INSTRUCTOR'S SOLUTIONS MANUAL

NUMERICAL ANALYSIS THIRD EDITION

Timothy Sauer

George Mason University

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2018, 2012 by Pearson Education, Inc. Publishing as Pearson, 501 Boylston Street, Boston, MA 02116.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

1 17

ISBN-13: 978-0-13-469732-1 ISBN-10: 0-13-469732-4

Table of Contents

Chapter 0: Fundamentals

0.1	Evaluating a Polynomial	1
0.2	Binary Numbers	2
0.3	Floating Point Representation of Real Numbers	8
0.4	Loss of Significance	13
0.5	Review of Calculus	15

Chapter 1: Solving Equations

1.1	The Bisection Method	17
1.2	Fixed-Point Iteration	19
1.3	Limits of Accuracy	24
1.4	Newton's Method	25
1.5	Root-Finding without Derivatives	28

Chapter 2: Systems of Equations

2.1	Gaussian Elimination	31
2.2	The LU Factorization	32
2.3	Sources of Error	35
2.4	The PA=LU Factorization	40
2.5	Iterative Methods	45
2.6	Methods for Symmetric Positive-Definite Matrices	49
2.7	Nonlinear Systems of Equations	57

Chapter 3: Interpolation

63
67
71
75
85

Chapter 4: Least Squares

4.1	Least Squares and the Normal Equations	91
4.2	A Survey of Models	98
4.3	QR Factorization	105
4.4	GMRES Method	115
4.5	Nonlinear Least Squares	121

Chapter 5: Numerical Differentiation and Integration

5.1	Numerical Differentiation	127
5.2	Newton-Cotes Formulas for Numerical Integration	136
5.3	Romberg Integration	146
5.4	Adaptive Quadrature	150
5.5	Gaussian Quadrature	155

Chapter 6: Ordinary Differential Equations

61	Initial Value Problems	159
6.2	Analysis of IVP Solvers	168
6.3	Systems of Ordinary Differential Equations	176
6.4	Runge-Kutta Methods and Applications	182
6.5	Variable Step-Size Methods	192
6.6	Implicit Methods and Stiff Equations	193
6.7	Multistep Methods	195

Chapter 7: Boundary Value Problems

7.1	Shooting Method	207
7.2	Finite Difference Methods	211
7.3	Collocation and the Finite Element Method	220

Chapter 8: Partial Differential Equations

8.1	Parabolic Equations	225
8.2	Hyperbolic Equations	228
8.3	Elliptic Equations	230
8.4	Nonlinear Partial Differential Equations	237

Chapter 9: Random Numbers and Applications

9.1	Random Numbers	239
9.2	Monte Carlo Simulation	242
9.3	Discrete and Continuous Brownian Motion	243
9.4	Stochastic Differential Equations	245

Chapter 10: Trigonometric Interpolation and the FFT

10.1	The Fourier Transform	253
10.2	Trigonometric Interpolation	256
10.3	The FFT and Signal Processing	265

Chapter 11: Compression

11.1	The Discrete Cosine Transform	271
11.2	Two-Dimensional DCT and Image Compression	276
11.3	Huffman Coding	280
11.4	Modified DCT and Audio Compression	284

Chapter 12: Eigenvalues and Singular Values

Power Iteration Methods	293
QR Algorithm	297
Singular Value Decomposition	301
Applications of the SVD	305
	QR Algorithm Singular Value Decomposition

Chapter 13: Optimization

13.1	Unconstrained Optimization without Derivatives	307
13.2	Unconstrained Optimization with Derivatives	309

CHAPTER 0 Fundamentals

EXERCISES 0.1 Evaluating a Polynomial

1 (a) P(x) = 1 + x(1 + x(5 + x(1 + x(6)))). $P(\frac{1}{3}) = 6(\frac{1}{3})^4 + (\frac{1}{3})^3 + 5(\frac{1}{3})^2 + \frac{1}{3} + 1 = 1 + \frac{1}{3}(1 + \frac{1}{3}(5 + \frac{1}{3}(1 + \frac{1}{3}(6)))) = 2$. 1 (b) P(x) = 1 + x(-5 + x(5 + x(4 + x(-3)))) $P(\frac{1}{3}) = -3(\frac{1}{3})^4 + 4(\frac{1}{3})^3 + 5(\frac{1}{3})^2 - 5(\frac{1}{3}) + 1 = 1 + \frac{1}{3}(-5 + \frac{1}{3}(5 + \frac{1}{3}(4 + \frac{1}{3}(-3)))) = 0$ 1 (c) P(x) = 1 + x(0 + x(-1 + x(1 + x(2)))) $P(\frac{1}{3}) = 2(\frac{1}{3})^4 + (\frac{1}{3})^3 - (\frac{1}{3})^2 + 1 = 1 + \frac{1}{3}(0 + \frac{1}{3}(-1 + \frac{1}{3}(1 + \frac{1}{3}(2)))) = 77/81$. 2 (a) $P(x) = 7 + x(-3 + x(-2 + x(6))); P(-\frac{1}{2}) = 7 + (-\frac{1}{2})(-3 + (-\frac{1}{2})(-2 + (-\frac{1}{2})(6))) = 29/4$. 2 (b) P(x) = 1 + x(-3 + x(1 + x(-3 + x(-1 + x(8))))); $P(-\frac{1}{2}) = 1 + (-\frac{1}{2})(-3 + (-\frac{1}{2})(1 + (-\frac{1}{2})(-3 + (-\frac{1}{2})(-2 + (-\frac{1}{2})(8))))) = 45/16$. 2 (c) P(x) = 4 + x(-2 + x(0 + x(0 + x(-2 + x(0 + x(4)))))); $P(-\frac{1}{2}) = 4 + (-\frac{1}{2})(-2 + (-\frac{1}{2})(0 + (-\frac{1}{2})(-2 + (-\frac{1}{2})(0 + (-\frac{1}{2})(3 + (-\frac{1}{2})(0 + (-\frac{1}{2})(4 + (-\frac{1}{2})(4 + (-\frac{1}{2})^2(1)))) = 8$ 3 $P(\frac{1}{2}) = 1 + (\frac{1}{2})^2(2 + (\frac{1}{2})^2(-4 + (\frac{1}{2})^2(1))) = 81/64$. 4 (a) $P(5) = 1 + 5(\frac{1}{2} + (5 - 2)(\frac{1}{2} + (5 - 3)(-\frac{1}{2}))) = -4$ 4 (b) $P(-1) = 1 + (-1)(\frac{1}{2} + (-1 - 2)(\frac{1}{2} + (-1 - 3)(-\frac{1}{2}))) = 8$ 5 (a) $P(\frac{1}{2}) = 4 - \frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (\frac{1}{2} - 2)(3 + (-\frac{1}{2} - 3)(2)))) = 5$ 5 (b) $P(-\frac{1}{2}) = 4 - \frac{1}{2}(4 + (-\frac{1}{2} - 1)(1 + (-\frac{1}{2} - 2)(3 + (-\frac{1}{2} - 3)(2)))) = 41/4$ 6 (a) $P(x) = a_0 + x^5(a_5 + x^5(a_{10} + x^5a_{15}))$. The three multiplications $x^2 = x \cdot x, x^4 = x^2 \cdot x^2, x^5 = x^4 \cdot x$ are needed, together with 3 multiplications and 3 additions.

- **6** (b) $P(x) = x^7(a_7 + x^5(a_{12} + x^5(a_{17} + x^5(a_{22} + x^5a_{27}))))$. The four multiplications $x^2 = x \cdot x, x^4 = x^2 \cdot x^2, x^5 = x^4 \cdot x, x^7 = x^5 \cdot x^2$ are needed, together with 5 multiplications and 4 additions from the nested multiplication. Total of 9 multiplications and 4 additions.
- 7 The degree *n* polynomial with base points is $P(x) = c_1 + (x r_1)(c_2 + (x r_2)(c_3 + (x r_3)(c_4 + \ldots + (x r_n)c_{n+1})))$. The operations needed are *n* multiplications and 2*n* additions.

COMPUTER PROBLEMS 0.1

1 The MATLAB command nest (50, ones (51, 1), 1.00001) gives 51.01275208274999, differing from $(x^{51} - 1)/(x - 1)$ with x = 1.00001 by 4.76×10^{-12} .

2 The command nest (99, (-1). (0:99), 1.00001) gives -0.00050024507964763. The equivalent expression $(1 - x^{100})/(1 + x)$ for x = 1.00001 differs by 1.713×10^{-16} .

EXERCISES 0.2 Binary Numbers

1 (a) $(64)_{10} = (2^6)_{10} = (1000000)_2$ **1 (b)** $(17)_{10} = (16+1)_{10} = (10001)_2$ **1 (c)**

$79 \div 2$	=	39 R 1
$39 \div 2$	=	$19 \mathbf{R} 1$
$19 \div 2$	=	9 R 1
$9 \div 2$	=	4 R 1
$4 \div 2$	=	$2 \mathbf{R} 0$
$2 \div 2$	=	$1 \mathbf{R} 0$
$1 \div 2$	=	0 R 1

Therefore $(79)_{10} = (1001111)_2$. **1 (d)**

$227 \div 2$	=	113 R 1
$113 \div 2$	=	56 R 1
$56 \div 2$	=	28 R 0
$28 \div 2$	=	14 R 0
$14 \div 2$	=	7 R 0
$7 \div 2$	=	3 R 1
$3 \div 2$	=	1 R 1
$1 \div 2$	=	0 R 1

Therefore $(227)_{10} = (11100011)_2$.

2 (a) $(1/8)_{10} = (2^{-3})_{10} = (0.001)_2$ **2 (b)** $(7/8)_{10} = (2^{-1} + 2^{-2} + 2^{-3})_{10} = (0.111)_2$ **2 (c)** $(35/16)_{10} = (2 + 3/16)_{10} = (2 + 1/8 + 1/16)_{10} = (10.0011)_2$

©2018 Pearson Education, Inc.

2 (d)

$$31/64 \times 2 = 31/32 + 0$$

$$31/32 \times 2 = 15/16 + 1$$

$$15/16 \times 2 = 7/8 + 1$$

$$7/8 \times 2 = 3/4 + 1$$

$$3/4 \times 2 = 1/2 + 1$$

$$1/2 \times 2 = 0 + 1$$

Therefore $(31/64)_{10} = (0.011111)_2$.

3 (a) 10.5 = 10 + 0.5. Integer part: $(10)_{10} = (8 + 2)_{10} = (1010)_2$. Fractional part: $(0.5)_{10} = (0.1)_2$, so $(10.5)_{10} = (1010.1)_2$. **3 (b)**

$$\frac{1}{3} \times 2 = \frac{2}{3} + 0$$

$$\frac{2}{3} \times 2 = \frac{1}{3} + 1$$

$$\frac{1}{3} \times 2 = \frac{2}{3} + 0$$

$$\vdots$$

Therefore $(\frac{1}{3})_{10} = (0.\overline{01})_2$. **3 (c)**

$$\frac{5}{7} \times 2 = \frac{3}{7} + 1$$
$$\frac{3}{7} \times 2 = \frac{6}{7} + 0$$
$$\frac{6}{7} \times 2 = \frac{5}{7} + 1$$
$$\frac{5}{7} \times 2 = \frac{3}{7} + 1$$
$$\frac{3}{7} \times 2 = \frac{6}{7} + 0$$
$$\vdots$$

Therefore $(\frac{5}{7})_{10} = (0.\overline{101})_2$.

C 2018 Pearson Education, Inc. 3

3 (d) $(12.8)_{10} = (12)_{10} + (0.8)_{10}; (12)_{10} = (1100)_2.$

 $\begin{array}{rcrcrcrc} 0.8\times 2 &=& 0.6+1\\ 0.6\times 2 &=& 0.2+1\\ 0.2\times 2 &=& 0.4+0\\ 0.4\times 2 &=& 0.8+0\\ 0.8\times 2 &=& 0.6+1\\ &\vdots \end{array}$

Therefore $(12.8)_{10} = (1100.\overline{1100})_2$. **3 (e)** $(55.4)_{10} = (55)_{10} + (0.4)_{10}; (55)_{10} = (32 + 16 + 4 + 2 + 1)_{10} = (110111)_2$.

 $\begin{array}{rcrcrcrc} 0.4 \times 2 & = & 0.8 + 0 \\ 0.8 \times 2 & = & 0.6 + 1 \\ 0.6 \times 2 & = & 0.2 + 1 \\ 0.2 \times 2 & = & 0.4 + 0 \\ 0.4 \times 2 & = & 0.8 + 0 \\ & \vdots \end{array}$

Therefore $(55.4)_{10} = (110111.\overline{0110})_2$. **3 (f)**

0.1×2	=	0.2 + 0
0.2×2	=	0.4 + 0
0.4×2	=	0.8 + 0
0.8×2	=	0.6 + 1
0.6×2	=	0.2 + 1
0.2×2	=	0.4 + 0
	÷	

Therefore $(0.1)_{10} = (0.0\overline{0011})_2$.

4 (a) 11.25 = 11 + 0.25. Integer part: $(11)_{10} = (8 + 2 + 1)_{10} = (1011)_2$. Fractional part: $(0.25)_{10} = (0.01)_2$, so $(10.25)_{10} = (1011.01)_2$.

4 (b)

$$\frac{2}{3} \times 2 = \frac{1}{3} + 1$$
$$\frac{1}{3} \times 2 = \frac{2}{3} + 0$$
$$\frac{2}{3} \times 2 = \frac{1}{3} + 1$$
$$\vdots$$

Therefore $(\frac{2}{3})_{10} = (0.\overline{10})_2$. 4 (c)

$$\frac{\frac{3}{5} \times 2}{\frac{1}{5} \times 2} = \frac{1}{5} + 1$$
$$\frac{\frac{1}{5} \times 2}{\frac{1}{5} \times 2} = \frac{2}{5} + 0$$
$$\frac{\frac{2}{5} \times 2}{\frac{1}{5} \times 2} = \frac{\frac{4}{5} + 0}{\frac{3}{5} \times 2} = \frac{3}{5} + 1$$
$$\frac{3}{5} \times 2 = \frac{1}{5} + 1$$
$$\vdots$$

Therefore $(\frac{3}{5})_{10} = (0.\overline{1001})_2$. **4 (d)** $(3.2)_{10} = (3)_{10} + (0.2)_{10}; (3)_{10} = (11)_2$.

$$\begin{array}{rcrcrcrc} 0.2 \times 2 & = & 0.4 + 0 \\ 0.4 \times 2 & = & 0.8 + 0 \\ 0.8 \times 2 & = & 0.6 + 1 \\ 0.6 \times 2 & = & 0.2 + 1 \\ 0.2 \times 2 & = & 0.4 + 0 \\ & \vdots \end{array}$$

Therefore $(3.2)_{10} = (11.\overline{0011})_2$.

(c) 2018 Pearson Education, Inc. 5

4 (e) $(30.6)_{10} = (30)_{10} + (0.6)_{10}; (30)_{10} = (16 + 8 + 4 + 2)_{10} = (11110)_2.$ $0.6 \times 2 = 0.2 + 1$ $0.2 \times 2 = 0.4 + 0$ $0.4 \times 2 = 0.8 + 0$ $0.8 \times 2 = 0.6 + 1$ $0.6 \times 2 = 0.2 + 1$ \vdots

Therefore $(30.6)_{10} = (11110.\overline{1001})_2$.

4 (f)
$$(99.9)_{10} = (99)_{10} + (0.9)_{10}; (99)_{10} = (64 + 32 + 2 + 1)_{10} = (1100011)_2.$$

 $\begin{array}{rcl} 0.9 \times 2 &=& 0.8 + 1 \\ 0.8 \times 2 &=& 0.6 + 1 \\ 0.6 \times 2 &=& 0.2 + 1 \\ 0.2 \times 2 &=& 0.4 + 0 \\ 0.4 \times 2 &=& 0.8 + 0 \\ 0.8 \times 2 &=& 0.6 + 1 \\ &\vdots \end{array}$

Therefore $(99.9)_{10} = (1100011.1\overline{1100})_2$.

5 $(\pi)_{10} = (3)_{10} + (\pi - 3)_{10}$

0.14159265×2	=	0.28318531 + 0
0.28318531×2	=	0.56637061 + 0
0.56637061×2	=	0.13274123 + 1
0.13274123×2	=	0.26548246 + 0
0.26548246×2	=	0.53096491 + 0
0.53096491×2	=	0.06192983 + 1
0.06192983×2	=	0.12385966 + 0
0.12385966×2	=	0.24771932 + 0
0.24771932×2	=	0.49543864 + 0
0.49543864×2	=	0.99087728 + 0
0.99087728×2	=	0.98175455 + 1
0.98175455×2	=	0.96350910 + 1
0.96350910×2	=	0.92701821 + 1
	÷	

©2018 Pearson Education, Inc.

Therefore $(\pi)_{10} = (11.0010010000111...)_2$.

6 $(e)_{10} = (2)_{10} + (e-2)_{10}$

Therefore $(e)_{10} = (10.1011011111100...)_2$.

- **7 (a)** $(1010101)_2 = (2^0 + 2^2 + 2^4 + 2^6)_{10} = (1 + 4 + 16 + 64)_{10} = (85)_{10}$
- **7 (b)** $(1011.101)_2 = (2^3 + 2^1 + 2^0 + 2^{-1} + 2^{-3})_{10} = (11 + \frac{1}{2} + \frac{1}{8})_{10} = (93/8)_{10}.$
- **7 (c)** $(10111.\overline{01})_2 = (2^4 + 2^2 + 2^1 + 2^0)_{10} + (0.\overline{01})_2$. Set $x = (0.\overline{01})_2$. Then $2^2x x = (01)_2 = 1$ implies $x = \frac{1}{3}$. Therefore $(10111.\overline{01})_2 = (23 + \frac{1}{3})_{10} = (70/3)_{10}$. 7 (d) $(110.\overline{10})_2 = (2^2 + 2^1)_{10} + (0.\overline{10})_2$. Set $x = (0.\overline{10})_2$. Then $2^2x - x = (10)_2$ implies $x = \frac{2}{3}$.
- Therefore $(110.\overline{10})_2 = (6 + \frac{2}{3})_{10} = (20/3)_{10}$.
- **7 (e)** $(10.\overline{110})_2 = (2)_{10} + (0.\overline{110})_2$. Set $x = (0.\overline{110})_2$. Then $2^3x x = (110)_2 = 6$ implies x = 6/7. Therefore $(10.\overline{110})_2 = (2 + \frac{6}{7})_{10} = (20/7)_{10}$.
- **7 (f)** $(110.1\overline{101})_2 = (6)_{10} + (\frac{1}{2})_{10} + (0.0\overline{101})_2 = (\frac{13}{2} + \frac{x}{2})_{10}$, where $x = (0.\overline{101})_2$. Since $2^3x x = (101)_2 = 5, x = 5/7$. Therefore $(110.1\overline{101})_2 = (\frac{13}{2} + \frac{5}{7}\frac{1}{2})_{10} = (48/7)_{10}$. **7 (g)** $(10.010\overline{1101})_2 = (2)_{10} + (\frac{1}{4})_{10} + \frac{1}{8}(0.\overline{1101})_2$. Set $x = (0.\overline{1101})_2$. Then $2^4x x = (1101)_2 = (1101)$
- 13, implying that $x = \frac{13}{15}$. Therefore $(10.010\overline{1101})_2 = (\frac{9}{4} + \frac{1}{8}\frac{13}{15})_{10} = (283/120)_{10}$. **7** (h) $(111.\overline{1})_2 = (7)_{10} + (0.\overline{1})_2 = (7)_{10} + x$, where $x = (0.\overline{1})_2$. Since $2^1x x = (1)_2$, x = 1,
- and $(111.\overline{1})_2 = (7+1)_{10} = (8)_{10}$.
- **8 (a)** $(11011)_2 = (2^0 + 2^1 + 2^3 + 2^4)_{10} = (1 + 2 + 8 + 16)_{10} = (27)_{10}$ **8 (b)** $(110111.001)_2 = (2^5 + 2^4 + 2^2 + 2^1 + 2^0 + 2^{-3})_{10} = (55 + \frac{1}{8})_{10}.$
- **8** (c) $(111.\overline{001})_2 = (2^2 + 2^1 + 2^0)_{10} + (0.\overline{001})_2$. Set $x = (0.\overline{001})_2$. Then $2^3x x = (001)_2 = 1$ implies x = 1/7. Therefore $(111.\overline{001})_2 = (7 + 1/7)_{10}$.

©2018 Pearson Education, Inc.

- **8 (d)** $(1010.\overline{01})_2 = (2^3 + 2^1)_{10} + (0.\overline{01})_2$. Set $x = (0.\overline{01})_2$. Then $2^2x x = (01)_2$ implies $x = \frac{1}{3}$. Therefore $(1010.\overline{01})_2 = (10 + \frac{1}{3})_{10} = (10 + 1/3)_{10}$.
- **8 (e)** $(10111.1\overline{0101})_2 = (10111.\overline{10})_2 = (2^4 + 2^2 + 2^1 + 2^0)_{10} + (0.\overline{10})_2$. Set $x = (0.\overline{10})_2$. Then $2^2x x = (10)_2 = 2$ implies x = 2/3. Therefore $(10111.1\overline{0101})_2 = (23 + \frac{2}{3})_{10}$.
- 8 (f) $(1111.010\overline{001})_2 = (15)_{10} + (1/4)_{10} + \frac{1}{8}(0.\overline{001})_2 = (15 + 1/4 + \frac{x}{8})_{10}$, where $x = (0.\overline{001})_2$. Since $2^3x - x = (001)_2 = 5$, x = 1/7. Therefore $(1111.010\overline{001})_2 = (15 + 1/4 + \frac{1}{8}\frac{1}{7})_{10} = (15 + 15/56)_{10}$.

EXERCISES 0.3 Floating Point Representation of Real Numbers

- **1 (a)** $(\frac{1}{4})_{10} = (0.01)_2$; fl $(\frac{1}{4}) = +1.0 \times 2^{-2}$.
- **1 (b)** $(\frac{1}{3})_{10} = (0.\overline{01})_2 =$

1 (c) $\binom{3}{(\frac{2}{3})_{10}} = (0.\overline{10})_2 =$

- **1 (d)** $(0.9)_{10} = (0.1\overline{1100})_2 =$

- **2 (a)** $(9.5)_{10} = (1001.1)_2$; fl $(9.5) = 1.0011 \times 2^3$.
- **2 (b)** $(9.6)_{10} = (1001.\overline{1001})_2 = 1.001\overline{1001} \times 2^3 =$

- **2 (c)** $(100.2)_{10} = (1100100.\overline{0011})_2 = 1.100100\overline{0011} \times 2^6 =$

- **2 (d)** $\left(\frac{44}{7}\right)_{10} = (6 + \frac{2}{7})_{10} = (110.\overline{010})_2 =$
- **3** Note that $fl(5) = 1.01 \times 2^2$. Adding 1 as bit 3, 4, ..., 52 of the mantissa will not incur rounding error. These correspond to 2^{-k} for k = 1, 2, ..., 50.
- 4 Note that $fl(19) = 1.0011 \times 2^4$. Adding 1 to bit 52 of the mantissa, corresponding to $19 + 2^{-48}$, will not be rounded away, and so 48 is the largest such k.

5 (a) $1 + (2^{-51} + 2^{-53}) =$

 $\mathbf{fl}(1 + (2^{-51} + 2^{-53})) =$

5 (b) $1 + (2^{-51} + 2^{-52} + 2^{-53}) =$

 $fl(1 + (2^{-51} + 2^{-52} + 2^{-53})) =$

ing to Nearest Rule. Therefore $fl((1 + (2^{-51} + 2^{-52} + 2^{-53})) - 1) =$

6 (a) $1 + (2^{-51} + 2^{-52} + 2^{-54})$

 $\mathrm{fl}(1 + \overline{(2^{-51} + 2^{-52} + 2^{-54}))} =$

 $= 2^{-51} + 2^{-52} = 3\epsilon_{\text{mach}}.$

6 (b) $1 + (2^{-51} + 2^{-52} + 2^{-60}) =$

 $fl(1 + (2^{-51} + 2^{-52} + 2^{-60})) =$

```
= 2^{-51} + 2^{-52} = 3\epsilon_{\text{mach.}}
```

7 (a) $(8)_{10} = (1000.)_2 = 1.0 \times 2^3$. The biased exponent is 3+1023 = 1026, which is $2^{10}+2$. The sign is 0 (positive), so the sign/exponent is represented by the binary string 0100 0000 0010. The mantissa is 52 zeros, so the machine representation is the 64 bits

7 (b) $(21)_{10} = (10101.)_2 = 1.0101 \times 2^4$. The biased exponent is $4 + 1023 = 1027 = 2^{10} + 3$, represented by 100 0000 0011. The machine representation is

or 403500000000000 in hex format.

7 (c) $(1/8)_{10} = 1.0 \times 2^{-3}$. The biased exponent is $-3 + 1023 = 1020 = 2^{10} - 4$, represented by 011 1111 1100. The machine representation is

7 (d) $(1/3)_{10} = 1.\overline{01} \times 2^{-2}$, and after rounding down, fl $(1/3) = 1.0101...0101 \times 2^{-2}$. The biased exponent is $-2 + 1023 = 1021 = 2^{10} - 3$, represented by 011 1111 1101. The machine representation is

7 (e) $(2/3)_{10} = 1.\overline{01} \times 2^{-1}$, and after rounding down, $fl(1/3) = 1.0101 \dots 0101 \times 2^{-1}$. The biased exponent is $-1 + 1023 = 1022 = 2^{10} - 2$, represented by 011 1111 1110. The machine representation is

7 (f) $(0.1)_{10} = 1.\overline{1001} \times 2^{-4}$, and after rounding up, fl $(0.1) = 1.1001...10011010 \times 2^{-4}$. The biased exponent is $-4 + 1023 = 1019 = 2^{10} - 5$, represented by 01111111011. The machine representation is

7 (g) $(-0.1)_{10} = -1.\overline{1001} \times 2^{-4}$, and after rounding, $fl(-0.1) = -1.1001 \dots 1001 \ 1010 \times 2^{-4}$. The biased exponent is $-4 + 1023 = 1019 = 2^{10} - 5$, represented by 011 1111 1011. The machine representation is

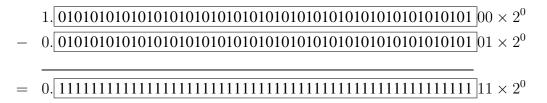
7 (h) $(-0.2)_{10} = -1.\overline{1001} \times 2^{-3}$, and after rounding, $fl(-0.2) = -1.1001...10011010 \times 2^{-3}$. The biased exponent is $-3 + 1023 = 1020 = 2^{10} - 4$, represented by 011 1111 1100. The machine representation is

- 8 Yes. Yes. No, under chopping, $1/3 + 2/3 = 1 \epsilon_{\text{mach}}$.
- **9 (a)** $(7/3)_{10} = 1.00\overline{10} \times 2^1$, and after rounding, $fl(7/3) = 1.0010 \dots 1010 \ 1011 \times 2^1$. $(4/3)_{10} = 1.0\overline{01} \times 2^0$, and after rounding, $fl(4/3) = 1.01 \dots 0101 \ 0101 \times 2^0$. Subtracting gives

that is normalized to

which is $1 + \epsilon_{mach}$. After subtracting 1, the result is that the double precision floating point version of (7/3 - 4/3) - 1 is ϵ_{mach} .

9 (b) $(4/3)_{10} = 1.\overline{01} \times 2^0$, and after rounding, $fl(4/3) = 1.01...0101\ 0101 \times 2^0$. $(1/3)_{10} =$ $1.\overline{01} \times 2^{-2}$, and after rounding, fl(1/3) = $1.01 \dots 0101 \ 0101 \times 2^{-2}$. Subtracting gives



that normalizes to

and rounds to

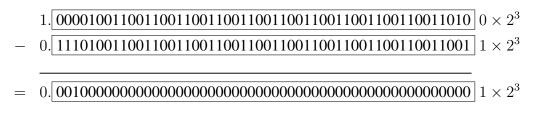
which is 1.0×2^0 . After subtracting 1, the result is machine zero, not ϵ_{mach} .

10 (a) No. **10 (b)** Yes.

- **11** The associative law of addition fails for floating point addition with the Rounding to Nearest Rule, for example, because $1 + (\epsilon_{mach}/2 + \epsilon_{mach}/2) = 1 + \epsilon_{mach} > 1$, while $(1 + \epsilon_{mach}/2) + \epsilon_{mach}/2$ $\epsilon_{\text{mach}}/2 = 1$, because $1 + \epsilon_{\text{mach}}/2 = 1$.
- **12 (a)** fl $(1/3) = 1.0101 \dots 01 \times 2^{-2}$, with relative rounding error of $2^{-54} < \epsilon_{\text{mach}}/2 = 2^{-53}$.
- **12 (b)** fl $(3.3) = 1.101001100110 \dots 0110 \times 2^1$, $3.3 \text{fl}(3.3) = 0.4 \times 2^{-51}$ with relative rounding error of $8\epsilon_{mach}/33$.
- **12 (c)** fl $(9/7) = 1.010010 \dots 0100101 \times 2^0$, fl $(9/7) 9/7 = 3\epsilon_{\text{mach}}/7$, with relative rounding error of $\epsilon_{mach}/3$.
- **13** (a) 2, represented by 010...0 (b) 2^{-511} , represented by 0010...0 (c) 0, represented by 10...0. When bit 4 through 12 is the nonzero bit, the floating point number is positive but less than 2^{-511} . When bit 13 through 64 is the nonzero bit, the number is positive and subnormal, so less than 2^{-511} .

```
14 (a) 0 (b) 2^{-51} (c) 2^{-51}
```

15(a) $(8.3)_{10} = 1.0000\overline{1001} \times 2^3$, and rounded, $fl(8.3) = 1.0000\ 1001\ 1001\ \dots\ 1001\ 1010 \times 2^3$. $(7.3)_{10} = 1.110\overline{1001} \times 2^2$, and rounded, fl $(7.3) = 1.1101\ 0011\ 0011\ \dots\ 0011\ 0011 \times 2^2$. Subtracting gives



that is normalized to

which is $1 + 2^{-50}$. After subtracting 1, the result is that the double precision floating point version of (8.3 - 7.3) - 1 is 2^{-50} .

15(b) $(8.4)_{10} = 1.000\overline{0110} \times 2^3$, and rounded, $fl(8.4) = 1.0000\ 1100\ 1100\ \dots\ 1100\ 1101 \times 2^3$. $(7.4)_{10} = 1.11\overline{0110} \times 2^2$, and rounded, fl $(7.4) = 1.1101\ 1001\ 1001\ \dots\ 1001\ 1010 \times 2^2$. Subtracting gives

which is 1. After subtracting 1, the result is that the double precision floating point version of (8.4 - 7.4) - 1 is 0.

15(c) $(8.8)_{10} = 1.000\overline{1100} \times 2^3$, and rounded, fl $(8.8) = 1.0001\ 1001\ 1.001\ 1.001\ 1010 \times 2^3$. $(7.8)_{10} = 1.11\overline{1100} \times 2^2$, and rounded, fl $(7.8) = 1.1111\ 0011\ 0011\ ...\ 0011\ 0011 \times 2^2$. Subtracting gives

	1. 00011001100110011001100110011001100110
_	0. 11111001100110011001100110011001100110
=	0. 0010000000000000000000000000000000000

that is normalized to

which is $1 + 2^{-50}$. After subtracting 1, the result is that the double precision floating point version of (8.8 - 7.8) - 1 is 2^{-50} .

16 (a) fl $(11/4) = 1.011 \times 2^1$, with rounding error of 0.

- **16 (b)** fl (2.7) = 1.010110011001...100110010 × 2¹, fl (2.7) 2.7 = $4\epsilon_{\text{mach}}/5$ with relative rounding error of $8\epsilon_{\text{mach}}/27$
- **16 (c)** fl $(10/3) = 1.1010 \dots 1011 \times 2^1$, fl $(10/3) 10/3 = 2\epsilon_{\text{mach}}/3$, with relative rounding error of $\epsilon_{\text{mach}}/5$.

EXERCISES 0.4 Loss of Significance

1 (a) For x near $2\pi n$ for integer n, sec $x \approx 1$, and the numerator exhibits subtraction of nearly equal numbers. An algebraically equivalent expression avoids the difficulty:

$$\frac{1-1/\cos x}{\tan^2 x} = \frac{\cos x - 1}{\cos x \tan^2 x}$$
$$= \frac{\cos x - 1}{\sec x \sin^2 x} \cdot \frac{\cos x + 1}{\cos x + 1}$$
$$= \frac{\cos^2 - 1}{\sec x \sin^2 x (\cos x + 1)}$$
$$= -\frac{1}{1 + \sec x}$$

1 (b) For x near 0, the numerator subtracts nearly equal numbers. Simplifying to

$$\frac{1 - (1 - x)^3}{x} = \frac{1 - (1 - 3x + 3x^2 - x^3)}{x} = 3 - 3x + x^2$$

eliminates the loss of significance.

1 (c) For x near 0, there is subtraction of nearly equal numbers. Using common denominators eliminates the problem:

$$\frac{1}{1+x} - \frac{1}{1-x} = \frac{1-x-(1+x)}{(1+x)(1-x)} = \frac{2x}{x^2-1}$$

- **2** $-3.000; 7.579 \times 10^{-14}$
- **3** Since *b* is positive, the roots should be calculated as in (0.13):

$$x_1 = -\frac{b + \sqrt{b^2 + 4 \times 10^{-12}}}{2}$$
$$x_2 = \frac{2 \times 10^{-12}}{b + \sqrt{b^2 + 4 \times 10^{-12}}}$$

4 8.5

5 -0.125

COMPUTER PROBLEMS 0.4

x	original	revised
0.100000000000000000000000000000000000	-0.49874791371143	-0.49874791371143
0.010000000000000000000000000000000000	-0.49998749979096	-0.49998749979166
0.001000000000000000000000000000000000	-0.49999987501429	-0.49999987499998
0.00010000000000	-0.4999999362793	-0.49999999875000
0.00001000000000	-0.5000004133685	-0.49999999998750
0.00000100000000	-0.50004445029084	-0.49999999999987
0.0000010000000	-0.51070259132757	-0.500000000000000000000000000000000000
0.0000001000000	0	-0.500000000000000000000000000000000000
0.00000000100000	0	-0.500000000000000000000000000000000000
0.00000000010000	0	-0.500000000000000000000000000000000000
0.0000000001000	0	-0.500000000000000000000000000000000000
0.00000000000100	0	-0.500000000000000000000000000000000000
0.00000000000010	0	-0.500000000000000000000000000000000000
0.00000000000001	0	-0.500000000000000000000000000000000000

1 (a) Compare the original expression to the revised version $-1/(1 + \sec x)$ from Exercise 1(a).

1 (b)	Compare the origina	l expression to the	revised version	$3 - 3x + x^2$	² from Exercise 1(b).
--------------	---------------------	---------------------	-----------------	----------------	----------------------------------

x	original	revised
0.100000000000000000000000000000000000	2.71000000000000000000000000000000000000	2.71000000000000000000000000000000000000
0.010000000000000000000000000000000000	2.9701000000001	2.97010000000000
0.00100000000000	2.99700100000000	2.99700100000000
0.00010000000000	2.99970000999905	2.99970001000000
0.00001000000000	2.99997000008379	2.99997000010000
0.00000100000000	2.99999700015263	2.99999700000100
0.00000010000000	2.99999969866072	2.99999970000001
0.00000001000000	2.99999998176759	2.99999997000000
0.00000000100000	2.99999991515421	2.99999999700000
0.00000000010000	3.00000024822111	2.999999999970000
0.00000000001000	3.00000024822111	2.999999999997000
0.0000000000100	2.99993363483964	2.999999999999700
0.00000000000010	3.00093283556180	2.999999999999970
0.00000000000001	2.99760216648792	2.999999999999997

2 (a) p = 8**2 (b)** p = 5