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CHAPTER 0
Fundamentals

EXERCISES 0.1 Evaluating a Polynomial

1 (a) P (x) = 1 + x(1 + x(5 + x(1 + x(6)))).
P (1

3
) = 6(1

3
)4 + (1

3
)3 + 5(1

3
)2 + 1

3
+ 1 = 1 + 1

3
(1 + 1

3
(5 + 1

3
(1 + 1

3
(6)))) = 2.

1 (b) P (x) = 1 + x(−5 + x(5 + x(4 + x(−3))))
P (1

3
) = −3(1

3
)4 + 4(1

3
)3 + 5(1

3
)2 − 5(1

3
) + 1 = 1 + 1

3
(−5 + 1

3
(5 + 1

3
(4 + 1

3
(−3)))) = 0

1 (c) P (x) = 1 + x(0 + x(−1 + x(1 + x(2))))
P (1

3
) = 2(1

3
)4 + (1

3
)3 − (1

3
)2 + 1 = 1 + 1

3
(0 + 1

3
(−1 + 1

3
(1 + 1

3
(2)))) = 77/81.

2 (a) P (x) = 7+x(−3+x(−2+x(6))); P (−1
2
) = 7+(−1

2
)(−3+(−1

2
)(−2+(−1

2
)(6))) = 29/4.

2 (b) P (x) = 1 + x(−3 + x(1 + x(−3 + x(−1 + x(8)))));
P (−1

2
) = 1 + (−1

2
)(−3 + (−1

2
)(1 + (−1

2
)(−3 + (−1

2
)(−1 + (−1

2
)(8))))) = 45/16.

2 (c) P (x) = 4 + x(−2 + x(0 + x(0 + x(−2 + x(0 + x(4))))));
P (−1

2
) = 4 + (−1

2
)(−2 + (−1

2
)(0 + (−1

2
)(0 + (−1

2
)(−2 + (−1

2
)(0 + (−1

2
)(4)))))) = 79/16.

3 P (1
2
) = 1 + (1

2
)2(2 + (1

2
)2(−4 + (1

2
)2(1))) = 81/64.

4 (a) P (5) = 1 + 5(1
2
+ (5− 2)(1

2
+ (5− 3)(−1

2
))) = −4

4 (b) P (−1) = 1 + (−1)(1
2
+ (−1− 2)(1

2
+ (−1− 3)(−1

2
))) = 8

5 (a) P (1
2
) = 4 + 1

2
(4 + (1

2
− 1)(1 + (1

2
− 2)(3 + (1

2
− 3)(2)))) = 5

5 (b) P (−1
2
) = 4− 1

2
(4 + (−1

2
− 1)(1 + (−1

2
− 2)(3 + (−1

2
− 3)(2)))) = 41/4

6 (a) P (x) = a0 + x5(a5 + x5(a10 + x5a15)). The three multiplications x2 = x · x, x4 =
x2 ·x2, x5 = x4 ·x are needed, together with 3 multiplications and 3 additions from the nested
multiplication. Total of 6 multiplications and 3 additions.

6 (b) P (x) = x7(a7 + x5(a12 + x5(a17 + x5(a22 + x5a27)))). The four multiplications x2 =
x · x, x4 = x2 · x2, x5 = x4 · x, x7 = x5 · x2 are needed, together with 5 multiplications and 4
additions from the nested multiplication. Total of 9 multiplications and 4 additions.

7 The degree n polynomial with base points is P (x) = c1 + (x − r1)(c2 + (x − r2)(c3 + (x −
r3)(c4 + . . .+ (x− rn)cn+1))). The operations needed are n multiplications and 2n additions.

COMPUTER PROBLEMS 0.1

1 The MATLAB command nest(50,ones(51,1),1.00001) gives 51.01275208274999,
differing from (x51 − 1)/(x− 1) with x = 1.00001 by 4.76× 10−12.

c©2018 Pearson Education, Inc.
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2 The command nest(99,(-1).ˆ(0:99),1.00001) gives−0.00050024507964763. The
equivalent expression (1− x100)/(1 + x) for x = 1.00001 differs by 1.713× 10−16.

EXERCISES 0.2 Binary Numbers

1 (a) (64)10 = (26)10 = (1000000)2
1 (b) (17)10 = (16 + 1)10 = (10001)2
1 (c)

79÷ 2 = 39 R 1

39÷ 2 = 19 R 1

19÷ 2 = 9 R 1

9÷ 2 = 4 R 1

4÷ 2 = 2 R 0

2÷ 2 = 1 R 0

1÷ 2 = 0 R 1

Therefore (79)10 = (1001111)2.
1 (d)

227÷ 2 = 113 R 1

113÷ 2 = 56 R 1

56÷ 2 = 28 R 0

28÷ 2 = 14 R 0

14÷ 2 = 7 R 0

7÷ 2 = 3 R 1

3÷ 2 = 1 R 1

1÷ 2 = 0 R 1

Therefore (227)10 = (11100011)2.

2 (a) (1/8)10 = (2−3)10 = (0.001)2
2 (b) (7/8)10 = (2−1 + 2−2 + 2−3)10 = (0.111)2
2 (c) (35/16)10 = (2 + 3/16)10 = (2 + 1/8 + 1/16)10 = (10.0011)2

c©2018 Pearson Education, Inc.
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2 (d)

31/64× 2 = 31/32 + 0

31/32× 2 = 15/16 + 1

15/16× 2 = 7/8 + 1

7/8× 2 = 3/4 + 1

3/4× 2 = 1/2 + 1

1/2× 2 = 0 + 1

Therefore (31/64)10 = (0.011111)2.

3 (a) 10.5 = 10 + 0.5. Integer part: (10)10 = (8 + 2)10 = (1010)2. Fractional part: (0.5)10 =
(0.1)2, so (10.5)10 = (1010.1)2.

3 (b)

1

3
× 2 =

2

3
+ 0

2

3
× 2 =

1

3
+ 1

1

3
× 2 =

2

3
+ 0

...

Therefore (1
3
)10 = (0.01)2.

3 (c)

5

7
× 2 =

3

7
+ 1

3

7
× 2 =

6

7
+ 0

6

7
× 2 =

5

7
+ 1

5

7
× 2 =

3

7
+ 1

3

7
× 2 =

6

7
+ 0

...

Therefore (5
7
)10 = (0.101)2.
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3 (d) (12.8)10 = (12)10 + (0.8)10; (12)10 = (1100)2.

0.8× 2 = 0.6 + 1

0.6× 2 = 0.2 + 1

0.2× 2 = 0.4 + 0

0.4× 2 = 0.8 + 0

0.8× 2 = 0.6 + 1
...

Therefore (12.8)10 = (1100.1100)2.
3 (e) (55.4)10 = (55)10 + (0.4)10; (55)10 = (32 + 16 + 4 + 2 + 1)10 = (110111)2.

0.4× 2 = 0.8 + 0

0.8× 2 = 0.6 + 1

0.6× 2 = 0.2 + 1

0.2× 2 = 0.4 + 0

0.4× 2 = 0.8 + 0
...

Therefore (55.4)10 = (110111.0110)2.
3 (f)

0.1× 2 = 0.2 + 0

0.2× 2 = 0.4 + 0

0.4× 2 = 0.8 + 0

0.8× 2 = 0.6 + 1

0.6× 2 = 0.2 + 1

0.2× 2 = 0.4 + 0
...

Therefore (0.1)10 = (0.00011)2.

4 (a) 11.25 = 11 + 0.25. Integer part: (11)10 = (8 + 2 + 1)10 = (1011)2. Fractional part:
(0.25)10 = (0.01)2, so (10.25)10 = (1011.01)2.

c©2018 Pearson Education, Inc.
4



4 (b)

2

3
× 2 =

1

3
+ 1

1

3
× 2 =

2

3
+ 0

2

3
× 2 =

1

3
+ 1

...

Therefore (2
3
)10 = (0.10)2.

4 (c)

3

5
× 2 =

1

5
+ 1

1

5
× 2 =

2

5
+ 0

2

5
× 2 =

4

5
+ 0

4

5
× 2 =

3

5
+ 1

3

5
× 2 =

1

5
+ 1

...

Therefore (3
5
)10 = (0.1001)2.

4 (d) (3.2)10 = (3)10 + (0.2)10; (3)10 = (11)2.

0.2× 2 = 0.4 + 0

0.4× 2 = 0.8 + 0

0.8× 2 = 0.6 + 1

0.6× 2 = 0.2 + 1

0.2× 2 = 0.4 + 0
...

Therefore (3.2)10 = (11.0011)2.

c©2018 Pearson Education, Inc.
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4 (e) (30.6)10 = (30)10 + (0.6)10; (30)10 = (16 + 8 + 4 + 2)10 = (11110)2.

0.6× 2 = 0.2 + 1

0.2× 2 = 0.4 + 0

0.4× 2 = 0.8 + 0

0.8× 2 = 0.6 + 1

0.6× 2 = 0.2 + 1
...

Therefore (30.6)10 = (11110.1001)2.
4 (f) (99.9)10 = (99)10 + (0.9)10; (99)10 = (64 + 32 + 2 + 1)10 = (1100011)2.

0.9× 2 = 0.8 + 1

0.8× 2 = 0.6 + 1

0.6× 2 = 0.2 + 1

0.2× 2 = 0.4 + 0

0.4× 2 = 0.8 + 0

0.8× 2 = 0.6 + 1
...

Therefore (99.9)10 = (1100011.11100)2.

5 (π)10 = (3)10 + (π − 3)10

0.14159265× 2 = 0.28318531 + 0

0.28318531× 2 = 0.56637061 + 0

0.56637061× 2 = 0.13274123 + 1

0.13274123× 2 = 0.26548246 + 0

0.26548246× 2 = 0.53096491 + 0

0.53096491× 2 = 0.06192983 + 1

0.06192983× 2 = 0.12385966 + 0

0.12385966× 2 = 0.24771932 + 0

0.24771932× 2 = 0.49543864 + 0

0.49543864× 2 = 0.99087728 + 0

0.99087728× 2 = 0.98175455 + 1

0.98175455× 2 = 0.96350910 + 1

0.96350910× 2 = 0.92701821 + 1
...

c©2018 Pearson Education, Inc.
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Therefore (π)10 = (11.0010010000111 . . .)2.

6 (e)10 = (2)10 + (e− 2)10

0.71828183× 2 = 0.43656366 + 1

0.43656366× 2 = 0.87312731 + 0

0.87312731× 2 = 0.74625463 + 1

0.74625463× 2 = 0.49250926 + 1

0.49250926× 2 = 0.98501851 + 0

0.98501851× 2 = 0.97003702 + 1

0.97003702× 2 = 0.94007404 + 1

0.94007404× 2 = 0.88014809 + 1

0.88014809× 2 = 0.76029617 + 1

0.76029617× 2 = 0.52059234 + 1

0.52059234× 2 = 0.04118468 + 1

0.04118468× 2 = 0.08236937 + 0

0.08236937× 2 = 0.16473874 + 0
...

Therefore (e)10 = (10.1011011111100 . . .)2.

7 (a) (1010101)2 = (20 + 22 + 24 + 26)10 = (1 + 4 + 16 + 64)10 = (85)10
7 (b) (1011.101)2 = (23 + 21 + 20 + 2−1 + 2−3)10 = (11 + 1

2
+ 1

8
)10 = (93/8)10.

7 (c) (10111.01)2 = (24+22+21+20)10+(0.01)2. Set x = (0.01)2. Then 22x−x = (01)2 = 1
implies x = 1

3
. Therefore (10111.01)2 = (23 + 1

3
)10 = (70/3)10.

7 (d) (110.10)2 = (22 + 21)10 + (0.10)2. Set x = (0.10)2. Then 22x− x = (10)2 implies x = 2
3
.

Therefore (110.10)2 = (6 + 2
3
)10 = (20/3)10.

7 (e) (10.110)2 = (2)10 + (0.110)2. Set x = (0.110)2. Then 23x − x = (110)2 = 6 implies
x = 6/7. Therefore (10.110)2 = (2 + 6

7
)10 = (20/7)10.

7 (f) (110.1101)2 = (6)10 + (1
2
)10 + (0.0101)2 = (13

2
+ x

2
)10, where x = (0.101)2. Since

23x− x = (101)2 = 5, x = 5/7. Therefore (110.1101)2 = (13
2
+ 5

7
1
2
)10 = (48/7)10.

7 (g) (10.0101101)2 = (2)10+(1
4
)10+

1
8
(0.1101)2. Set x = (0.1101)2. Then 24x−x = (1101)2 =

13, implying that x = 13
15

. Therefore (10.0101101)2 = (9
4
+ 1

8
13
15
)10 = (283/120)10.

7 (h) (111.1)2 = (7)10 + (0.1)2 = (7)10 + x, where x = (0.1)2. Since 21x − x = (1)2, x = 1,
and (111.1)2 = (7 + 1)10 = (8)10.

8 (a) (11011)2 = (20 + 21 + 23 + 24)10 = (1 + 2 + 8 + 16)10 = (27)10
8 (b) (110111.001)2 = (25 + 24 + 22 + 21 + 20 + 2−3)10 = (55 + 1

8
)10.

8 (c) (111.001)2 = (22 + 21 + 20)10 + (0.001)2. Set x = (0.001)2. Then 23x− x = (001)2 = 1
implies x = 1/7. Therefore (111.001)2 = (7 + 1/7)10.

c©2018 Pearson Education, Inc.
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8 (d) (1010.01)2 = (23+21)10+(0.01)2. Set x = (0.01)2. Then 22x−x = (01)2 implies x = 1
3
.

Therefore (1010.01)2 = (10 + 1
3
)10 = (10 + 1/3)10.

8 (e) (10111.10101)2 = (10111.10)2 = (24 + 22 + 21 + 20)10 + (0.10)2. Set x = (0.10)2. Then
22x− x = (10)2 = 2 implies x = 2/3. Therefore (10111.10101)2 = (23 + 2

3
)10.

8 (f) (1111.010001)2 = (15)10 + (1/4)10 +
1
8
(0.001)2 = (15 + 1/4 + x

8
)10, where x = (0.001)2.

Since 23x − x = (001)2 = 5, x = 1/7. Therefore (1111.010001)2 = (15 + 1/4 + 1
8
1
7
)10 =

(15 + 15/56)10.

EXERCISES 0.3 Floating Point Representation of Real Numbers

1 (a) (1
4
)10 = (0.01)2; fl(1

4
) = +1.0× 2−2.

1 (b) (1
3
)10 = (0.01)2 =

+1. 0101010101010101010101010101010101010101010101010101 0101 . . .× 2−2.
The Rounding to Nearest Rule says to round down when the 53rd bit is 0.
fl(1

3
) = +1. 0101010101010101010101010101010101010101010101010101 × 2−2.

1 (c) (2
3
)10 = (0.10)2 =

+1. 0101010101010101010101010101010101010101010101010101 0101 . . .× 2−1.
fl(2

3
) = +1. 0101010101010101010101010101010101010101010101010101 × 2−1.

1 (d) (0.9)10 = (0.11100)2 =

+1. 1100110011001100110011001100110011001100110011001100 1100 . . .× 2−1.
The Rounding to Nearest Rule says to round up since the 53rd bit is nonzero, and further bits
are nonzero.
fl(0.9) = +1. 1100110011001100110011001100110011001100110011001101 × 2−1.

2 (a) (9.5)10 = (1001.1)2; fl(9.5) = 1.0011× 23.
2 (b) (9.6)10 = (1001.1001)2 = 1.0011001× 23 =

+1. 0011001100110011001100110011001100110011001100110011 0011 . . .× 23.
fl(9.6) = +1. 0011001100110011001100110011001100110011001100110011 × 23.

2 (c) (100.2)10 = (1100100.0011)2 = 1.1001000011× 26 =

+1. 1001000011001100110011001100110011001100110011001100 1100 . . .× 26.
fl(100.2) = +1. 1001000011001100110011001100110011001100110011001101 × 26.

2 (d)
(
44
7

)
10

= (6 + 2
7
)10 = (110.010)2 =

+1. 1001001001001001001001001001001001001001001001001001 0010 . . .× 22.
fl
(
44
7

)
= +1. 1001001001001001001001001001001001001001001001001001 × 22.

3 Note that fl(5) = 1.01×22. Adding 1 as bit 3, 4, . . . , 52 of the mantissa will not incur rounding
error. These correspond to 2−k for k = 1, 2, . . . , 50.

4 Note that fl(19) = 1.0011×24. Adding 1 to bit 52 of the mantissa, corresponding to 19+2−48,
will not be rounded away, and so 48 is the largest such k.

c©2018 Pearson Education, Inc.
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5 (a) 1 + (2−51 + 2−53) =

+1. 0000000000000000000000000000000000000000000000000010 1× 20.
fl(1 + (2−51 + 2−53)) =

+1. 0000000000000000000000000000000000000000000000000010 ×20, using the Round-
ing to Nearest Rule. Therefore fl((1 + (2−51 + 2−53))− 1) =

. 0000000000000000000000000000000000000000000000000010
= 1. 0000000000000000000000000000000000000000000000000000 × 2−51 = 2−51.

5 (b) 1 + (2−51 + 2−52 + 2−53) =

+1. 0000000000000000000000000000000000000000000000000011 1× 20.
fl(1 + (2−51 + 2−52 + 2−53)) =

+1. 0000000000000000000000000000000000000000000000000100 ×20, using the Round-
ing to Nearest Rule. Therefore fl((1 + (2−51 + 2−52 + 2−53))− 1) =

. 0000000000000000000000000000000000000000000000000100
= 1. 0000000000000000000000000000000000000000000000000000 × 2−50 = 2−50.

6 (a) 1 + (2−51 + 2−52 + 2−54)

= +1. 0000000000000000000000000000000000000000000000000011 01× 20.
fl(1 + (2−51 + 2−52 + 2−54)) =

+1. 0000000000000000000000000000000000000000000000000011 ×20, using the Round-
ing to Nearest Rule. Therefore fl((1 + (2−51 + 2−52 + 2−54))− 1) =

. 0000000000000000000000000000000000000000000000000011 =

1. 1000000000000000000000000000000000000000000000000000 × 2−51

= 2−51 + 2−52 = 3εmach.
6 (b) 1 + (2−51 + 2−52 + 2−60) =

+1. 0000000000000000000000000000000000000000000000000011 00000001× 20.
fl(1 + (2−51 + 2−52 + 2−60)) =

+1. 0000000000000000000000000000000000000000000000000011 ×20, using the Round-
ing to Nearest Rule. Therefore fl((1 + (2−51 + 2−52 + 2−60))− 1) =

. 0000000000000000000000000000000000000000000000000011 =

1. 1000000000000000000000000000000000000000000000000000 × 2−51

= 2−51 + 2−52 = 3εmach.

7 (a) (8)10 = (1000.)2 = 1.0×23. The biased exponent is 3+1023 = 1026, which is 210+2. The
sign is 0 (positive), so the sign/exponent is represented by the binary string 0100 0000 0010.
The mantissa is 52 zeros, so the machine representation is the 64 bits
0100 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

or 4020000000000000 in hex format.
7 (b) (21)10 = (10101.)2 = 1.0101 × 24. The biased exponent is 4 + 1023 = 1027 = 210 + 3,

represented by 100 0000 0011. The machine representation is
0100 0000 0011 0101 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

c©2018 Pearson Education, Inc.
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or 4035000000000000 in hex format.
7 (c) (1/8)10 = 1.0× 2−3. The biased exponent is −3 + 1023 = 1020 = 210 − 4, represented by

011 1111 1100. The machine representation is
0011 1111 1100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

or 3fc0000000000000 in hex format.
7 (d) (1/3)10 = 1.01 × 2−2, and after rounding down, fl(1/3) = 1.0101 . . . 0101 × 2−2. The

biased exponent is−2+1023 = 1021 = 210−3, represented by 011 1111 1101. The machine
representation is
0011 1111 1101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

or 3fd5555555555555 in hex format.
7 (e) (2/3)10 = 1.01 × 2−1, and after rounding down, fl(1/3) = 1.0101 . . . 0101 × 2−1. The

biased exponent is−1+1023 = 1022 = 210−2, represented by 011 1111 1110. The machine
representation is
0011 1111 1110 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101

or 3fe5555555555555 in hex format.
7 (f) (0.1)10 = 1.1001× 2−4, and after rounding up, fl(0.1) = 1.1001 . . . 1001 1010× 2−4. The

biased exponent is−4+1023 = 1019 = 210−5, represented by 011 1111 1011. The machine
representation is
0011 1111 1011 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

or 3fb999999999999a in hex format.
7 (g) (−0.1)10 = −1.1001× 2−4, and after rounding, fl(−0.1) = −1.1001 . . . 1001 1010× 2−4.

The biased exponent is −4 + 1023 = 1019 = 210 − 5, represented by 011 1111 1011. The
machine representation is
1011 1111 1011 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

or bfb999999999999a in hex format.
7 (h) (−0.2)10 = −1.1001× 2−3, and after rounding, fl(−0.2) = −1.1001 . . . 1001 1010× 2−3.

The biased exponent is −3 + 1023 = 1020 = 210 − 4, represented by 011 1111 1100. The
machine representation is
1011 1111 1100 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1010

or bfc999999999999a in hex format.

8 Yes. Yes. No, under chopping, 1/3 + 2/3 = 1− εmach.

9 (a) (7/3)10 = 1.0010× 21, and after rounding, fl(7/3) = 1.0010 . . . 1010 1011× 21. (4/3)10 =
1.01× 20, and after rounding, fl(4/3) = 1.01 . . . 0101 0101× 20. Subtracting gives

1. 0010101010101010101010101010101010101010101010101011 0× 21

− 0. 1010101010101010101010101010101010101010101010101010 1× 21

= 0. 1000000000000000000000000000000000000000000000000000 1× 21
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that is normalized to

1. 0000000000000000000000000000000000000000000000000001 × 20,

which is 1 + εmach. After subtracting 1, the result is that the double precision floating point
version of (7/3− 4/3)− 1 is εmach.

9 (b) (4/3)10 = 1.01 × 20, and after rounding, fl(4/3) = 1.01 . . . 0101 0101 × 20. (1/3)10 =
1.01× 2−2, and after rounding, fl(1/3) = 1.01 . . . 0101 0101× 2−2. Subtracting gives

1. 0101010101010101010101010101010101010101010101010101 00× 20

− 0. 0101010101010101010101010101010101010101010101010101 01× 20

= 0. 1111111111111111111111111111111111111111111111111111 11× 20

that normalizes to

1. 1111111111111111111111111111111111111111111111111111 1× 2−1

and rounds to

10. 0000000000000000000000000000000000000000000000000000 × 2−1

which is 1.0× 20. After subtracting 1, the result is machine zero, not εmach.

10 (a) No.
10 (b) Yes.

11 The associative law of addition fails for floating point addition with the Rounding to Nearest
Rule, for example, because 1 + (εmach/2 + εmach/2) = 1 + εmach > 1, while (1 + εmach/2) +
εmach/2 = 1, because 1 + εmach/2 = 1.

12 (a) fl (1/3) = 1.0101 . . . 01× 2−2, with relative rounding error of 2−54 < εmach/2 = 2−53.
12 (b) fl (3.3) = 1.101001100110 . . . 0110×21, 3.3− fl (3.3) = 0.4×2−51 with relative rounding

error of 8εmach/33.
12 (c) fl (9/7) = 1.010010 . . . 0100101 × 20, fl(9/7) − 9/7 = 3εmach/7, with relative rounding

error of εmach/3.

13 (a) 2, represented by 010 . . . 0 (b) 2−511, represented by 0010 . . . 0 (c) 0, represented by 10 . . . 0.
When bit 4 through 12 is the nonzero bit, the floating point number is positive but less than
2−511. When bit 13 through 64 is the nonzero bit, the number is positive and subnormal, so
less than 2−511.

14 (a) 0 (b) 2−51 (c) 2−51
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15(a) (8.3)10 = 1.00001001× 23, and rounded, fl(8.3) = 1.0000 1001 1001 . . . 1001 1010× 23.
(7.3)10 = 1.1101001 × 22, and rounded, fl(7.3) = 1.1101 0011 0011 . . . 0011 0011 × 22.
Subtracting gives

1. 0000100110011001100110011001100110011001100110011010 0× 23

− 0. 1110100110011001100110011001100110011001100110011001 1× 23

= 0. 0010000000000000000000000000000000000000000000000000 1× 23

that is normalized to

= 1. 0000000000000000000000000000000000000000000000000100 × 20,

which is 1 + 2−50. After subtracting 1, the result is that the double precision floating point
version of (8.3− 7.3)− 1 is 2−50.

15(b) (8.4)10 = 1.0000110 × 23, and rounded, fl(8.4) = 1.0000 1100 1100 . . . 1100 1101 × 23.
(7.4)10 = 1.110110 × 22, and rounded, fl(7.4) = 1.1101 1001 1001 . . . 1001 1010 × 22.
Subtracting gives

1. 0000110011001100110011001100110011001100110011001101 × 23

− 0. 1110110011001100110011001100110011001100110011001101 × 23

= 0. 0010000000000000000000000000000000000000000000000000 × 23

which is 1. After subtracting 1, the result is that the double precision floating point version of
(8.4− 7.4)− 1 is 0.

15(c) (8.8)10 = 1.0001100 × 23, and rounded, fl(8.8) = 1.0001 1001 1001 . . . 1001 1010 × 23.
(7.8)10 = 1.111100 × 22, and rounded, fl(7.8) = 1.1111 0011 0011 . . . 0011 0011 × 22.
Subtracting gives

1. 0001100110011001100110011001100110011001100110011010 0× 23

− 0. 1111100110011001100110011001100110011001100110011001 1× 23

= 0. 0010000000000000000000000000000000000000000000000000 1× 23

that is normalized to

= 1. 0000000000000000000000000000000000000000000000000100 × 20,

which is 1 + 2−50. After subtracting 1, the result is that the double precision floating point
version of (8.8− 7.8)− 1 is 2−50.
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16 (a) fl (11/4) = 1.011× 21, with rounding error of 0.
16 (b) fl (2.7) = 1.010110011001 . . . 100110010 × 21, fl (2.7) − 2.7 = 4εmach/5 with relative

rounding error of 8εmach/27
16 (c) fl (10/3) = 1.1010 . . . 1011× 21, fl(10/3)− 10/3 = 2εmach/3, with relative rounding error

of εmach/5.

EXERCISES 0.4 Loss of Significance

1 (a) For x near 2πn for integer n, secx ≈ 1, and the numerator exhibits subtraction of nearly
equal numbers. An algebraically equivalent expression avoids the difficulty:

1− 1/ cosx

tan2 x
=

cosx− 1

cosx tan2 x

=
cosx− 1

secx sin2 x
· cosx+ 1

cosx+ 1

=
cos2−1

secx sin2 x(cosx+ 1)

= − 1

1 + sec x

1 (b) For x near 0, the numerator subtracts nearly equal numbers. Simplifying to

1− (1− x)3

x
=

1− (1− 3x+ 3x2 − x3

x
= 3− 3x+ x2

eliminates the loss of significance.
1 (c) For x near 0, there is subtraction of nearly equal numbers. Using common denominators

eliminates the problem:

1

1 + x
− 1

1− x
=

1− x− (1 + x)

(1 + x)(1− x)
=

2x

x2 − 1

2 −3.000; 7.579× 10−14

3 Since b is positive, the roots should be calculated as in (0.13):

x1 = −b+
√
b2 + 4× 10−12

2

x2 =
2× 10−12

b+
√
b2 + 4× 10−12

4 8.5

5 −0.125
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COMPUTER PROBLEMS 0.4

1 (a) Compare the original expression to the revised version −1/(1 + sec x) from Exercise 1(a).

x original revised
0.10000000000000 −0.49874791371143 −0.49874791371143
0.01000000000000 −0.49998749979096 −0.49998749979166
0.00100000000000 −0.49999987501429 −0.49999987499998
0.00010000000000 −0.49999999362793 −0.49999999875000
0.00001000000000 −0.50000004133685 −0.49999999998750
0.00000100000000 −0.50004445029084 −0.49999999999987
0.00000010000000 −0.51070259132757 −0.50000000000000
0.00000001000000 0 −0.50000000000000
0.00000000100000 0 −0.50000000000000
0.00000000010000 0 −0.50000000000000
0.00000000001000 0 −0.50000000000000
0.00000000000100 0 −0.50000000000000
0.00000000000010 0 −0.50000000000000
0.00000000000001 0 −0.50000000000000

1 (b) Compare the original expression to the revised version 3− 3x+ x2 from Exercise 1(b).

x original revised
0.10000000000000 2.71000000000000 2.71000000000000
0.01000000000000 2.97010000000001 2.97010000000000
0.00100000000000 2.99700100000000 2.99700100000000
0.00010000000000 2.99970000999905 2.99970001000000
0.00001000000000 2.99997000008379 2.99997000010000
0.00000100000000 2.99999700015263 2.99999700000100
0.00000010000000 2.99999969866072 2.99999970000001
0.00000001000000 2.99999998176759 2.99999997000000
0.00000000100000 2.99999991515421 2.99999999700000
0.00000000010000 3.00000024822111 2.99999999970000
0.00000000001000 3.00000024822111 2.99999999997000
0.00000000000100 2.99993363483964 2.99999999999700
0.00000000000010 3.00093283556180 2.99999999999970
0.00000000000001 2.99760216648792 2.99999999999997

2 (a) p = 8
2 (b) p = 5
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