 2 2
- 27. 0 28. |1.6 29. %
3 -1 3 4T |27 5
7. 8. (-1 10 -
5 7 5 0.4
A 1 9 30. | 31.[2 —3 04]  32. [2¢ 12 0]
2 3 -
1 -1 7 150
9 -1 4 10
5 1] {1 1 —3} 33. [150v/3| mph
- 10
-1 -2 -1 -2 Y
11. 0 -3 12. 0 -3 34. (a) Theswimmer’s velocity isu = {\f} mph.
2 —4 2 —4 2
—12 0
[—3 1 -2 —4 6 15
B9 5 6 2] M3 9 North
0 6 Y
15 —6 2 -4 =8
-2 —10 12 4 swimmer in
- s 4 ) o still water
16. 0 10 —6 4} 17. not possible
L 45°
z
(7 3 3 4 ; (1) Fast
18. 1 _O 3 4:| 19. _3 3
L 2T 1 74 Figure for Exercise 34(a)
(1 1 4 12 .
20. 3 25 24 72} 21. not possible
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35.

36.

37.
40.

41.

42.
43.
44.

45.
46.
47.
50.

51.
54.
57.

Chapter 1 Matrices, Vectors, and Systems of Linear Equations

(b) The water’s velocity is v = {(1)] mph. So
the new velocity of the swimmer is

u+v= L/%/f_ J mph. The correspond-

ing speed is /5 + 2v/2 & 2.798 mph.

North
combined
velocity
water current
o
45 x
East

Figure for Exercise 34(b)

(a) 150v/2 + 50 moh
150v/2 P
(b) 50v/37 + 6v/2 ~ 337.21 mph

The three components of the vector represent,
respectively, the average blood pressure, average
pulse rate, and the average cholesterol reading
of the 20 people.

True 38. True 39. True

False, a scalar multiple of the zero matrix is the
zero matrix.

False, the transpose of an m X n matrix is an
n X m matrix.

True
False, the rows of B are 1 x 4 vectors.

False, the (3,4)-entry of a matrix lies in row 3
and column 4.

True

False, an m X n matrix has mn entries.

True 48. True 49. True

False, matrices must have the same size to be
equal.

52. True
55. True

53. True
56. True

True
True

Suppose that A and B are m X n matrices.

(a) The jth column of A+ B and a; + b; are
m X 1 vectors. The ith component of the
jth column of A + B is the (i, j)-entry of

58.

59.

60.

61.

62.
63.

64.

65.

66.

A+ B, which is a;; 4 b;;. By definition, the
ith components of a; and b; are a;; and
bij, respectively. So the ith component of
a; + b, is also a;; + b;;. Thus the jth
columns of A 4+ B and a; + b; are equal.
(b) The proof is similar to the proof of (a).

Since A is an m X n matrix, 0A is also an m x n
matrix. Because the (i, j)-entry of 0A is Oa;; =
0, we see that 0A equals the m x n zero matrix.

Since A is an m X n matrix, 14 is also an m xn
matrix. Because the (7, j)-entry of 14 is la;; =
a;j, we see that 1A equals A.

Because both A and B are m x n matrices, both
A+ B and B+ A are m X n matrices. The (i, j)-
entry of A+ B is a;; + bij, and the (i, 7)-entry
of B+ Ais b,‘j + agj. Since a;j + bi]' = bi]' + aij
by the commutative property of addition of real
numbers, the (i, j)-entries of A+B and B+A are
equal for all 4 and j. Thus, since the matrices
A+ B and B + A have the same size and all
pairs of corresponding entries are equal, A+ B =
B+ A.

If O is the m X n zero matrix, then both A
and A + O are m X n matrices; so we need
only show they have equal corresponding en-
tries. The (i, j)-entry of A+ O is a;; + 0 = a4,
which is the (, j)-entry of A.

The proof is similar to the proof of Exercise 61.

The matrices (st)A, tA, and s(tA) are all m xn
matrices; so we need only show that the corre-
sponding entries of (st)A and s(tA) are equal.
The (i,7)-entry of s(tA) is s times the (i, j)-
entry of tA, and so it equals s(ta;;) = st(as;),
which is the (i,j)-entry of (st)A. Therefore
(st)A = s(tA).

The matrices (s+t)A, sA, and tA are m X n ma-
trices. Hence the matrices (s+¢)A and sA+tA
are m X m matrices; so we need only show they
have equal corresponding entries. The (i, j)-
entry of sA + tA is the sum of the (4, j)-entries
of sA and tA, that is, sa;; +ta;;. And the (,7)-
entry of (s +¢)A is (s + t)ai; = sai; + tai;.
The matrices (sA)T and sA” are n x m matri-
ces; so we need only show they have equal corre-
sponding entries. The (4, j)-entry of (sA)T is the
(j,i)-entry of sA, which is sa;;. The (4, j)-entry
of sAT is the product of s and the (4, j)-entry of
AT, which is also sa;;.

The matrix AT is an n x m matrix; so the ma-
trix (A7) is an m x n matrix. Thus we need
only show that (AT)” and A have equal corre-
sponding entries. The (i, j)-entry of (AT)7 is
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68.

69.

70.

71.

72.

73.

74.
75.

76.
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78.

79.

80.

1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices 3

the (j,)-entry of AT, which in turn is the (i, §)-
entry of A.

If ¢ # j, then the (i, j)-entry of a square zero
matrix is 0. Because such a matrix is square, it
is a diagonal matrix.

If B is a diagonal matrix, then B is square.
Hence ¢B is square, and the (i, j)-entry of ¢B
is ¢bij = ¢-0=01if { # j. Thus ¢B is a diagonal
matrix.

If B is a diagonal matrix, then B is square. Since
BT is the same size as B in this case, BT is
square. If i # j, then the (i, j)-entry of BT is
bj: = 0. So BT isa diagonal matrix.

Suppose that B and C are n x n diagonal ma-
trices. Then B + C is also an n X n matrix.
Moreover, if ¢ # j, the (i,7)-entry of B + C is
bij +¢ci; =0+0=0. So B+ C is a diagonal

matrix.

2 5 6
E g} and |5 7 8
6 8 4

Let A be a symmetric matrix. Then 4 = AT,
So the (i, j)-entry of A equals the (i, j)-entry of
AT which is the (j,i)-entry of A.

Let O be a square zero matrix. The (i, j)-entry

of O is zero, whereas the (1, j)-entry of O is the
(4, 4)-entry of O, which is also zero. So O = O7 |
and hence O is a symmetric matrix.

By Theorem 1.2(b), (¢B)T = ¢BT = ¢B.

By Theorem 1.1(a) and Theorem 1.2(a) and (c),
we have

(B+B") =BT +(B")" = B"+B=B+B".
By Theorem 1.2(a), (B +C)T = BT + 0T =

B+C.

2 5 6

5 7 8| and E g} .

6 8 4
Let A be a diagonal matrix. If ¢ # j, then a;; =
0 and aj; = 0 by definition. Also, a;; = a;; ifi =
j. So every entry of A equals the corresponding
entry of AT. Therefore A = AT.

The (i,7)-entries must all equal zero. By equat-
ing the (i,%)-entries of AT and —A, we obtain

No. Consider

aii = —a4i, and so a;; = 0.
0 1 .
Take B = 1 ol If C is any 2 x 2 skew-
symmetric matrix, then C7 = —C. Therefore
c12 = —ca1. By Exercise 79, ¢11 = c22 = 0. So
_ 0 —C21 _ 0 1 _
C— |:621 O:| = C21 |:_1 O:| = Cle.

81. Let Ay = 1(A+ A") and Ay = J(A—A"). It
is easy to show that A = A; + A2. By Exercises
75 and 74, Ay is symmetric. Also, by Theorem
1.2(b), (a), and (c), we have

AT = J(A— AT)T = J[AT — (ATY"]
_loar o= LA any—
= AT A= (A AT)= Ay,
82. (a) Because the (i,)-entry of A+ B is ai; +bis,

we have
trace(A + B)
= (a11 +b11) 4+ - 4 (@nn + bun)
= (a11 + -+ ann) + (b1 + -+ + ban)
= trace(A) + trace(B).
(b) The proof is similar to the proof of (a).
(¢) The proof is similar to the proof of (a).

83. The ith component of ap+bq is ap; + bg;, which
is nonnegative. Also, the sum of the components
of ap + bq is

(ap1 +bq1) + - - - + (apy + bgn)
=a(pr+--+pn) +b(@+-+an)
—a(l)+b(1) =a+b=1.

[ 65 —05 —1.9 —28]
96 —29 15 -3.0
84. (a) |174 04 —155 5.2
-1.0 —37 —73 175
| 52 14 35 168
[—1.3 34 —4.0 104
30 49 —24 66
b) |39 —41 94 -86
1.7 —01 —145 —02
|—47 41  —07 —18
(39 74 103 —0.1 1.9
(@ | 08 -03 -11 -25 23
—26 02 -72 -97 21
16 02 06 116 10.6

1.2 LINEAR COMBINATIONS,
MATRIX-VECTOR PRODUCTS,
AND SPECIAL MATRICES

—5 9
1 Bﬂ 2 4 3. {0 4 Eg}
7 10
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sa 2
tb| 10.[6] 11. |-6] 12.
uc 10
{*é} 14. [—i)] 15.{

2
1R
b e
sl s leva ]
1[v3 —1} 1{f—2]
21 V3] 2[1+2V3
i %
szl =]
st s lst
sty il

31. not possible

HECIHEESIH
i =g+ en]
IR ERGE]
i =ofo)+o[
o =7l v ]
o= ()1

33. not possible

w

42.

43.

44.

45.
46.

47.
50.

51.

52.

53.

54.

55.

56.
5T7.

58.

59.

60.
61.

62.

63.
65.

66.

1 0 0
u=5 |0 +6 1| +7|0
0 0 1
1 0 0
u=(-4) [0| +(=5) |[1| +(=6) |0
0 0 1
1 0 —1
u=0|-1+0 (-2 +1| 3
1 3 2

True

False. If the coefficients of the linear combina-

tion 3 B] + (—6) [ﬂ = [8} were positive, the

sum could not equal the zero vector.
True 48. True 49. True

False, the matrix-vector product of a 2 x 3 ma-
trix and a 3 x 1 vector is a 2 x 1 vector.

False, the matrix-vector product is a linear com-
bination of the columns of the matrix.

False, the product of a matrix and a standard
vector is a column of the matrix.

True

False, the matrix-vector product of an m X n
matrix and a vector in R" yields a vector in
Rm

False, every vector in R? is a linear combination
of two nonparallel vectors.

True

False, a standard vector is a vector with a single
component equal to 1 and the others equal to 0.

True

False, consider A = {_1 71} and u = [1}
True

False, Agpu is the vector obtained by rotating u
by a counterclockwise rotation of the angle 6.

False, consider A = { ! 71}, u = [1}, and

-1 1 1
2
V=,

True 64. True

If § = 0, then Ag = I. So Agv = [ov = v by
Theorem 1.3(h).

-1 0

‘We have A1800V = |: 0 1

:|v: —Ibv = —v.



67. Let v= [Z}

68. Let u= {

69.

70. Au=a |4| +b

1.2 Linear Combinations, Matrix-Vector Products, and Special Matrices 5

Then Ag(Agv)

[cos® —sinb cos@ —sinf| |a
| sin 0 cos 0 sin (3 cos3| |b
[cosf —sinf| [acosB — bsinf
| sin 6 cosf| |asinfB + bcos B

[acosfcos 3 —bcosBsin 5
|asinfcos 3 — bsin @ sin 3

—asinfsin 8 — bsin 0 cos 3

acos@sin B+ bcos b cos B

_ [acos (6 + B) = bsin (0 + )
| |

asin (6 + B) + beos (6 + 5)

= Ae.;,.gv.

a

b} . Then

AF (Agu)

[ cosf sinf cosf —sind] [a
|—sinf cosd sin 6 cosf| |b

sinf| |acosf — bsinf
cosf| |asinf + bcos

[ cos6
—sin6

[ acos?0 — bsinb cosf
| —asindcosf + bsinZ 0

asin? 6 + bsin 6 cos 0
asindcosf + bcos? 0

_ [a(sin2 0 4+ cos® 9)} _ [a} .

b(sin® @ + cos® ) b

Similarly, 4¢(AZu) = u.

(a)

As in Example 3, the populations are given
by the entries of A Egg] = Bg?] ;SO
there will be 349,000 people in the city and
351,000 in the suburbs.

349 307.180
351} {392.820

that there will be 307,180 people in the
city and 392,820 in the suburbs.

Computing A [ = }, we see

1 2 3
5| +c |6
7 8 9

71.

76.
T7.

8.

79.

Au = {
about the y-axis
‘We have

fé ﬂ m _ {*‘Z _ the reflection of u
-+([% G
13 13- b

A(Au)

O =

o=l

(a)
(b)

(c)

|

-1 0
C = Aigoo = { }

e[ (0 )
-1

In a similar fashion, we have C(Au) =

[7‘2} = Bu and B(Cu) = C(Bu) = Au.

The first equation shows that reflecting
about the z-axis can be accomplished by
either first rotating by 180° and then re-
flecting about the y-axis, or first reflect-
ing about the y-axis and then rotating by
180°.

The second equation shows that reflecting
about the y-axis may be accomplished ei-
ther by first rotating by 180° and then re-
flecting about the z-axis, or first reflect-
ing about the x-axis and then rotating by
180°.

a
0

A(Cu) = {

S =

} , the projection of u on the z-axis

This exercise is similar to Exercise 72.

o e -

B=

(a)

a

b

We have
A(Cu) = é 8} <H —ﬂ ZD
-1
and
C(Au) = __(1) ,(1)] ([(1) 8} ZD
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Chapter 1 Matrices, Vectors, and Systems of Linear Equations

-1 O |la| _|—a
=L S =10)

(b) Rotating a vector by 180° and then pro-
jecting the result on the z-axis is equiva-
lent to projecting a vector on the z-axis
and then rotating the result by 180°.

The sum of the two linear combinations

aui +bus and cu; + dus

is

(au1 +buz)+ (cui +duz) = (a+c)ur + (b+d)uz,
which is also a linear combination of u; and us.
Write v = aiju; + aguz and w = byu; + bous,
where a1, a2, b1, and by are scalars. A linear
combination of v and w has the form

cv 4+ dw = c(aiur + azuz) + d(biur + baus)

(ca1 =+ dbl)lh + (C(IQ + dbz)u2,

which is also a linear combination of u; and us.
The proof is similar to that of Exercise 81.

We have

A(cu) = (cur)ar + (cuz)az + -+ - + (cun)an

= c(urar + u2az + - - + upa,) = c(Au).

Similarly, (cA)u = ¢(Au).

We have
(A+ B)u=wui(a1 +bi) 4+ +un(a, +by)
= wa; +uiby + - +una, +unbp
= (u1a1 + -4 unan)
+ (Ulbl + -+ unbn)
= Au + Bu.
We have Ae; =

O0ai+---+0a;—1+1a; +0a;41+---+0a, = a;.

Suppose Bw = Aw for all w. Let w = e;. Then
Be; = Ae;. From Theorem 1.3(e), it follows
that b; = a; for all j. So B = A.

The vector A0 is an m x 1 vector. By definition
A0 =0a; +0as +---+0a, =0.

Every column of O is the m X 1 zero vector. So
Ov=v10+v0+---4+v,0=0.

The jth column of I, is e;. So

I,v =vie1 +1v2es +---+v,€, = V.

90.

91.

1.3

Using p = [ggg}, we compute Ap, A(Ap),...

until we have ten vectors. From the final vector,
we see that there will be 155,610 people living in
the city and 544,389 people living in the suburbs
after ten years.

24.6 134.1 128.4
45.0 44.4 80.6
@) | 960 ®) | 76 © | 635
|—41.4 104.8 25.8
[ 653.09
399.77
(@) 1 50823
| —394.52

SYSTEMS OF LINEAR EQUATIONS

0 -1 2 0 -1 2 0
(2) L 3 0} () {1 30 —1}
(a) [2 -1 3] (b)[2 -1 3 4]

(1 2 12 3
(a) |-1 3 (b) [-1 3 2

-3 4 -3 4 1

1 0 2 -1
@1 10 1}

1 0 2 -1 3
® 2 10 0}

[0 2 -3 02 -3 4
(@ [-1 1 2| () |-1 1 -6

2 0 1 2 0 1 0

1 -2 1 7
() [1 —2 0 10

2 -4 4 8

1 -2 1 7 5
() [1 -2 0 10 3

2 —4 4 8 7

0 2 —4 4
-2 6 3 -1 1

1 -1 0 2 -
33 0 -6 9
-2 6 3 -1 1

0 2 —4 4 2



10.

11.

12.

13.

14.

15.

17.

19.

21.

23.

24.

25.

1 -1 0 2 -3
0 4 3 3 -5
0 2 —4 4 2
2 6 3 -1 1
1 -1 0 2 -3
L0 2 4 4 2
[1 -1 0 2 -3
-2 6 3 -1 1
Lo 1 -2 2 1
(1 -1 0 2 -3
-2 0 15 —13 -5
L0 2 —4 4 2
(1 -1 0 2 -3

-2 6 3 -1 1

1 -1 0 2 =3
-2 6 3 -1 1

| 2 0 -4 8 —4
—9 4 0] 1 -2 0
1 1 1
-1 1 -1 6. |72 2 "2
2 -4 6 2 -4 6
-3 2 1 -3 2 1
[1 -2 0] (1 -2 0]
-1 1 -1 -1 1 -1
0 0 6 1819 4 6
-3 2 1 | 0 —4 1]
(1 -2 0] (1 -2 0]
2 -4 6 -3 2 1
-1 1 -1 201 9 4 6
-3 2 1 -1 1 —1]
[ 1 -2 0] —1 0 —2]
-1 1 -1 -1 1 -1
2 -4 6 219 4 6
-1 0 3 -3 2 1

Yes, because 1(1) — 4(—2) + 3(—1) = 6 and
1(=5) — 2(—1) = —3. Alternatively,

1 -4 0 3]|-2 [6
0 0 1 —2||-5]" |-3]"

No, because 1(2) — 4(0) 4+ 3(1) = 5 # 6. Alter-
natively, if A is the coefficient matrix, and the

A

No, because the left side of the second equation
yields 1(2) — 2(1) = 0 # —3. Alternatively,

given vector is v, then Av = {

26.

27.
31.
35.

39.

41.

45.

47.

48.

49.

50.

51.

1.3 Systems of Linear Equations 7

Yes, the components of the vector satisfy both
equations. Alternatively, if the given vector is

v, then Av = {_g} .

no 28. yes 29. yes 30. yes
yes 32. no 33. yes 34. yes
no 36. yes 37. no 38. no
r1 =2+ 2 40. r1 = —4
zy free 2= 5
1 =6 + 222 1 =5+ 4x2
42.
o free xo9 free
. xr1 = —6
not consistent 44.
T2 = 3
xr1 = 4 + 21}2
xo free 46. not consistent
xr3 = 3
1= 314 1 3
T2 — 4%’4 and X2 — 4
xr3 = —bx1y z3| 11-5
x4 free T4 1
1 =94+ x3 — 314
xro =8 — 2x3 + bxa
and
r3 free
x4 free
T 1 -3 9
Ta| —2 5 8
e 1| TP ol o
T4 0 1 0
x1 free T 1 0
XTo = -3 X2 o 0 -3
xr3 = —4 and T3 - 0 + —4
rg= 5 T4 0 5
r1 = —3 + 229
xo free and
xr3 = —4
Ty = 5
X1 2 -3
X2 o 1 0
xr3 =2 0 + —4
T4 0 5
1 =6 — 3x2 + 214
xo free
xr3 = 7 — 4:54 and
rs free
X1 73 2 6
T2 _ o 1 iz 0 n 0
x| 2|0 -4 7
T4 0 1 0



52.

53.

54.

55.

56.

57.
58.

59.
60.

61.
63.

64.
66.

67.
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z1 free

To = —4 — 3174

xr3 = 9 — 2%4 and

x4 free
T1 1 0 0
ol =a ol o | S+ | o
T4 0 1 0

not consistent

z1 free

To free

T3 = 3r4 — 2%

and

x4 free

s = Tg

re free
T1 1 0 0 0
To 0 1 0 0
ij =1 8 + x2 8 + x4 ? + 6 3
s 0 0 0 1
Te 0 0 0 1

All variables are either free or basic, so if there
are k free variables, there must be n — k basic
variables.

Because R is in reduced row echelon form, the
leading entry must equal 1, and every other en-
try in the column must be 0. So this column
equals ey.

False, the system Ox140x2 = 1 has no solutions.

False, a system of linear equations has 0, 1, or
infinitely many solutions.

True
. 12 0f. .
False, the matrix {0 O} is in row echelon form.
True 62. True
. 2 0 1 0
False, the matrices {O 0} and {0 0} are both

row echelon forms for [g 8] .

True 65. True

False, the system

O0x1 +0z2 =1
0x1 + 022 =0

is inconsistent, but its augmented matrix is
0 0 1
0 0 0|

True 68. True

69.

70.

74.
75.

76.
T7.

79.

80.

81.

82.

False, the coefficient matrix of a system of m
linear equations in n variables is an m X n ma-
trix.

True 71. True 72. True

False, multiplying every entry of some row of a
matrix by a nonzero scalar is an elementary row
operation.

True

False, the system may be inconsistent; consider
Ox1 + Oz = 1.

True

If [R c] is in reduced row echelon form, then so
is R. If we apply the same row operations to A
that were applied to [A b] to produce [R c], we
obtain the matrix R. So R is the reduced row
echelon form of A.

The row operations that reduce A to R may
be applied to [A 0] and do not affect its last
column. The resulting matrix is [R 0], which is
in reduced row echelon form.

If we let 0, be the n x 1 zero vector, then, by
Theorem 1.2(f), A0, = 0. So 0, is a solution
of Ax = 0, and hence Ax = 0 is consistent.

Let R be the reduced row echelon form of A.
Then by Exercise 77, [R c] is the reduced row
echelon form of [A b] for some vector c. By
hypothesis, [R c] contains no row whose only
nonzero entry lies in the last column. So the
system Ax = b is consistent.

The ranks of the possible reduced row echelon
forms are 0, 1, and 2. Considering each of these

ranks, we see that there are 7 possible reduced
row echelon forms:

00 0]t = ][0 1 %o o0 1
0o 0 o/'lo o of’lo o ol’lo o of
10*1*Od010
01 "o o 1P*™% o o 1|

As in the solution to Exercise 81, there are 11
possible reduced row echelon forms:

0O 0 0 O 1 *x * % 0 1 % =x
0 0 0 00 0 0 of7[0 0 0 0}
0 0 1 %] [o 0 0 11 [1 0 % =]
0 0 0 00 0 0 Of7[0 1 % =
1+ 0 0] [1 =* 0] o 1 0 x]
0 0 1 x|”|0 0 710 0 1 |’
[0 1 % 0] and 0 0 1 0

0 0 0 1p 0 0 0 1|




83.

84.

85.

86.
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11.

13.

15.

There are three cases. If the operation inter-
changes rows i and j of A, then interchanging
rows ¢ and j of B produces A. If the operation
multiplies row ¢ of A by the nonzero scalar c,
then multiplying row ¢ of B by % produces A.
Finally, if the operation adds k times row i to
row j of A, then adding —k times row i to row
j of B produces A.

The system x; = 1 has only the solution 1, but
the system Oz; = 0 - 1 has infinitely many solu-
tions.

Multiplying the second equation by ¢ produces
a system whose augmented matrix is obtained
from the augmented matrix of the original sys-
tem by the elementary row operation of multi-
plying the second row by c. From the statement
on page 33, the two systems are equivalent.

The solution is similar to that of Exercise 85.

GAUSSIAN ELIMINATION

1‘1:—2—3.’132 .’131:3—|—.’E2
2.
zo free zo free
1= 14+ 2x3
xr1 = 4
4. T2 = -2 — T3
T2 = 5
x3 free
r1 =3+ 212 + 23
not consistent 6. o free
z3 free
x1 = —1 + 229 r1= —l—dx
To = 3.’[4
To free 8.
xr3 = 1-— 2.%4
x4 free
r1 = 14 2x3
Ty =—2— I3 10. not consistent
z3 free
T4 = -3
2 12. T2 = —4 — 3]73
T3 = 3 — 214
r3 free
zs free

not consistent 14. not consistent

1= -2+ x5
To free

r3 = 3 — 31‘5
T4 = -1 — 2325

x5 free

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

1.4 Gaussian Elimination 9

1 = =3+ 22 + 2z5

xo free
r3 free
X4 -1 — 2375
x5 free

The augmented matrix can be transformed to

-1 4 3 . | "

0 r412 11| Using anelementary row op-
eration. Therefore the system is inconsistent if
r 412 =0, that is, r = —12.

The augmented matrix can be transformed to

-1 4 6 .

{ 0 r4+12 16] using two elementary row
operations. So the system is inconsistent if
r+ 12 =0, that is, r = —12.

The augmented matrix can be transformed to

1 —2 0 .. . .
0 0 T] So the system is inconsistent if

r#0.
The augmented matrix can be transformed to
1 0 -3
0 r 0

} So the system is inconsistent for
no value of 7.

The augmented matrix can be transformed to
1 -3 -2
0 r+6 0
for no value of r.

} . So the system is inconsistent

-2 1 5 .
. 3}.Add§

times the first row to the second row to obtain
[—2 1 5
| 0 4+%5 343
tentif4+g:0and3+gr7$0. Sor = -8.
The augmented matrix can be transformed to
[—1 r 2

0 -9 2r+6
inconsistent, we need r> —9 = 0 and 2r + 6 # 0.

So r = 43 and r # —3. Therefore r = 3.

The argument is similar to that of Exercise 23.
The system is inconsistent if r = —4.

The augmented matrix is {

] . The system is inconsis-

}. For the system to be

The augmented matrix can be transformed to
1 -1 2 4
0 r+3 -7 -10

does not contain a row whose only nonzero en-

try lies in the last column, the system is never
inconsistent.

}. Because this matrix

The augmented matrix can be transformed to
1 2 -4 1
{O 0 r—8 5
contains a row whose only nonzero entry lies in

}. If » = 8, then this matrix
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27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.
38.
39.
40.
41.
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the last column, and so the system is inconsis-

tent if r = 8.

The augmented matrix can be transformed to
1 r 5
0 6—-3r s—15|

(a) We need 6 —3r = 0 and s — 15 # 0. So
r=2and s # 15.

(b) We need 6 — 3r # 0, that is, r # 2.

(c) Weneed 6 —3r =0 and s —15 = 0. So
r=2and s = 15.

The augmented matrix can be transformed to

-1 4 s

0 r+8 6+2s|

(a) Weneed r+8 = 0 and 6 + 2s # 0. So
r=—8 and s # —3.

(b) We need r + 8 # 0, that is, r # —8.

We need r+8 = 0 and 6 + 2s = 0. So

r=—8and s = —3.

—
o
~

The reduced row echelon form of the matrix is

The rank of the given matrix equals the number
of nonzero rows in R, which is 3. The nullity of
the given matrix equals its number of columns
minus its rank, which is 4 — 3 = 1.

The rank is 2,
The rank is 2,
The rank is 4,
The rank is 3,
The rank is 3,
The rank is 2,

(a) r=-8,s# —2 (b) r £ -8
(¢)r=-8 s=—

(a) r=—-12, s #2 (b) r £ —12
(c)r=-12,s=2
(a)r=2,5#-6 (b)r#3
(c)r=35,s=-6

(a) r=-2,s#—15 (b) r# -2
(c)r=-2,s=-15
(a)r=3,5#3 (b) r#3
(c)r=3,s=2

(a)r=-2,5#6 (b) r# =2
(c)r=-2,s=6

1 0 0 -2
0 1 0 1
R=1]0 0 1 -3
0 0 O 0
0 0 O 0

and the nullity is 2.
and the nullity is 3.
and the nullity is 2.
and the nullity is 1.
and the nullity is 2.
and the nullity is 3.

42. The rank is 3, and the nullity is 3.

43. Let x1, z2, and x3 be the number of days that
mines 1, 2, and 3, respectively, must operate to
supply the desired amounts.

(a) The requirements may be written as the
matrix equation
1 1 2f |z 80
1 2 2| |z2| = |100
2 1 0| |zs 40
The reduced row echelon form of the aug-
mented matrix of this system is
1 0 0 10
0 1 0 20
0 0 1 25
So x1 = 10, x2 = 20, x3 = 25.
(b) A system of equations similar to that in
(a) yields the reduced row echelon form
1 0 0 10
0 1 0 60
0 0 1 -15
Because x3 = —15 is impossible for this
problem, these amounts cannot be sup-
plied.

44. Let x1, x2, and x3 denote the number of pounds
of the three types of fertilizer, respectively,
needed to satisfy the requirements.

(a) The given requirements yield the system
xr1 + T2 + r3 = 600
.10z1 + .08z2 4 .06x3 = .075(600)
.03x1 + .06x2 + .0lxz = .05(600).
This system has the solution x; = —18.75,
ro = 487.5, and x3 = 131.25. So this mix-
ture is impossible.
(b) A similar approach yields the solution
x1 = 375, o = 150, and z3 = 75.
45. Let z1, x2, and x3 be the amounts of the three

supplements, respectively, that must be used.
(a) The given requirements yield the system

10z1 + 1522 + 36x3 = 660
10z1 + 2022 + 44x3 = 820
1521 + 1522 + 4223 = 750,

which has the solution
T = 18 — 12:1}3
T2 = 32 — 1.61‘3
z3 free.
Because the solution must be nonnegative,

we need r3 < 15 and z3 < 20. This yields
a maximum value of x3 = 15.



46.

47.

48.
49.
50.
51.

52.

53.
54.

55.

(b) No. A similar approach yields an inconsis-
tent system.

Let x1, x2, and x5 be the amounts of A, B, and
C, respectively, that must be blended.

(a) The given requirements yield the system

1+ T2+ x3= 100
40z1 + 32x2 + 2423 = 35(100)
30x1 + 622 + 94x3 = 50(100),

which has the solution

1 = 37.5 + xrs3
T2 = 62.5 — 2373
x3 free.

Letting 3 = 0, we obtain z; = 37.5 and
x2 = 62.5.

(b) Inorder that x1 and x2 be nonnegative, we
need x3 > 0 and 2x3 < 62.5. So we take
x3 = 31.25 for a maximum value of x3.

We need f(—1) = 14, f(1) = 4, and f(3) = 10.
These conditions produce the system

a— b+c=14
a+ b+c= 4
9a + 3b + ¢ = 10.

This system has the solution a = 2, b = —5,
c=1. So f(x) =22% — 5z + 7.

flz) = =322 +8z -5
fz) =4a® — 72+ 2
flz) = =23 + 622 + 42 — 12.

Column j is e3. Each pivot column has exactly
one nonzero entry, which is 1, and hence it is a
standard vector. Also because of the definition
of the reduced row echelon form, the sequence
of pivot columns must be e1, ez, .... Hence the
third pivot column must be es.

As noted in the solution to Exercise 51, column j
equals e4, and because e, e2, and ez are among
the previous columns, it follows that j > 4. Be-
cause the fourth component of column j is 1,
the only nonzero entry, it follows that i = 4.

True

False. For example, the matrix 1] can be

0
reduced to I by interchanging its rows and then
multiplying the first row by %, or by multiply-
ing the second row by % and then interchanging
TOWS.

True 56. True 57. True 58. True

59.

60.

61.

64.

65.

66.
68.

69.
71.

72.
73.

74.

75.

76.

7.

78.

1.4 Gaussian Elimination 11

False. By definition, rank A + nullity A equals
the number of columns of A. So, for a 5 x 8
matrix, we have 3 + 2 # 8.

False, we need only repeat one equation to pro-
duce an equivalent system with a different num-
ber of equations.

True 62. True 63. True
1 0 2]
False, the augmented matrix |0 1 3| con-
0 0 O

tains a zero row, but the corresponding system
has the unique solution 1 = 2, 3 = 3.

. 1]
False, the augmented matrix 0 8 ol con-
tains a zero row, but the system is inconsistent.

True 67. True

False, the sum of the rank and nullity of a matrix
equals the number of columns in the matrix.

True 70. True

False, the third pivot position in a matrix may
be in any column to the right of column 2.

True

If the rank of a matrix is 0, then its reduced row
echelon form has only zero rows, which means
that the original matrix must have only zero
rows, and hence must be the zero matrix.

The 4 x 7 zero matrix has rank 0, and the rank
of any matrix must be nonnegative. Hence the
smallest possible rank is 0.

The largest possible rank is 4. The reduced row
echelon form is a 4 x 7 matrix and hence has at
most 4 nonzero rows. So the rank must be less
than or equal to 4. On the other hand, the 4 x 7
matrix whose first four columns are e;, ez, es,
and e4 has rank 4.

The largest possible rank is 4. By the first boxed
result on page 48, the rank of a matrix equals
the number of its pivot columns. Clearly a 7 x 4
matrix can have at most 4 pivot columns.

The smallest possible nullity is 3. Note that if
the rank of a 4 x 7 matrix A equals 4, then its
nullity is 7 — rank A = 7 — 4 = 3. On the other
hand, from the solution to Exercise 75, we see
that rank A < 4. So

nullity A=7—rank A >7—-4=3.

The smallest possible nullity is 0. The solution
is similar to that of Exercise 77.
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79.

80.

81.

82.

83.

84.

85.

86.
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The largest possible rank is the minimum of m
and n. If m < n, the solution is similar to that
of Exercise 75. If n < m, the solution is similar
to that of Exercise 76.

The smallest possible nullity is n — m if m <n
and 0 if m > n. By Exercise 79, the rank of a
matrix A equals the minimum p of m and n. So
nullity A = n —rank A = n — p. If m <n, then
p = m, so nullity A = n —m. If n < m, then
p = n; so nullity A = 0.

No. Let R be the reduced row echelon form of A.
By Exercise 79, rank A < 3; so R has a zero row.
Thus we can choose ¢ so that [R c] has a row
equal to [0 0 0 1]. By appropriate elementary
row operations, we can transform [R c] into a
matrix of the form [A b]. So, by Theorem 1.5,
the system Ax = b is not consistent.

For the solution to be unique, the solution must
have no free variables; so nullity A = 0. There-
fore rank A = n — nullity A = n.

There are either no solutions or infinitely many
solutions. Let the system be Ax = b, and let
R be the reduced row echelon form of A. Each
nonzero row of R corresponds to a basic vari-
able. Since there are fewer equations than vari-
ables, if the system is consistent, there must be
free variables. Therefore the system is either
inconsistent or has infinitely many solutions.

1+ T2 =2 1+ x2=3
(a) 1 + 22 =3 (b) 221 + 22 =14
r1+x0=4 3x1 +x2 =5
1+ x2=3
(¢) 221 + 222 =6
3x1 + 312 =9

Let [R c] denote the reduced row echelon form
of [A b]. Then R is the reduced row echelon
form of A. If rank A = m, then R contains
no nonzero rows. Hence [R c] contains no row
in which the only nonzero entry lies in the last
column. So Ax = b is consistent for every b by
Theorem 1.5.

Let [R c] denote the reduced row echelon form
of [A b]. Then R is the reduced row echelon
form of A. If Ax = b is inconsistent, then [R c]
contains the row [0 0 0 1]. The corre-
sponding row of R is a zero row, and every other
nonzero row of [R c] corresponds to a nonzero
row of R. Thus rank [A b] = 1+4rank A; so the
ranks of [A b] and A are not equal.

Conversely, the reduced row echelon form of A
equals the reduced row echelon form of [A b]
with its last column removed. Thus if the ranks

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.
97.

1.5

of these matrices are not equal, we must have
rank [A b] = 1+rank A. This can happen only
if [R c] contains the row [0 0 0 1]. So
the matrix equation Ax = b is inconsistent.
Yes, A(cu) = c¢(Au) =
solution of Ax = 0.

Yes, A(lu+v) =Au+Av=0+0=0;s0u+v
is a solution of Ax = 0.

We have A(u—v)=Au—-Av=b—-b=0; so
u — v is a solution of Ax = 0.

We have A(u+v) =Au+ Av=Db+ 0 =Db; so
u + v is a solution of Ax = b.

c-0 =20;so0cuis a

If Ax = b is consistent, then there exists a vec-
tor u such that Au = b. So A(cu) = ¢(Au) =
cb. Hence cu is a solution of Ax = cb, and
therefore Ax = cb is consistent.

As in Exercise 87, there exist vectors u; and us
such that Au; = b; and Aus = bs. Therefore
A(ur + u2) = Au; + Auz = by + ba. Hence
Ax = by + by is consistent.

No. If u + v were a solution of Ax = b, then
b=A(u+v)=Au+ Av=D>b+b = 2b;

so b = 0. Therefore the result is not true if
b #£ 0.

1 = 4.9927 4+ 1.1805x4 + 8.5341xs

To = 7.1567 + 3.05137w4 + 15.3103x5

T3 = —2.5738 + 5.2366x4 + 15.1360x5

xs4 free

x5 free

xr1 = 2.32+4 0.32z5
r9 = —6.44 + 0.56x5

3= 0.72 — 0.28z5
T4 = 5.92 + 0.92:135
x5 free

The system is not consistent.

3,2 98. 5,0 99. 4,1

APPLICATIONS OF SYSTEMS OF
LINEAR EQUATIONS

True 2. True

False, the net production vector is x — Cx. The
vector Cx is the total output of the economy
that is consumed during the production process.

False, see Kirchoff’s voltage law.
True 6. True
$50(.22) = $11 million






