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Chapter 1

Matrices, Vectors, and
Systems of Linear

Equations

1.1 MATRICES AND VECTORS

1.

»
8 −4 20

12 16 4

–
2.

»
−2 1 −5
−3 −4 −1

–
3.

»
6 −4 24
8 10 −4

–
4.

»
8 −3 11

13 18 11

–

5.

24 2 4
0 6

−4 8

35 6.

24 4 7
−1 10

1 9

35
7.

»
3 −1 3
5 7 5

–
8.

24 4 7
−1 10

1 9

35
9.

24 2 3
−1 4

5 1

35 10.

»
1 −1 7
1 1 −3

–

11.

24−1 −2
0 −3
2 −4

35 12.

24−1 −2
0 −3
2 −4

35

13.

»
−3 1 −2 −4
−1 −5 6 2

–
14.

2664
−12 0

6 15
−3 −9

0 6

3775
15.

»
−6 2 −4 −8
−2 −10 12 4

–
16.

»
−8 4 −2 −0

0 10 −6 4

–
17. not possible

18.

»
7 −3 3 4
1 0 −3 −4

–
19.

2664
7 1

−3 0
3 −3
4 −4

3775
20.

»
1 1 4 12
3 25 −24 −2

–
21. not possible

22.

2664
12 4
−4 20

8 −24
16 −8

3775 23.

2664
−7 −1

3 0
−3 3
−4 4

3775

24.

2664
−7 −1

3 0
−3 3
−4 4

3775 25. −2 26. 0

27.

24 3
0
2π

35 28.

24−2
1.6
5

35 29.

»
2

2e

–

30.

»
0.4
0

–
31. [2 − 3 0.4] 32. [2e 12 0]

33.

24 150

150
√

3
10

35 mph

34. (a) The swimmer’s velocity is u =

»√
2√
2

–
mph.

�
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�
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Figure for Exercise 34(a)
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2 Chapter 1 Matrices, Vectors, and Systems of Linear Equations

(b) The water’s velocity is v =

»
0
1

–
mph. So

the new velocity of the swimmer is

u + v =

» √
2√

2 + 1

–
mph. The correspond-

ing speed is
p

5 + 2
√

2 ≈ 2.798 mph.
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�
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���

67

East

North

............

.............
..............
............ 45◦ x

y

water current

combined
velocity

Figure for Exercise 34(b)

35. (a)

»
150

√
2 + 50

150
√

2

–
mph

(b) 50
p

37 + 6
√

2 ≈ 337.21 mph

36. The three components of the vector represent,
respectively, the average blood pressure, average
pulse rate, and the average cholesterol reading
of the 20 people.

37. True 38. True 39. True

40. False, a scalar multiple of the zero matrix is the
zero matrix.

41. False, the transpose of an m × n matrix is an
n×m matrix.

42. True

43. False, the rows of B are 1× 4 vectors.

44. False, the (3, 4)-entry of a matrix lies in row 3
and column 4.

45. True

46. False, an m× n matrix has mn entries.

47. True 48. True 49. True

50. False, matrices must have the same size to be
equal.

51. True 52. True 53. True

54. True 55. True 56. True

57. Suppose that A and B are m× n matrices.

(a) The jth column of A + B and aj + bj are
m × 1 vectors. The ith component of the
jth column of A + B is the (i, j)-entry of

A+B, which is aij +bij . By definition, the
ith components of aj and bj are aij and
bij , respectively. So the ith component of
aj + bj is also aij + bij . Thus the jth
columns of A + B and aj + bj are equal.

(b) The proof is similar to the proof of (a).

58. Since A is an m×n matrix, 0A is also an m×n
matrix. Because the (i, j)-entry of 0A is 0aij =
0, we see that 0A equals the m×n zero matrix.

59. Since A is an m×n matrix, 1A is also an m×n
matrix. Because the (i, j)-entry of 1A is 1aij =
aij , we see that 1A equals A.

60. Because both A and B are m×n matrices, both
A+B and B +A are m×n matrices. The (i, j)-
entry of A + B is aij + bij , and the (i, j)-entry
of B + A is bij + aij . Since aij + bij = bij + aij

by the commutative property of addition of real
numbers, the (i, j)-entries of A+B and B+A are
equal for all i and j. Thus, since the matrices
A + B and B + A have the same size and all
pairs of corresponding entries are equal, A+B =
B + A.

61. If O is the m × n zero matrix, then both A
and A + O are m × n matrices; so we need
only show they have equal corresponding en-
tries. The (i, j)-entry of A + O is aij + 0 = aij ,
which is the (i, j)-entry of A.

62. The proof is similar to the proof of Exercise 61.

63. The matrices (st)A, tA, and s(tA) are all m×n
matrices; so we need only show that the corre-
sponding entries of (st)A and s(tA) are equal.
The (i, j)-entry of s(tA) is s times the (i, j)-
entry of tA, and so it equals s(taij) = st(aij),
which is the (i, j)-entry of (st)A. Therefore
(st)A = s(tA).

64. The matrices (s+t)A, sA, and tA are m×n ma-
trices. Hence the matrices (s+ t)A and sA+ tA
are m× n matrices; so we need only show they
have equal corresponding entries. The (i, j)-
entry of sA + tA is the sum of the (i, j)-entries
of sA and tA, that is, saij + taij . And the (i, j)-
entry of (s + t)A is (s + t)aij = saij + taij .

65. The matrices (sA)T and sAT are n ×m matri-
ces; so we need only show they have equal corre-
sponding entries. The (i, j)-entry of (sA)T is the
(j, i)-entry of sA, which is saji. The (i, j)-entry
of sAT is the product of s and the (i, j)-entry of
AT , which is also saji.

66. The matrix AT is an n×m matrix; so the ma-
trix (AT )T is an m × n matrix. Thus we need
only show that (AT )T and A have equal corre-
sponding entries. The (i, j)-entry of (AT )T is
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the (j, i)-entry of AT , which in turn is the (i, j)-
entry of A.

67. If i 6= j, then the (i, j)-entry of a square zero
matrix is 0. Because such a matrix is square, it
is a diagonal matrix.

68. If B is a diagonal matrix, then B is square.
Hence cB is square, and the (i, j)-entry of cB
is cbij = c · 0 = 0 if i 6= j. Thus cB is a diagonal
matrix.

69. If B is a diagonal matrix, then B is square. Since
BT is the same size as B in this case, BT is
square. If i 6= j, then the (i, j)-entry of BT is
bji = 0. So BT is a diagonal matrix.

70. Suppose that B and C are n × n diagonal ma-
trices. Then B + C is also an n × n matrix.
Moreover, if i 6= j, the (i, j)-entry of B + C is
bij + cij = 0 + 0 = 0. So B + C is a diagonal
matrix.

71.

»
2 5
5 8

–
and

242 5 6
5 7 8
6 8 4

35
72. Let A be a symmetric matrix. Then A = AT .

So the (i, j)-entry of A equals the (i, j)-entry of
AT , which is the (j, i)-entry of A.

73. Let O be a square zero matrix. The (i, j)-entry

of O is zero, whereas the (i, j)-entry of OT is the
(j, i)-entry of O, which is also zero. So O = OT ,
and hence O is a symmetric matrix.

74. By Theorem 1.2(b), (cB)T = cBT = cB.

75. By Theorem 1.1(a) and Theorem 1.2(a) and (c),
we have

(B+BT )T = BT +(BT )T = BT +B = B+BT .

76. By Theorem 1.2(a), (B + C)T = BT + CT =
B + C.

77. No. Consider

242 5 6
5 7 8
6 8 4

35 and

»
2 6
5 8

–
.

78. Let A be a diagonal matrix. If i 6= j, then aij =
0 and aji = 0 by definition. Also, aij = aji if i =
j. So every entry of A equals the corresponding
entry of AT . Therefore A = AT .

79. The (i, i)-entries must all equal zero. By equat-
ing the (i, i)-entries of AT and −A, we obtain
aii = −aii, and so aii = 0.

80. Take B =

»
0 1

−1 0

–
. If C is any 2 × 2 skew-

symmetric matrix, then CT = −C. Therefore
c12 = −c21. By Exercise 79, c11 = c22 = 0. So

C =

»
0 −c21

c21 0

–
= −c21

»
0 1

−1 0

–
= −c21B.

81. Let A1 = 1
2
(A + AT ) and A2 = 1

2
(A − AT ). It

is easy to show that A = A1 +A2. By Exercises
75 and 74, A1 is symmetric. Also, by Theorem
1.2(b), (a), and (c), we have

AT
2 =

1

2
(A−AT )T =

1

2
[AT − (AT )T ]

=
1

2
(AT −A) = −1

2
(A−AT ) = −A2.

82. (a) Because the (i, i)-entry of A+B is aii+bii,
we have

trace(A + B)

= (a11 + b11) + · · ·+ (ann + bnn)

= (a11 + · · ·+ ann) + (b11 + · · ·+ bnn)

= trace(A) + trace(B).

(b) The proof is similar to the proof of (a).
(c) The proof is similar to the proof of (a).

83. The ith component of ap+bq is api +bqi, which
is nonnegative. Also, the sum of the components
of ap + bq is

(ap1 + bq1) + · · ·+ (apn + bqn)

= a(p1 + · · ·+ pn) + b(q1 + · · ·+ qn)

= a(1) + b(1) = a + b = 1.

84. (a)

266664
6.5 −0.5 −1.9 −2.8
9.6 −2.9 1.5 −3.0

17.4 0.4 −15.5 5.2
−1.0 −3.7 −7.3 17.5

5.2 1.4 3.5 16.8

377775

(b)

266664
−1.3 3.4 −4.0 10.4

3.0 4.9 −2.4 6.6
−3.9 −4.1 9.4 −8.6

1.7 −0.1 −14.5 −0.2
−4.7 4.1 −0.7 −1.8

377775

(c)

2664
3.9 7.4 10.3 −0.1 1.9
0.8 −0.3 −1.1 −2.5 2.3

−2.6 0.2 −7.2 −9.7 2.1
1.6 0.2 0.6 11.6 10.6

3775
1.2 LINEAR COMBINATIONS,

MATRIX-VECTOR PRODUCTS,
AND SPECIAL MATRICES

1.

»
12
14

–
2.

24−5
4
7

35 3.

24 9
0

10

35 4.

»
22
32

–

5.

»
a
b

–
6. [18] 7.

»
22
5

–
8.

24a
b
c

35
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9.

24sa
tb
uc

35 10. [6] 11.

24 2
−6
10

35 12.

24−3
4
2

35
13.

»
−1

6

–
14.

24 3
−1

2

35 15.

»
21
13

–
16.

»
26
9

–

17.
1

2

»√
2 −

√
2√

2
√

2

–
,

1

2

»
−
√

2√
2

–
18.

»
1 0
0 1

–
, e1

19.
1

2

»
1 −

√
3√

3 1

–
,

1

2

»
3−

√
3

3
√

3 + 1

–
20.

1

2

»√
3 −1

1
√

3

–
,

1

2

» √
3− 2

1 + 2
√

3

–
21.

1

2

»
−
√

3 1

−1 −
√

3

–
,

1

2

» √
3− 3

3
√

3 + 1

–
22.

−1√
2

»
1 1

−1 1

–
,
−1√

2

»
1

−3

–
23.

»
3
2

–
24.

1

2

»
4
√

3 + 1√
3− 4

–
25.

1

2

»
3−

√
3

3
√

3 + 1

–
26.

1

2

»
2− 5

√
3

2
√

3 + 5

–
27.

1

2

»
3

−3
√

3

–
28.

»√
3

1

–
29.

»
1
1

–
= (1)

»
1
0

–
+ (1)

»
0
1

–
30.

»
1

−1

–
=

1

4

»
4

−4

–
31. not possible

32.

»
1
1

–
= (1)

»
1
0

–
+ (1)

»
0
1

–
33. not possible

34.

»
1
1

–
= (1)

»
1
0

–
+ (−1)

»
0

−1

–
+ 0

»
0
0

–
35.

»
−1
11

–
= 3

»
1
3

–
+ (−2)

»
2

−1

–
36.

»
1
1

–
= 0

»
1
0

–
+ 0

»
0

−1

–
+ (1)

»
1
1

–
37.

»
3
8

–
= 7

»
1
2

–
+ (−2)

»
2
3

–
+ 0

»
−2
−5

–
38.

»
a
b

–
=

„
a + 2b

3

«»
1
1

–
+

„
a− b

3

«»
2

−1

–

39. not possible 40. u = 4

240
1
2

35+ (−2)

24−1
3
0

35
41. u = 0

24 2
−1

2

35+ 1

24 3
−2

1

35+ 0

24−4
1
3

35

42. u = 5

241
0
0

35+ 6

240
1
0

35+ 7

240
0
1

35
43. u = (−4)

241
0
0

35+ (−5)

240
1
0

35+ (−6)

240
0
1

35
44. u = 0

24 1
−1

1

35+ 0

24 0
−2

3

35+ 1

24−1
3
2

35
45. True

46. False. If the coefficients of the linear combina-

tion 3

»
2
2

–
+ (−6)

»
1
1

–
=

»
0
0

–
were positive, the

sum could not equal the zero vector.

47. True 48. True 49. True

50. False, the matrix-vector product of a 2× 3 ma-
trix and a 3× 1 vector is a 2× 1 vector.

51. False, the matrix-vector product is a linear com-
bination of the columns of the matrix.

52. False, the product of a matrix and a standard
vector is a column of the matrix.

53. True

54. False, the matrix-vector product of an m × n
matrix and a vector in Rn yields a vector in
Rm.

55. False, every vector in R2 is a linear combination
of two nonparallel vectors.

56. True

57. False, a standard vector is a vector with a single
component equal to 1 and the others equal to 0.

58. True

59. False, consider A =

»
1 −1

−1 1

–
and u =

»
1
1

–
.

60. True

61. False, Aθu is the vector obtained by rotating u
by a counterclockwise rotation of the angle θ.

62. False, consider A =

»
1 −1

−1 1

–
, u =

»
1
1

–
, and

v =

»
2
2

–
.

63. True 64. True

65. If θ = 0, then Aθ = I2. So Aθv = I2v = v by
Theorem 1.3(h).

66. We have A180◦v =

»
−1 0

0 −1

–
v = −I2v = −v.
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67. Let v =

»
a
b

–
. Then Aθ(Aβv)

=

»
cos θ − sin θ
sin θ cos θ

–„»
cos β − sin β
sin β cos β

– »
a
b

–«

=

»
cos θ − sin θ
sin θ cos θ

– »
a cos β − b sin β
a sin β + b cos β

–

=

»
a cos θ cos β − b cos θ sin β
a sin θ cos β − b sin θ sin β

–
+

»
−a sin θ sin β − b sin θ cos β
a cos θ sin β + b cos θ cos β

–

=

»
a cos (θ + β)− b sin (θ + β)
a sin (θ + β) + b cos (θ + β)

–

= Aθ+βv.

68. Let u =

»
a
b

–
. Then

AT
θ (Aθu)

=

»
cos θ sin θ

− sin θ cos θ

–„»
cos θ − sin θ
sin θ cos θ

– »
a
b

–«

=

»
cos θ sin θ

− sin θ cos θ

– »
a cos θ − b sin θ
a sin θ + b cos θ

–

=

»
a cos2 θ − b sin θ cos θ
−a sin θ cos θ + b sin2 θ

–
+

»
a sin2 θ + b sin θ cos θ
a sin θ cos θ + b cos2 θ

–

=

»
a(sin2 θ + cos2 θ)
b(sin2 θ + cos2 θ)

–
=

»
a
b

–
= u.

Similarly, Aθ(A
T
θ u) = u.

69. (a) As in Example 3, the populations are given

by the entries of A

»
400
300

–
=

»
349
351

–
; so

there will be 349,000 people in the city and
351,000 in the suburbs.

(b) Computing A

»
349
351

–
=

»
307.180
392.820

–
, we see

that there will be 307,180 people in the
city and 392,820 in the suburbs.

70. Au = a

241
4
7

35+ b

242
5
8

35+ c

243
6
9

35

71. Au =

»
−1 0

0 1

– »
a
b

–
=

»
−a

b

–
, the reflection of u

about the y-axis

72. We have

A(Au) = A

„»
−1 0

0 1

– »
a
b

–«
=

»
−1 0

0 1

– »
−a

b

–
=

»
a
b

–
= u.

73. B =

»
1 0
0 −1

–
74. (a) C = A180◦ =

»
−1 0

0 −1

–
(b) We have

A(Cu) =

»
−1 0

0 1

–„»
−1 0

0 −1

– »
a
b

–«
=

»
−1 0

0 1

– »
−a
−b

–
=

»
a
−b

–
.

In a similar fashion, we have C(Au) =»
a
−b

–
= Bu and B(Cu) = C(Bu) = Au.

(c) The first equation shows that reflecting
about the x-axis can be accomplished by
either first rotating by 180◦ and then re-
flecting about the y-axis, or first reflect-
ing about the y-axis and then rotating by
180◦.
The second equation shows that reflecting
about the y-axis may be accomplished ei-
ther by first rotating by 180◦ and then re-
flecting about the x-axis, or first reflect-
ing about the x-axis and then rotating by
180◦.

75. Au =

»
a
0

–
, the projection of u on the x-axis

76. This exercise is similar to Exercise 72.

77. If v =

»
a
0

–
, then Av =

»
1 0
0 0

– »
a
0

–
=

»
a
0

–
= v.

78. B =

»
0 0
0 1

–
79. (a) We have

A(Cu) =

»
1 0
0 0

–„»
−1 0

0 −1

– »
a
b

–«
=

»
1 0
0 0

– »
−a
−b

–
=

»
−a

0

–
,

and

C(Au) =

»
−1 0

0 −1

–„»
1 0
0 0

– »
a
b

–«
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=

»
−1 0

0 −1

– »
a
0

–
=

»
−a

0

–
.

(b) Rotating a vector by 180◦ and then pro-
jecting the result on the x-axis is equiva-
lent to projecting a vector on the x-axis
and then rotating the result by 180◦.

80. The sum of the two linear combinations

au1 + bu2 and cu1 + du2
is

(au1+bu2)+(cu1+du2) = (a+c)u1+(b+d)u2,

which is also a linear combination of u1 and u2.

81. Write v = a1u1 + a2u2 and w = b1u1 + b2u2,
where a1, a2, b1, and b2 are scalars. A linear
combination of v and w has the form

cv + dw = c(a1u1 + a2u2) + d(b1u1 + b2u2)

= (ca1 + db1)u1 + (ca2 + db2)u2,

which is also a linear combination of u1 and u2.

82. The proof is similar to that of Exercise 81.

83. We have

A(cu) = (cu1)a1 + (cu2)a2 + · · ·+ (cun)an

= c(u1a1 + u2a2 + · · ·+ unan) = c(Au).

Similarly, (cA)u = c(Au).

84. We have

(A + B)u = u1(a1 + b1) + · · ·+ un(an + bn)

= u1a1 + u1b1 + · · ·+ unan + unbn

= (u1a1 + · · ·+ unan)

+ (u1b1 + · · ·+ unbn)

= Au + Bu.

85. We have Aej =
0a1 + · · ·+0aj−1 +1aj +0aj+1 + · · ·+0an = aj .

86. Suppose Bw = Aw for all w. Let w = ej . Then
Bej = Aej . From Theorem 1.3(e), it follows
that bj = aj for all j. So B = A.

87. The vector A0 is an m× 1 vector. By definition

A0 = 0a1 + 0a2 + · · ·+ 0an = 0.

88. Every column of O is the m× 1 zero vector. So

Ov = v10 + v20 + · · ·+ vn0 = 0.

89. The jth column of In is ej . So

Inv = v1e1 + v2e2 + · · ·+ vnen = v.

90. Using p =

»
400
300

–
, we compute Ap, A(Ap), . . .

until we have ten vectors. From the final vector,
we see that there will be 155,610 people living in
the city and 544,389 people living in the suburbs
after ten years.

91. (a)

2664
24.6
45.0
26.0

−41.4

3775 (b)

2664
134.1
44.4
7.6

104.8

3775 (c)

2664
128.4
80.6
63.5
25.8

3775

(d)

2664
653.09
399.77
528.23

−394.52

3775

1.3 SYSTEMS OF LINEAR EQUATIONS

1. (a)

»
0 −1 2
1 3 0

–
(b)

»
0 −1 2 0
1 3 0 −1

–

2. (a)
ˆ
2 −1 3

˜
(b)

ˆ
2 −1 3 4

˜

3. (a)

24 1 2
−1 3
−3 4

35 (b)

24 1 2 3
−1 3 2
−3 4 1

35

4. (a)

»
1 0 2 −1
2 −1 0 1

–
(b)

»
1 0 2 −1 3
2 −1 0 1 0

–

5. (a)

24 0 2 −3
−1 1 2

2 0 1

35 (b)

24 0 2 −3 4
−1 1 2 −6

2 0 1 0

35

6. (a)

241 −2 1 7
1 −2 0 10
2 −4 4 8

35
(b)

241 −2 1 7 5
1 −2 0 10 3
2 −4 4 8 7

35
7.

24 0 2 −4 4 2
−2 6 3 −1 1

1 −1 0 2 −3

35
8.

24−3 3 0 −6 9
−2 6 3 −1 1

0 2 −4 4 2

35
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9.

241 −1 0 2 −3
0 4 3 3 −5
0 2 −4 4 2

35
10.

24−2 6 3 −1 1
1 −1 0 2 −3
0 2 −4 4 2

35
11.

24 1 −1 0 2 −3
−2 6 3 −1 1

0 1 −2 2 1

35
12.

24 1 −1 0 2 −3
−2 0 15 −13 −5

0 2 −4 4 2

35
13.

24 1 −1 0 2 −3
−2 6 3 −1 1
−8 26 8 0 6

35
14.

24 1 −1 0 2 −3
−2 6 3 −1 1

2 0 −4 8 −4

35

15.

2664
−2 4 0
−1 1 −1

2 −4 6
−3 2 1

3775 16.

26664
1 −2 0

− 1
2

1
2

− 1
2

2 −4 6
−3 2 1

37775

17.

2664
1 −2 0

−1 1 −1
0 0 6

−3 2 1

3775 18.

2664
1 −2 0

−1 1 −1
2 −4 6
0 −4 1

3775

19.

2664
1 −2 0
2 −4 6

−1 1 −1
−3 2 1

3775 20.

2664
1 −2 0

−3 2 1
2 −4 6

−1 1 −1

3775

21.

2664
1 −2 0

−1 1 −1
2 −4 6

−1 0 3

3775 22.

2664
−1 0 −2
−1 1 −1

2 −4 6
−3 2 1

3775
23. Yes, because 1(1) − 4(−2) + 3(−1) = 6 and

1(−5)− 2(−1) = −3. Alternatively,

»
1 −4 0 3
0 0 1 −2

–2664
1

−2
−5
−1

3775 =

»
6

−3

–
.

24. No, because 1(2) − 4(0) + 3(1) = 5 6= 6. Alter-
natively, if A is the coefficient matrix, and the

given vector is v, then Av =

»
5

−3

–
6=
»

6
−3

–
.

25. No, because the left side of the second equation
yields 1(2)− 2(1) = 0 6= −3. Alternatively,

»
1 −4 0 3
0 0 1 −2

–2664
3
0
2
1

3775 =

»
6
0

–
6=
»

6
−3

–
.

26. Yes, the components of the vector satisfy both
equations. Alternatively, if the given vector is

v, then Av =

»
6

−3

–
.

27. no 28. yes 29. yes 30. yes

31. yes 32. no 33. yes 34. yes

35. no 36. yes 37. no 38. no

39.
x1 = 2 + x2

x2 free
40.

x1 = −4
x2 = 5

41.
x1 = 6 + 2x2

x2 free
42.

x1 = 5 + 4x2

x2 free

43. not consistent 44.
x1 = −6
x2 = 3

45.
x1 = 4 + 2x2

x2 free
x3 = 3

46. not consistent

47.

x1 = 3x4

x2 = 4x4

x3 = −5x4

x4 free

and

2664
x1

x2

x3

x4

3775 = x4

2664
3
4

−5
1

3775

48.

x1 = 9 + x3 − 3x4

x2 = 8 − 2x3 + 5x4

x3 free
x4 free

and

2664
x1

x2

x3

x4

3775 = x3

2664
1

−2
1
0

3775+ x4

2664
−3

5
0
1

3775+

2664
9
8
0
0

3775

49.

x1 free
x2 = −3
x3 = −4
x4 = 5

and

2664
x1

x2

x3

x4

3775 = x1

2664
1
0
0
0

3775+

2664
0

−3
−4

5

3775

50.

x1 = −3 + 2x2

x2 free
x3 = −4
x4 = 5

and

2664
x1

x2

x3

x4

3775 = x2

2664
2
1
0
0

3775+

2664
−3

0
−4

5

3775

51.

x1 = 6 − 3x2 + 2x4

x2 free
x3 = 7 − 4x4

x4 free

and

2664
x1

x2

x3

x4

3775 = x2

2664
−3

1
0
0

3775+ x4

2664
2
0

−4
1

3775+

2664
6
0
7
0

3775
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52.

x1 free
x2 = −4 − 3x4

x3 = 9 − 2x4

x4 free

and

2664
x1

x2

x3

x4

3775 = x1

2664
1
0
0
0

3775+ x4

2664
0

−3
−2

1

3775+

2664
0

−4
9
0

3775
53. not consistent

54.

x1 free
x2 free
x3 = 3x4 − 2x6

x4 free
x5 = x6

x6 free

and

26666664
x1

x2

x3

x4

x5

x6

37777775 = x1

26666664
1
0
0
0
0
0

37777775+ x2

26666664
0
1
0
0
0
0

37777775+ x4

26666664
0
0
3
1
0
0

37777775+ x6

26666664
0
0

−2
0
1
1

37777775
55. All variables are either free or basic, so if there

are k free variables, there must be n − k basic
variables.

56. Because R is in reduced row echelon form, the
leading entry must equal 1, and every other en-
try in the column must be 0. So this column
equals e4.

57. False, the system 0x1+0x2 = 1 has no solutions.

58. False, a system of linear equations has 0, 1, or
infinitely many solutions.

59. True

60. False, the matrix

»
2 0
0 0

–
is in row echelon form.

61. True 62. True

63. False, the matrices

»
2 0
0 0

–
and

»
1 0
0 0

–
are both

row echelon forms for

»
2 0
0 0

–
.

64. True 65. True

66. False, the system

0x1 + 0x2 = 1
0x1 + 0x2 = 0

is inconsistent, but its augmented matrix is»
0 0 1
0 0 0

–
.

67. True 68. True

69. False, the coefficient matrix of a system of m
linear equations in n variables is an m× n ma-
trix.

70. True 71. True 72. True

73. False, multiplying every entry of some row of a
matrix by a nonzero scalar is an elementary row
operation.

74. True

75. False, the system may be inconsistent; consider
0x1 + 0x2 = 1.

76. True

77. If [R c] is in reduced row echelon form, then so
is R. If we apply the same row operations to A
that were applied to [A b] to produce [R c], we
obtain the matrix R. So R is the reduced row
echelon form of A.

78. The row operations that reduce A to R may
be applied to [A 0] and do not affect its last
column. The resulting matrix is [R 0], which is
in reduced row echelon form.

79. If we let 0n be the n × 1 zero vector, then, by
Theorem 1.2(f), A0n = 0. So 0n is a solution
of Ax = 0, and hence Ax = 0 is consistent.

80. Let R be the reduced row echelon form of A.
Then by Exercise 77, [R c] is the reduced row
echelon form of [A b] for some vector c. By
hypothesis, [R c] contains no row whose only
nonzero entry lies in the last column. So the
system Ax = b is consistent.

81. The ranks of the possible reduced row echelon
forms are 0, 1, and 2. Considering each of these

ranks, we see that there are 7 possible reduced
row echelon forms:»
0 0 0
0 0 0

–
,

»
1 ∗ ∗
0 0 0

–
,

»
0 1 ∗
0 0 0

–
,

»
0 0 1
0 0 0

–
,»

1 0 ∗
0 1 ∗

–
,

»
1 ∗ 0
0 0 1

–
, and

»
0 1 0
0 0 1

–
.

82. As in the solution to Exercise 81, there are 11
possible reduced row echelon forms:»
0 0 0 0
0 0 0 0

–
,

»
1 ∗ ∗ ∗
0 0 0 0

–
,

»
0 1 ∗ ∗
0 0 0 0

–
,»

0 0 1 ∗
0 0 0 0

–
,

»
0 0 0 1
0 0 0 0

–
,

»
1 0 ∗ ∗
0 1 ∗ ∗

–
,»

1 ∗ 0 0
0 0 1 ∗

–
,

»
1 ∗ ∗ 0
0 0 0 1

–
,

»
0 1 0 ∗
0 0 1 ∗

–
,»

0 1 ∗ 0
0 0 0 1

–
, and

»
0 0 1 0
0 0 0 1

–
.
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83. There are three cases. If the operation inter-
changes rows i and j of A, then interchanging
rows i and j of B produces A. If the operation
multiplies row i of A by the nonzero scalar c,
then multiplying row i of B by 1

c
produces A.

Finally, if the operation adds k times row i to
row j of A, then adding −k times row i to row
j of B produces A.

84. The system x1 = 1 has only the solution 1, but
the system 0x1 = 0 · 1 has infinitely many solu-
tions.

85. Multiplying the second equation by c produces
a system whose augmented matrix is obtained
from the augmented matrix of the original sys-
tem by the elementary row operation of multi-
plying the second row by c. From the statement
on page 33, the two systems are equivalent.

86. The solution is similar to that of Exercise 85.

1.4 GAUSSIAN ELIMINATION

1.
x1 = −2 − 3x2

x2 free
2.

x1 = 3 + x2

x2 free

3.
x1 = 4
x2 = 5

4.
x1 = 1 + 2x3

x2 = −2 − x3

x3 free

5. not consistent 6.
x1 = 3 + 2x2 + x3

x2 free
x3 free

7.
x1 = −1 + 2x2

x2 free
x3 = 2

8.

x1 = −1 − 4x4

x2 = 3x4

x3 = 1 − 2x4

x4 free

9.

x1 = 1 + 2x3

x2 = −2 − x3

x3 free
x4 = −3

10. not consistent

11.

x1 = −4 − 3x2 + x4

x2 free
x3 = 3 − 2x4

x4 free

12.
x1 = 3 + 2x3

x2 = −4 − 3x3

x3 free

13. not consistent 14. not consistent

15.

x1 = −2 + x5

x2 free
x3 = 3 − 3x5

x4 = −1 − 2x5

x5 free

16.

x1 = −3 + x2 + 2x5

x2 free
x3 free
x4 −1 − 2x5

x5 free

17. The augmented matrix can be transformed to»
−1 4 3

0 r + 12 11

–
using an elementary row op-

eration. Therefore the system is inconsistent if
r + 12 = 0, that is, r = −12.

18. The augmented matrix can be transformed to»
−1 4 6

0 r + 12 16

–
using two elementary row

operations. So the system is inconsistent if
r + 12 = 0, that is, r = −12.

19. The augmented matrix can be transformed to»
1 −2 0
0 0 r

–
. So the system is inconsistent if

r 6= 0.

20. The augmented matrix can be transformed to»
1 0 −3
0 r 0

–
. So the system is inconsistent for

no value of r.

21. The augmented matrix can be transformed to»
1 −3 −2
0 r + 6 0

–
. So the system is inconsistent

for no value of r.

22. The augmented matrix is

»
−2 1 5

r 4 3

–
. Add r

2

times the first row to the second row to obtain»
−2 1 5

0 4 + r
2

3 + 5
2
r

–
. The system is inconsis-

tent if 4 + r
2

= 0 and 3 + 5
2
r 6= 0. So r = −8.

23. The augmented matrix can be transformed to»
−1 r 2

0 r2 − 9 2r + 6

–
. For the system to be

inconsistent, we need r2− 9 = 0 and 2r +6 6= 0.
So r = ±3 and r 6= −3. Therefore r = 3.

24. The argument is similar to that of Exercise 23.
The system is inconsistent if r = −4.

25. The augmented matrix can be transformed to»
1 −1 2 4
0 r + 3 −7 −10

–
. Because this matrix

does not contain a row whose only nonzero en-
try lies in the last column, the system is never
inconsistent.

26. The augmented matrix can be transformed to»
1 2 −4 1
0 0 r − 8 5

–
. If r = 8, then this matrix

contains a row whose only nonzero entry lies in
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the last column, and so the system is inconsis-
tent if r = 8.

27. The augmented matrix can be transformed to»
1 r 5
0 6− 3r s− 15

–
.

(a) We need 6 − 3r = 0 and s − 15 6= 0. So
r = 2 and s 6= 15.

(b) We need 6− 3r 6= 0, that is, r 6= 2.

(c) We need 6 − 3r = 0 and s − 15 = 0. So
r = 2 and s = 15.

28. The augmented matrix can be transformed to»
−1 4 s

0 r + 8 6 + 2s

–
.

(a) We need r + 8 = 0 and 6 + 2s 6= 0. So
r = −8 and s 6= −3.

(b) We need r + 8 6= 0, that is, r 6= −8.

(c) We need r + 8 = 0 and 6 + 2s = 0. So
r = −8 and s = −3.

29. (a) r = −8, s 6= −2 (b) r 6= −8
(c) r = −8, s = −2

30. (a) r = −12, s 6= 2 (b) r 6= −12
(c) r = −12, s = 2

31. (a) r = 5
2
, s 6= −6 (b) r 6= 5

2

(c) r = 5
2
, s = −6

32. (a) r = −2, s 6= −15 (b) r 6= −2
(c) r = −2, s = −15

33. (a) r = 3, s 6= 2
3

(b) r 6= 3

(c) r = 3, s = 2
3

34. (a) r = −2, s 6= 6 (b) r 6= −2
(c) r = −2, s = 6

35. The reduced row echelon form of the matrix is

R =

266664
1 0 0 −2
0 1 0 1
0 0 1 −3
0 0 0 0
0 0 0 0

377775 .

The rank of the given matrix equals the number
of nonzero rows in R, which is 3. The nullity of
the given matrix equals its number of columns
minus its rank, which is 4− 3 = 1.

36. The rank is 2, and the nullity is 2.

37. The rank is 2, and the nullity is 3.

38. The rank is 4, and the nullity is 2.

39. The rank is 3, and the nullity is 1.

40. The rank is 3, and the nullity is 2.

41. The rank is 2, and the nullity is 3.

42. The rank is 3, and the nullity is 3.

43. Let x1, x2, and x3 be the number of days that
mines 1, 2, and 3, respectively, must operate to
supply the desired amounts.

(a) The requirements may be written as the
matrix equation241 1 2

1 2 2
2 1 0

3524x1

x2

x3

35 =

24 80
100
40

35 .

The reduced row echelon form of the aug-
mented matrix of this system is241 0 0 10

0 1 0 20
0 0 1 25

35 .

So x1 = 10, x2 = 20, x3 = 25.
(b) A system of equations similar to that in

(a) yields the reduced row echelon form241 0 0 10
0 1 0 60
0 0 1 −15

35 .

Because x3 = −15 is impossible for this
problem, these amounts cannot be sup-
plied.

44. Let x1, x2, and x3 denote the number of pounds
of the three types of fertilizer, respectively,
needed to satisfy the requirements.

(a) The given requirements yield the system

x1 + x2 + x3 = 600
.10x1 + .08x2 + .06x3 = .075(600)
.03x1 + .06x2 + .01x3 = .05(600).

This system has the solution x1 = −18.75,
x2 = 487.5, and x3 = 131.25. So this mix-
ture is impossible.

(b) A similar approach yields the solution
x1 = 375, x2 = 150, and x3 = 75.

45. Let x1, x2, and x3 be the amounts of the three
supplements, respectively, that must be used.

(a) The given requirements yield the system

10x1 + 15x2 + 36x3 = 660
10x1 + 20x2 + 44x3 = 820
15x1 + 15x2 + 42x3 = 750,

which has the solution

x1 = 18 − 1.2x3

x2 = 32 − 1.6x3

x3 free.

Because the solution must be nonnegative,
we need x3 ≤ 15 and x3 ≤ 20. This yields
a maximum value of x3 = 15.
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(b) No. A similar approach yields an inconsis-
tent system.

46. Let x1, x2, and x3 be the amounts of A, B, and
C, respectively, that must be blended.

(a) The given requirements yield the system

x1 + x2 + x3 = 100
40x1 + 32x2 + 24x3 = 35(100)
30x1 + 62x2 + 94x3 = 50(100),

which has the solution

x1 = 37.5 + x3

x2 = 62.5 − 2x3

x3 free.

Letting x3 = 0, we obtain x1 = 37.5 and
x2 = 62.5.

(b) In order that x1 and x2 be nonnegative, we
need x3 ≥ 0 and 2x3 ≤ 62.5. So we take
x3 = 31.25 for a maximum value of x3.

47. We need f(−1) = 14, f(1) = 4, and f(3) = 10.
These conditions produce the system

a − b + c = 14
a + b + c = 4

9a + 3b + c = 10.

This system has the solution a = 2, b = −5,
c = 7. So f(x) = 2x2 − 5x + 7.

48. f(x) = −3x2 + 8x− 5

49. f(x) = 4x2 − 7x + 2

50. f(x) = −x3 + 6x2 + 4x− 12.

51. Column j is e3. Each pivot column has exactly
one nonzero entry, which is 1, and hence it is a
standard vector. Also because of the definition
of the reduced row echelon form, the sequence
of pivot columns must be e1, e2, . . .. Hence the
third pivot column must be e3.

52. As noted in the solution to Exercise 51, column j
equals e4, and because e1, e2, and e3 are among
the previous columns, it follows that j ≥ 4. Be-
cause the fourth component of column j is 1,
the only nonzero entry, it follows that i = 4.

53. True

54. False. For example, the matrix

»
0 1
2 0

–
can be

reduced to I2 by interchanging its rows and then
multiplying the first row by 1

2
, or by multiply-

ing the second row by 1
2

and then interchanging
rows.

55. True 56. True 57. True 58. True

59. False. By definition, rank A + nullity A equals
the number of columns of A. So, for a 5 × 8
matrix, we have 3 + 2 6= 8.

60. False, we need only repeat one equation to pro-
duce an equivalent system with a different num-
ber of equations.

61. True 62. True 63. True

64. False, the augmented matrix

241 0 2
0 1 3
0 0 0

35 con-

tains a zero row, but the corresponding system
has the unique solution x1 = 2, x3 = 3.

65. False, the augmented matrix

»
0 0 1
0 0 0

–
con-

tains a zero row, but the system is inconsistent.

66. True 67. True

68. False, the sum of the rank and nullity of a matrix
equals the number of columns in the matrix.

69. True 70. True

71. False, the third pivot position in a matrix may
be in any column to the right of column 2.

72. True

73. If the rank of a matrix is 0, then its reduced row
echelon form has only zero rows, which means
that the original matrix must have only zero
rows, and hence must be the zero matrix.

74. The 4× 7 zero matrix has rank 0, and the rank
of any matrix must be nonnegative. Hence the
smallest possible rank is 0.

75. The largest possible rank is 4. The reduced row
echelon form is a 4× 7 matrix and hence has at
most 4 nonzero rows. So the rank must be less
than or equal to 4. On the other hand, the 4×7
matrix whose first four columns are e1, e2, e3,
and e4 has rank 4.

76. The largest possible rank is 4. By the first boxed
result on page 48, the rank of a matrix equals
the number of its pivot columns. Clearly a 7×4
matrix can have at most 4 pivot columns.

77. The smallest possible nullity is 3. Note that if
the rank of a 4 × 7 matrix A equals 4, then its
nullity is 7− rank A = 7− 4 = 3. On the other
hand, from the solution to Exercise 75, we see
that rank A ≤ 4. So

nullity A = 7− rank A ≥ 7− 4 = 3.

78. The smallest possible nullity is 0. The solution
is similar to that of Exercise 77.
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79. The largest possible rank is the minimum of m
and n. If m ≤ n, the solution is similar to that
of Exercise 75. If n ≤ m, the solution is similar
to that of Exercise 76.

80. The smallest possible nullity is n−m if m ≤ n
and 0 if m > n. By Exercise 79, the rank of a
matrix A equals the minimum p of m and n. So
nullity A = n− rank A = n− p. If m ≤ n, then
p = m, so nullity A = n − m. If n < m, then
p = n; so nullity A = 0.

81. No. Let R be the reduced row echelon form of A.
By Exercise 79, rank A ≤ 3; so R has a zero row.
Thus we can choose c so that [R c] has a row
equal to [0 0 0 1]. By appropriate elementary
row operations, we can transform [R c] into a
matrix of the form [A b]. So, by Theorem 1.5,
the system Ax = b is not consistent.

82. For the solution to be unique, the solution must
have no free variables; so nullity A = 0. There-
fore rank A = n− nullity A = n.

83. There are either no solutions or infinitely many
solutions. Let the system be Ax = b, and let
R be the reduced row echelon form of A. Each
nonzero row of R corresponds to a basic vari-
able. Since there are fewer equations than vari-
ables, if the system is consistent, there must be
free variables. Therefore the system is either
inconsistent or has infinitely many solutions.

84. (a)
x1 + x2 = 2
x1 + x2 = 3
x1 + x2 = 4

(b)
x1 + x2 = 3

2x1 + x2 = 4
3x1 + x2 = 5

(c)
x1 + x2 = 3

2x1 + 2x2 = 6
3x1 + 3x2 = 9

85. Let [R c] denote the reduced row echelon form
of [A b]. Then R is the reduced row echelon
form of A. If rank A = m, then R contains
no nonzero rows. Hence [R c] contains no row
in which the only nonzero entry lies in the last
column. So Ax = b is consistent for every b by
Theorem 1.5.

86. Let [R c] denote the reduced row echelon form
of [A b]. Then R is the reduced row echelon
form of A. If Ax = b is inconsistent, then [R c]
contains the row [0 0 . . . 0 1]. The corre-
sponding row of R is a zero row, and every other
nonzero row of [R c] corresponds to a nonzero
row of R. Thus rank [A b] = 1+rank A; so the
ranks of [A b] and A are not equal.

Conversely, the reduced row echelon form of A
equals the reduced row echelon form of [A b]
with its last column removed. Thus if the ranks

of these matrices are not equal, we must have
rank [A b] = 1+ rank A. This can happen only
if [R c] contains the row [0 0 . . . 0 1]. So
the matrix equation Ax = b is inconsistent.

87. Yes, A(cu) = c(Au) = c · 0 = 0; so cu is a
solution of Ax = 0.

88. Yes, A(u+v) = Au+Av = 0+0 = 0; so u+v
is a solution of Ax = 0.

89. We have A(u− v) = Au− Av = b− b = 0; so
u− v is a solution of Ax = 0.

90. We have A(u + v) = Au + Av = b + 0 = b; so
u + v is a solution of Ax = b.

91. If Ax = b is consistent, then there exists a vec-
tor u such that Au = b. So A(cu) = c(Au) =
cb. Hence cu is a solution of Ax = cb, and
therefore Ax = cb is consistent.

92. As in Exercise 87, there exist vectors u1 and u2

such that Au1 = b1 and Au2 = b2. Therefore
A(u1 + u2) = Au1 + Au2 = b1 + b2. Hence
Ax = b1 + b2 is consistent.

93. No. If u + v were a solution of Ax = b, then

b = A(u + v) = Au + Av = b + b = 2b;

so b = 0. Therefore the result is not true if
b 6= 0.

94.

x1 = 4.9927 + 1.1805x4 + 8.5341x5

x2 = 7.1567 + 3.0513x4 + 15.3103x5

x3 = −2.5738 + 5.2366x4 + 15.1360x5

x4 free
x5 free

95.

x1 = 2.32 + 0.32x5

x2 = −6.44 + 0.56x5

x3 = 0.72 − 0.28x5

x4 = 5.92 + 0.92x5

x5 free

96. The system is not consistent.

97. 3, 2 98. 5, 0 99. 4, 1

1.5 APPLICATIONS OF SYSTEMS OF
LINEAR EQUATIONS

1. True 2. True

3. False, the net production vector is x−Cx. The
vector Cx is the total output of the economy
that is consumed during the production process.

4. False, see Kirchoff’s voltage law.

5. True 6. True

7. $50(.22) = $11 million




