Exercises for Chapter 1

Exercises for Section 1.1: Describing a Set

1.1 Only (d) and (e) are sets.

1.2 (a)
$$A = \{1, 2, 3\} = \{x \in S : x > 0\}.$$

(b)
$$B = \{0, 1, 2, 3\} = \{x \in S : x \ge 0\}.$$

(c)
$$C = \{-2, -1\} = \{x \in S : x < 0\}.$$

(d)
$$D = \{x \in S : |x| > 2\}.$$

1.3 (a)
$$|A| = 5$$
. (b) $|B| = 11$. (c) $|C| = 51$. (d) $|D| = 2$. (e) $|E| = 1$. (f) $|F| = 2$.

1.4 (a)
$$A = \{ n \in \mathbf{Z} : -4 < n \le 4 \} = \{ -3, -2, \dots, 4 \}.$$

(b)
$$B = \{n \in \mathbf{Z} : n^2 < 5\} = \{-2, -1, 0, 1, 2\}.$$

(c)
$$C = \{n \in \mathbb{N} : n^3 < 100\} = \{1, 2, 3, 4\}.$$

(d)
$$D = \{x \in \mathbf{R} : x^2 - x = 0\} = \{0, 1\}.$$

(e)
$$E = \{x \in \mathbf{R} : x^2 + 1 = 0\} = \{\} = \emptyset.$$

1.5 (a)
$$A = \{-1, -2, -3, \ldots\} = \{x \in \mathbf{Z} : x \le -1\}.$$

(b)
$$B = \{-3, -2, \dots, 3\} = \{x \in \mathbf{Z} : -3 \le x \le 3\} = \{x \in \mathbf{Z} : |x| \le 3\}.$$

(c)
$$C = \{-2, -1, 1, 2\} = \{x \in \mathbf{Z} : -2 \le x \le 2, x \ne 0\} = \{x \in \mathbf{Z} : 0 < |x| \le 2\}.$$

1.6 (a)
$$A = \{2x + 1 : x \in \mathbf{Z}\} = \{\dots, -5, -3, -1, 1, 3, 5, \dots\}.$$

(b)
$$B = \{4n : n \in \mathbf{Z}\} = \{\dots, -8, -4, 0, 4, 8, \dots\}.$$

(c)
$$C = \{3q+1: q \in \mathbf{Z}\} = \{\cdots, -5, -2, 1, 4, 7, \cdots\}.$$

1.7 (a)
$$A = \{\dots, -4, -1, 2, 5, 8, \dots\} = \{3x + 2 : x \in \mathbf{Z}\}.$$

(b)
$$B = \{\dots, -10, -5, 0, 5, 10, \dots\} = \{5x : x \in \mathbf{Z}\}.$$

(c)
$$C = \{1, 8, 27, 64, 125, \dots\} = \{x^3 : x \in \mathbb{N}\}.$$

1.8 (a)
$$A = \{n \in \mathbb{Z} : 2 < |n| < 4\} = \{-3, -2, 2, 3\}.$$

(b)
$$5/2$$
, $7/2$, 4.

(c)
$$C = \{x \in \mathbf{R} : x^2 - (2 + \sqrt{2})x + 2\sqrt{2} = 0\} = \{x \in \mathbf{R} : (x - 2)(x - \sqrt{2}) = 0\} = \{2, \sqrt{2}\}.$$

(d)
$$D = \{x \in \mathbf{Q} : x^2 - (2 + \sqrt{2})x + 2\sqrt{2} = 0\} = \{2\}.$$

(e)
$$|A| = 4$$
, $|C| = 2$, $|D| = 1$.

1.9
$$A = \{2, 3, 5, 7, 8, 10, 13\}.$$

$$B = \{x \in A : x = y + z, \text{ where } y, z \in A\} = \{5, 7, 8, 10, 13\}.$$

$$C = \{r \in B : r + s \in B \text{ for some } s \in B\} = \{5, 8\}.$$

Exercises for Section 1.2: Subsets

- 1.10 (a) $A = \{1, 2\}, B = \{1, 2\}, C = \{1, 2, 3\}.$
 - (b) $A = \{1\}, B = \{\{1\}, 2\}, C = \{\{\{1\}, 2\}, 1\}.$
 - (c) $A = \{1\}, B = \{\{1\}, 2\}, C = \{1, 2\}.$
- 1.11 Let $r = \min(c a, b c)$ and let I = (c r, c + r). Then I is centered at c and $I \subseteq (a, b)$.
- 1.12 $A = B = D = E = \{-1, 0, 1\}$ and $C = \{0, 1\}$.
- 1.13 See Figure 1.

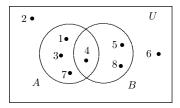


Figure 1: Answer for Exercise 1.13

- 1.14 (a) $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}; |\mathcal{P}(A)| = 4.$
 - (b) $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}, \{1\}, \{\{a\}\}, \{\emptyset, 1\}, \{\emptyset, \{a\}\}, \{1, \{a\}\}, \{\emptyset, 1, \{a\}\}\}; |\mathcal{P}(A)| = 8.$
- 1.15 $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\{0\}\}, A\}.$
- $1.16 \ \mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}, \ \mathcal{P}(\mathcal{P}(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}; \ |\mathcal{P}(\mathcal{P}(\{1\}))| = 4.$
- 1.17 $\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{\emptyset\}\}, \{0,\emptyset\}, \{0,\{\emptyset\}\}, \{\emptyset,\{\emptyset\}\}, A\}; |\mathcal{P}(A)| = 8.$
- 1.18 $\mathcal{P}(\{0\}) = \{\emptyset, \{0\}\}.$

$$A = \{x : x = 0 \text{ or } x \in \mathcal{P}(\{0\})\} = \{0, \emptyset, \{0\}\}.$$

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{\emptyset\}, \{\{0\}\}, \{0, \emptyset\}, \{0, \{0\}\}, \{\emptyset, \{0\}\}, A\}.$$

- 1.19 (a) $S = \{\emptyset, \{1\}\}.$
 - (b) $S = \{1\}.$
 - (c) $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4, 5\}\}.$
 - (d) $S = \{1, 2, 3, 4, 5\}.$
- 1.20 (a) False. For example, for $A = \{1, \{1\}\}$, both $1 \in A$ and $\{1\} \in A$.
 - (b) Because $\mathcal{P}(B)$ is the set of all subsets of the set B and $A \subset \mathcal{P}(B)$ with |A| = 2, it follows that A is a proper subset of $\mathcal{P}(B)$ consisting of exactly two elements of $\mathcal{P}(B)$. Thus $\mathcal{P}(B)$ contains at least one element that is not in A. Suppose that |B| = n. Then $|\mathcal{P}(B)| = 2^n$. Since $2^n > 2$, it follows that $n \geq 2$ and $|\mathcal{P}(B)| = 2^n \geq 4$. Because $\mathcal{P}(B) \subset C$, it is impossible that |C| = 4. Suppose that $A = \{\{1\}, \{2\}\}, B = \{1, 2\}$ and $C = \mathcal{P}(B) \cup \{3\}$. Then $A \subset \mathcal{P}(B) \subset C$, where |A| = 2 and |C| = 5.

- (c) No. For $A = \emptyset$ and $B = \{1\}$, $|\mathcal{P}(A)| = 1$ and $|\mathcal{P}(B)| = 2$.
- (d) Yes. There are only three distinct subsets of $\{1, 2, 3\}$ with two elements.
- 1.21 $B = \{1, 4, 5\}.$

Exercises for Section 1.3: Set Operations

- 1.22 (a) $A \cup B = \{1, 3, 5, 9, 13, 15\}.$
 - (b) $A \cap B = \{9\}.$
 - (c) $A B = \{1, 5, 13\}.$
 - (d) $B A = \{3, 15\}.$
 - (e) $\overline{A} = \{3, 7, 11, 15\}.$
 - (f) $A \cap \overline{B} = \{1, 5, 13\}.$
- 1.23 Let $A = \{1, 2, ..., 6\}$ and $B = \{4, 5, ..., 9\}$. Then $A B = \{1, 2, 3\}$, $B A = \{7, 8, 9\}$ and $A \cap B = \{4, 5, 6\}$. Thus $|A B| = |A \cap B| = |B A| = 3$. See Figure 2.

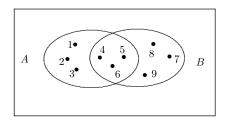


Figure 2: Answer for Exercise 1.23

- 1.24 Let $A = \{1, 2\}$, $B = \{1, 3\}$ and $C = \{2, 3\}$. Then $B \neq C$ but $B A = C A = \{3\}$.
- 1.25 (a) $A = \{1\}, B = \{\{1\}\}, C = \{1, 2\}.$
 - (b) $A = \{\{1\}, 1\}, B = \{1\}, C = \{1, 2\}.$
 - (c) $A = \{1\}, B = \{\{1\}\}, C = \{\{1\}, 2\}.$
- 1.26 (a) and (b) are the same, as are (c) and (d).
- 1.27 Let $U = \{1, 2, ..., 8\}$ be a universal set, $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$. Then $A B = \{1, 2\}$, $B A = \{5, 6\}$, $A \cap B = \{3, 4\}$ and $\overline{A \cup B} = \{7, 8\}$. See Figure 3.

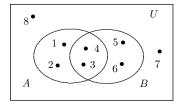


Figure 3: Answer for Exercise 1.27

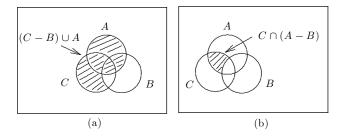


Figure 4: Answers for Exercise 1.28

- 1.28 See Figures 4(a) and 4(b).
- 1.29 (a) The sets \emptyset and $\{\emptyset\}$ are elements of A.
 - (b) |A| = 3.
 - (c) All of \emptyset , $\{\emptyset\}$ and $\{\emptyset, \{\emptyset\}\}$ are subsets of A.
 - (d) $\emptyset \cap A = \emptyset$.
 - (e) $\{\emptyset\} \cap A = \{\emptyset\}.$
 - (f) $\{\emptyset, \{\emptyset\}\} \cap A = \{\emptyset, \{\emptyset\}\}.$
 - (g) $\emptyset \cup A = A$.
 - (h) $\{\emptyset\} \cup A = A$.
 - (i) $\{\emptyset, \{\emptyset\}\} \cup A = A$.
- 1.30 (a) $A = \{x \in \mathbf{R} : |x 1| \le 2\} = \{x \in \mathbf{R} : -2 \le x 1 \le 2\} = \{x \in \mathbf{R} : -1 \le x \le 3\} = [-1, 3]$ $B = \{x \in \mathbf{R} : |x| \ge 1\} = \{x \in \mathbf{R} : x \ge 1 \text{ or } x \le -1\} = (-\infty, -1] \cup [1, \infty)$ $C = \{x \in \mathbf{R} : |x + 2| \le 3\} = \{x \in \mathbf{R} : -3 \le x + 2 \le 3\} = \{x \in \mathbf{R} : -5 \le x \le 1\} = [-5, 1]$
 - (b) $A \cup B = (-\infty, \infty) = \mathbf{R}, A \cap B = \{-1\} \cup [1, 3],$ $B \cap C = [-5, -1] \cup \{1\}, B - C = (-\infty, -5) \cup (1, \infty).$
- 1.31 $A = \{1, 2\}, B = \{2\}, C = \{1, 2, 3\}, D = \{2, 3\}.$
- 1.32 $A = \{1, 2, 3\}, B = \{1, 2, 4\}, C = \{1, 3, 4\}, D = \{2, 3, 4\}.$
- 1.33 $A = \{1\}, B = \{2\}.$
- 1.34 $A = \{1, 2\}, B = \{2, 3\}.$
- 1.35 Let $U = \{1, 2, \dots, 8\}$, $A = \{1, 2, 3, 5\}$, $B = \{1, 2, 4, 6\}$ and $C = \{1, 3, 4, 7\}$. See Figure 5.

Exercises for Section 1.4: Indexed Collections of Sets

1.36
$$\bigcup_{\alpha \in A} S_{\alpha} = S_1 \cup S_3 \cup S_4 = [0,3] \cup [2,5] \cup [3,6] = [0,6].$$

$$\bigcap_{\alpha \in A} S_{\alpha} = S_1 \cap S_3 \cap S_4 = \{3\}.$$

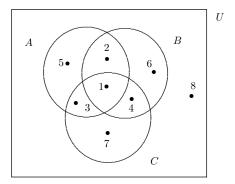


Figure 5: Answer for Exercise 1.35

1.37
$$\bigcup_{X \in S} X = A \cup B \cup C = \{0, 1, 2, \dots, 5\}$$
 and $\bigcap_{X \in S} X = A \cap B \cap C = \{2\}.$

1.38 (a)
$$\bigcup_{\alpha \in S} A_{\alpha} = A_1 \cup A_2 \cup A_4 = \{1\} \cup \{4\} \cup \{16\} = \{1, 4, 16\}.$$

$$\bigcap_{\alpha \in S} A_{\alpha} = A_1 \cap A_2 \cap A_4 = \emptyset.$$

(b)
$$\bigcup_{\alpha \in S} B_{\alpha} = B_1 \cup B_2 \cup B_4 = [0, 2] \cup [1, 3] \cup [3, 5] = [0, 5].$$

 $\bigcap_{\alpha \in S} B_{\alpha} = B_1 \cap B_2 \cap B_4 = \emptyset.$

(c)
$$\bigcup_{\alpha \in S} C_{\alpha} = C_1 \cup C_2 \cup C_4 = (1, \infty) \cup (2, \infty) \cup (4, \infty) = (1, \infty).$$

 $\bigcap_{\alpha \in S} C_{\alpha} = C_1 \cap C_2 \cap C_4 = (4, \infty).$

- 1.39 Since |A| = 26 and $|A_{\alpha}| = 3$ for each $\alpha \in A$, we need to have at least nine sets of cardinality 3 for their union to be A; that is, in order for $\bigcup_{\alpha \in S} A_{\alpha} = A$, we must have $|S| \ge 9$. However, if we let $S = \{a, d, g, j, m, p, s, v, y\}$, then $\bigcup_{\alpha \in S} A_{\alpha} = A$. Hence the smallest cardinality of a set S with $\bigcup_{\alpha \in S} A_{\alpha} = A$ is 9.
- 1.40 (a) $\bigcup_{i=1}^{5} A_{2i} = A_2 \cup A_4 \cup A_6 \cup A_8 \cup A_{10} = \{1,3\} \cup \{3,5\} \cup \{5,7\} \cup \{7,9\} \cup \{9,11\} = \{1,3,5,\ldots,11\}.$
 - (b) $\bigcup_{i=1}^{5} (A_i \cap A_{i+1}) = \bigcup_{i=1}^{5} (\{i-1, i+1\} \cap \{i, i+2\}) = \bigcup_{i=1}^{5} \emptyset = \emptyset.$
 - (c) $\bigcup_{i=1}^{5} (A_{2i-1} \cap A_{2i+1}) = \bigcup_{i=1}^{5} (\{2i-2,2i\} \cap \{2i,2i+2\}) = \bigcup_{i=1}^{5} \{2i\} = \{2,4,6,8,10\}.$
- 1.41 (a) $\{A_n\}_{n \in \mathbb{N}}$, where $A_n = \{x \in \mathbb{R} : 0 \le x \le 1/n\} = [0, 1/n]$.
 - (b) $\{A_n\}_{n \in \mathbb{N}}$, where $A_n = \{a \in \mathbb{Z} : |a| \le n\} = \{-n, -(n-1), \dots, (n-1), n\}$.
- 1.42 (a) $A_n = [1, 2 + \frac{1}{n}), \bigcup_{n \in \mathbb{N}} A_n = [1, 3) \text{ and } \bigcap_{n \in \mathbb{N}} A_n = [1, 2].$
 - (b) $A_n = \left(-\frac{2n-1}{n}, 2n\right), \bigcup_{n \in \mathbb{N}} A_n = (-2, \infty) \text{ and } \bigcap_{n \in \mathbb{N}} A_n = (-1, 2).$
- 1.43 $\bigcup_{r \in \mathbf{R}^+} A_r = \bigcup_{r \in \mathbf{R}^+} (-r, r) = \mathbf{R};$ $\bigcap_{r \in \mathbf{R}^+} A_r = \bigcap_{r \in \mathbf{R}^+} (-r, r) = \{0\}.$
- 1.44 For $I = \{2, 8\}$, $|\bigcup_{i \in I} A_i| = 8$. Observe that there is no set I such that $|\bigcup_{i \in I} A_i| = 10$, for in this case, we must have either two 5-element subsets of A or two 3-element subsets of A and a 4-element subset of A. In each case, not every two subsets are disjoint. Furthermore, there is no set I such that $|\bigcup_{i \in I} A_i| = 9$, for in this case, one must either have a 5-element subset of A and a 4-element subset of A (which are not disjoint) or three 3-element subsets of A. No 3-element subset of A contains 1 and only one such subset contains 2. Thus $4, 5 \in I$ but there is no third element for I.

1.45
$$\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} (-\frac{1}{n}, 2 - \frac{1}{n}) = (-1, 2);$$

$$\bigcap_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} (-\frac{1}{n}, 2 - \frac{1}{n}) = [0, 1].$$

1.46 (a)
$$\bigcup_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = (-1, 1); \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n} \right) = \{0\}$$

(b)
$$\bigcup_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n} \right] = [0,2]; \bigcap_{n=1}^{\infty} \left[\frac{n-1}{n}, \frac{n+1}{n} \right] = \{1\}$$

1.47 (a)
$$\bigcup_{n=1}^{\infty} \left\{ \sin^2 \frac{n\pi}{2} + \cos^2 \frac{n\pi}{2} \right\} = \bigcap_{n=1}^{\infty} \left\{ \sin^2 \frac{n\pi}{2} + \cos^2 \frac{n\pi}{2} \right\} = \{1\}$$

(b)
$$\bigcup_{n=1}^{\infty} \left\{ \sin \frac{n\pi}{2} + \cos \frac{n\pi}{2} \right\} = \{-1, 1\}; \bigcap_{n=1}^{\infty} \left\{ \sin \frac{n\pi}{2} + \cos \frac{n\pi}{2} \right\} = \emptyset$$

Exercises for Section 1.5: Partitions of Sets

- 1.48 (a) S_1 is a partition of A.
 - (b) S_2 is not a partition of A because g belongs to no element of S_2 .
 - (c) S_3 is a partition of A.
 - (d) S_4 is not a partition of A because $\emptyset \in S_4$.
 - (e) S_5 is not a partition of A because b belongs to two elements of S_5 .
- 1.49 (a) S_1 is not a partition of A since 4 belongs to no element of S_1 .
 - (b) S_2 is a partition of A.
 - (c) S_3 is not a partition of A because 2 belongs to two elements of S_3 .
 - (d) S_4 is not a partition of A since S_4 is not a set of subsets of A.
- 1.50 $S = \{\{1, 2, 3\}, \{4, 5\}, \{6\}\}; |S| = 3.$

1.51
$$A = \{1, 2, 3, 4\}$$
. $S_1 = \{\{1\}, \{2\}, \{3, 4\}\}$ and $S_2 = \{\{1, 2\}, \{3\}, \{4\}\}$.

1.52 Let
$$S = \{A_1, A_2, A_3\}$$
, where $A_1 = \{x \in \mathbb{N} : x > 5\}$, $A_2 = \{x \in \mathbb{N} : x < 5\}$ and $A_3 = \{5\}$.

1.53 Let
$$S = \{A_1, A_2, A_3\}$$
, where $A_1 = \{x \in \mathbf{Q} : x > 1\}$, $A_2 = \{x \in \mathbf{Q} : x < 1\}$ and $A_3 = \{1\}$.

1.54
$$A = \{1, 2, 3, 4\}, S_1 = \{\{1\}, \{2\}, \{3, 4\}\} \text{ and } S_2 = \{\{\{1\}, \{2\}\}, \{\{3, 4\}\}\}.$$

1.55 Let $S = \{A_1, A_2, A_3, A_4\}$, where

$$A_1 = \{x \in \mathbf{Z} : x \text{ is odd and } x \text{ is positive}\},\$$

$$A_2 = \{x \in \mathbf{Z} : x \text{ is odd and } x \text{ is negative}\},\$$

$$A_3 = \{x \in \mathbf{Z} : x \text{ is even and } x \text{ is nonnegative}\},$$

 $A_4 = \{x \in \mathbf{Z} : x \text{ is even and } x \text{ is negative}\}.$

```
1.56 Let S = \{\{1\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8, 9, 10\}, \{11, 12\}\} and T = \{\{1\}, \{2\}, \{3, 4, 5, 6\}, \{7, 8, 9, 10\}\}.
```

1.57
$$|\mathcal{P}_1| = 2$$
, $|\mathcal{P}_2| = 3$, $|\mathcal{P}_3| = 5$, $|\mathcal{P}_4| = 8$, $|\mathcal{P}_5| = 13$, $|\mathcal{P}_6| = 21$.

- 1.58 (a) Suppose that a collection S of subsets of A satisfies Definition 1. Then every subset is nonempty. Every element of A belongs to a subset in S. If some element $a \in A$ belonged to more than one subset, then the subsets in S would not be pairwise disjoint. So the collection satisfies Definition 2.
 - (b) Suppose that a collection S of subsets of A satisfies Definition 2. Then every subset is nonempty and (1) in Definition 3 is satisfied. If two subsets A_1 and A_2 in S were neither equal nor disjoint, then $A_1 \neq A_2$ and there is an element $a \in A$ such that $a \in A_1 \cap A_2$, which would not satisfy Definition 2. So condition (2) in Definition 3 is satisfied. Since every element of A belongs to a (unique) subset in S, condition (3) in Definition 3 is satisfied. Thus Definition 3 itself is satisfied.
 - (c) Suppose that a collection S of subsets of A satisfies Definition 3. By condition (1) in Definition 3, every subset is nonempty. By condition (2), the subsets are pairwise disjoint. By condition (3), every element of A belongs to a subset in S. So Definition 1 is satisfied.

Exercises for Section 1.6: Cartesian Products of Sets

```
1.59 A \times B = \{(x, x), (x, y), (y, x), (y, y), (z, x), (z, y)\}.
```

$$1.60 \ A \times A = \{(1, 1), (1, \{1\}), (1, \{\{1\}\}), (\{1\}, 1), (\{1\}, \{1\}), (\{1\}, \{\{1\}\}), (\{\{1\}\}, \{1\}\})\}.$$

1.61
$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, A\},\$$

 $A \times \mathcal{P}(A) = \{(a, \emptyset), (a, \{a\}), (a, \{b\}), (a, A), (b, \emptyset), (b, \{a\}), (b, \{b\}), (b, A)\}.$

$$\begin{aligned} 1.62 \ \ \mathcal{P}(A) &= \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, A\}, \\ A \times \mathcal{P}(A) &= \{(\emptyset, \emptyset), (\emptyset, \{\emptyset\}), (\emptyset, \{\{\emptyset\}\}), (\emptyset, A), (\{\emptyset\}, \emptyset), (\{\emptyset\}, \{\emptyset\}), (\{\emptyset\}, \{\{\emptyset\}\}), (\{\emptyset\}, A)\}. \end{aligned}$$

1.63
$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, A\}, \mathcal{P}(B) = \{\emptyset, B\}, A \times B = \{(1, \emptyset), (2, \emptyset)\},$$

 $\mathcal{P}(A) \times \mathcal{P}(B) = \{(\emptyset, \emptyset), (\emptyset, B), (\{1\}, \emptyset), (\{1\}, B), (\{2\}, \emptyset), (\{2\}, B), (A, \emptyset), (A, B)\}.$

1.64 $\{(x,y): x^2+y^2=4\}$, which is a circle centered at (0,0) with radius 2.

$$1.65 \ S = \{(3,0),(2,1),(2,-1),(1,2),(1,-2),(0,3),(0,-3),(-3,0),(-2,1),(-2,-1),(-1,2),(-1,-2)\}.$$
 See Figure 6.

1.66
$$A \times B = \{(1,1), (2,1)\},\$$

 $\mathcal{P}(A \times B) = \{\emptyset, \{(1,1)\}, \{(2,1)\}, A \times B\}.$

1.67
$$A = \{x \in \mathbf{R} : |x - 1| \le 2\} = \{x \in \mathbf{R} : -1 \le x \le 3\} = [-1, 3],$$

 $B = \{y \in \mathbf{R} : |y - 4| \le 2\} = \{y \in \mathbf{R} : 2 \le y \le 6\} = [2, 6],$

 $A \times B = [-1, 3] \times [2, 6]$, which is the set of all points on and within the square bounded by x = -1, x = 3, y = 2 and y = 6.

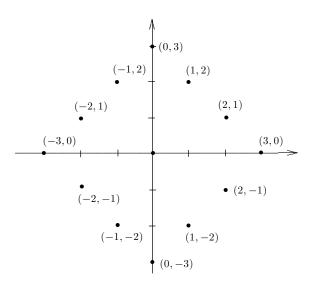


Figure 6: Answer for Exercise 1.65

1.68
$$A = \{a \in \mathbf{R} : |a| \le 1\} = \{a \in \mathbf{R} : -1 \le a \le 1\} = [-1, 1],$$

 $B = \{b \in \mathbf{R} : |b| = 1\} = \{-1, 1\},$

 $A \times B$ is the set of all points (x, y) on the lines y = 1 or y = -1 with $x \in [-1, 1]$, while $B \times A$ is the set of all points (x, y) on the lines x = 1 or x = -1 with $y \in [-1, 1]$. Therefore, $(A \times B) \cup (B \times A)$ is the set of all points lying on (but not within) the square bounded by x = 1, x = -1, y = 1 and y = -1.

1.69 (a)–(b)
$$(A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A) = \{(2,2), (2,3), (3,2), (3,3)\}.$$

- 1.70 For $A = \{1, 2\}$, $B = \{1, 2, 3\}$, $C = \{1, 2, 3, 4\}$ and $D = \{2, 3\}$, it follows that $((A \times B) \cup (C \times D)) (D \times D) = R.$
- 1.71 Since $\bigcup_{i=1}^{3} (A_i \times A_i) = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2), (3,3), (3,4), (4,3), (4,4)\}$, it follows that $|\bigcup_{i=1}^{3} (A_i \times A_i)| = 10$.
- 1.72 The set $\{A \times A, A \times B, B \times A, B \times B\}$ is a partition of $S \times S$.

Chapter 1 Supplemental Exercises

- 1.73 (a) $A = \{4k+3 : k \in \mathbf{Z}\} = \{\dots, -5, -1, 3, 7, 11, \dots\}.$
 - (b) $B = \{5k 1 : k \in \mathbf{Z}\} = \{\dots, -6, -1, 4, 9, 14, \dots\}.$
- 1.74 (a) $A = \{x \in S : |x| \ge 1\} = \{x \in S : x \ne 0\}.$
 - (b) $B = \{x \in S : x \le 0\}.$
 - (c) $C = \{x \in S : -5 < x < 7\} = \{x \in S : |x 1| < 6\}.$
 - (d) $D = \{x \in S : x \neq 5\}.$

- 1.75 (a) $\{0, 2, -2\}$ (b) $\{\}$ (c) $\{3, 4, 5\}$ (d) $\{1, 2, 3\}$
 - (e) $\{-2,2\}$ (f) $\{\}$ (g) $\{-3,-2,-1,1,2,3\}$.
- 1.76 (a) |A| = 6 (b) |B| = 0 (c) |C| = 3
 - (d) |D| = 0 (e) |E| = 10 (f) |F| = 20.
- 1.77 $A \times B = \{(-1, x), (-1, y), (0, x), (0, y), (1, x), (1, y)\}.$
- 1.78 (a) $(A \cup B) (B \cap C) = \{1, 2, 3\} \{3\} = \{1, 2\}.$
 - (b) $\overline{A} = \{3\}.$
 - (c) $\overline{B \cup C} = \overline{\{1, 2, 3\}} = \emptyset$.
 - (d) $A \times B = \{(1,2), (1,3), (2,2), (2,3)\}.$
- 1.79 Let $S = \{\{1\}, \{2\}, \{3,4\}, A\}$ and let $B = \{3,4\}$.
- 1.80 $\mathcal{P}(A) = \{\emptyset, \{1\}\}, \mathcal{P}(C) = \{\emptyset, \{1\}, \{2\}, C\}.$ Let $B = \{\emptyset, \{1\}, \{2\}\}.$
- 1.81 Let $A = \{\emptyset\}$ and $B = \mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}.$
- 1.82 Only $B = C = \emptyset$ and D = E.
- 1.83 $U = \{1, 2, 3, 5, 7, 8, 9\}, A = \{1, 2, 5, 7\}$ and $B = \{5, 7, 8\}.$
- 1.84 (a) A_r is the set of all points in the plane lying on the circle $x^2 + y^2 = r^2$. $\bigcup_{r \in I} A_r = \mathbf{R} \times \mathbf{R} \text{ (the plane) and } \bigcap_{r \in I} A_r = \emptyset.$
 - (b) B_r is the set of all points lying on and inside the circle $x^2 + y^2 = r^2$. $\bigcup_{r \in I} B_r = \mathbf{R} \times \mathbf{R}$ and $\bigcap_{r \in I} B_r = \{(0,0)\}.$
 - (c) C_r is the set of all points lying outside the circle $x^2 + y^2 = r^2$. $\bigcup_{r \in I} C_r = \mathbf{R} \times \mathbf{R} - \{(0,0)\} \text{ and } \bigcap_{r \in I} C_r = \emptyset.$
- 1.85 Let $A_1 = \{1, 2, 3, 4\}$, $A_2 = \{3, 5, 6\}$, $A_3 = \{1, 3\}$, $A_4 = \{1, 2, 4, 5, 6\}$. Then $|A_1 \cap A_2| = |A_2 \cap A_3| = |A_3 \cap A_4| = 1$, $|A_1 \cap A_3| = |A_2 \cap A_4| = 2$ and $|A_1 \cap A_4| = 3$.
- 1.86 (a) (i) Give an example of five sets A_i ($1 \le i \le 5$) such that $|A_i \cap A_j| = |i j|$ for every two integers i and j with $1 \le i < j \le 5$.
 - (ii) Determine the minimum positive integer k such that there exist four sets A_i ($1 \le i \le 4$) satisfying the conditions of Exercise 1.79 and $|A_1 \cup A_2 \cup A_3 \cup A_4| = k$.

(b) (i)
$$A_1 = \{1, 2, 3, 4, 7, 8, 9, 10\}$$

 $A_2 = \{3, 5, 6, 11, 12, 13\}$
 $A_3 = \{1, 3, 14, 15\}$
 $A_4 = \{1, 2, 4, 5, 6, 16\}$
 $A_5 = \{7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}.$

(ii) The minimum positive integer k is 5. The example below shows that $k \leq 5$.

Let
$$A_1 = \{1, 2, 3, 4\}, A_2 = \{1, 5\}, A_3 = \{1, 4\}, A_4 = \{1, 2, 3, 5\}.$$

If k=4, then since $|A_1\cap A_4|=3$, A_1 and A_4 have exactly three elements in common, say 1, 2, 3. So each of A_1 and A_4 is either $\{1,2,3\}$ or $\{1,2,3,4\}$. They cannot both be $\{1,2,3,4\}$. Also, they cannot both be $\{1,2,3\}$ because A_3 would have to contain two of 1, 2, 3 and so $|A_3\cap A_4|\geq 2$, which is not true. So we can assume that $A_1=\{1,2,3,4\}$ and $A_4=\{1,2,3\}$. However, A_2 must contain two of 1, 2, 3 and so $|A_1\cap A_2|\geq 2$, which is impossible.

- 1.87 (a) |S| = |T| = 10.
 - (b) |S| = |T| = 5.
 - (c) |S| = |T| = 6.
- 1.88 Let $A = \{1, 2, 3, 4\}$, $A_1 = \{1, 2\}$, $A_2 = \{1, 3\}$, $A_3 = \{3, 4\}$. These examples show that $k \le 4$. Since $|A_1 A_3| = |A_3 A_1| = 2$, it follows that A_1 contains two elements not in A_3 , while A_3 contains two elements not in A_1 . Thus $|A| \ge 4$ and so k = 4 is the smallest positive integer with this property.
- 1.89 (a) $S = \{(-3,4), (0,5), (3,4), (4,3)\}.$
 - (b) $C = \{a \in B : (a,b) \in S\} = \{3,4\}$ $D = \{b \in A : (a,b) \in S\} = \{3,4\}$ $C \times D = \{(3,3),(3,4),(4,3),(4,3)\}.$
- 1.90 $A = \{1, 2, 3\}, B = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}, C = \{\{1\}, \{2\}, \{3\}\}, D = \mathcal{P}(C) = \{\emptyset, \{\{1\}\}, \{\{2\}\}, \{\{3\}\}, \{\{1\}, \{2\}\}, \{\{1\}, \{3\}\}, \{\{2\}, \{3\}\}, C\}.$
- $$\begin{split} 1.91 \ S &= \{x \in \mathbf{R} : x^2 + 2x 1 = 0\} = \{-1 + \sqrt{2}, -1 \sqrt{2}\}. \\ A_{-1 + \sqrt{2}} &= \{-1 + \sqrt{2}, \sqrt{2}\}, \ A_{-1 \sqrt{2}} = \{-1 \sqrt{2} \sqrt{2}\}. \end{split}$$
 - (a) $A_s = A_{-1-\sqrt{2}}$ and $A_t = A_{-1+\sqrt{2}}$. $A_s \times A_t = \{(-1-\sqrt{2}, -1+\sqrt{2}), (-1-\sqrt{2}, \sqrt{2}), (-\sqrt{2}, 1+\sqrt{2}), (-\sqrt{2}, \sqrt{2})\}.$
 - (b) $C = \{ab : (a, b) \in B\} = \{-1, -\sqrt{2} 2, \sqrt{2} 2, -2\}$. The sum of the elements in C is -7.
- 1.92 (a) For |A|=2, the largest possible value of $|A\cap \mathcal{P}(A)|$ is 2. The set $A=\{\emptyset,\{\emptyset\}\}$ has this property.
 - (b) For |A| = 3, the largest possible value of $|A \cap \mathcal{P}(A)|$ is 3. The set $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$ has this property.
 - (c) For |A|=4, the largest possible value of $|A\cap \mathcal{P}(A)|$ is 4. The set $A=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\{\{\emptyset\}\}\}\}\}$ has this property.

1.93
$$\bigcup_{n=1}^{\infty} S_n = \bigcap_{n=1}^{\infty} S_n = \left[-\sqrt{2}, \sqrt{2}\right]$$
. First, observe that

$$\bigcap_{n=1}^{\infty} S_n = S_1 = \left\{ x + y : \ x, y \in \mathbf{R}, x^2 + y^2 = 1 \right\}.$$

Let f(x) = x + y, where $y = \pm \sqrt{1 - x^2}$, say $y = \sqrt{1 - x^2}$. Then $f(x) = x + \sqrt{1 - x^2}$. Since $f'(x) = 1 - \frac{x}{\sqrt{1 - x^2}}$, it follows that f'(x) = 0 when $x = \frac{1}{\sqrt{2}}$ and so the maximum value of x + y is $\sqrt{2}$. Since $f(-\frac{1}{\sqrt{2}}) = 0$ and f is continuous on $[-\sqrt{2}, \sqrt{2}]$, it follows that f takes on all values of $[0, \sqrt{2}]$. If $x + y = r \in [0, \sqrt{2}]$, it follows that $(-x) + (-y) = -r \in [-\sqrt{2}, 0]$. Hence, $S_1 = [-\sqrt{2}, \sqrt{2}]$. If

$$a^2 + b^2 = r$$
 where $0 < r < 1$, then $a + b \in \left(-\sqrt{2}, \sqrt{2}\right)$ and so $\bigcup_{n=1}^{\infty} S_n = \left[-\sqrt{2}, \sqrt{2}\right]$ as well.

- 1.94 (a) No. For example, the elements 1, 2 and 5 belong to more than one subset of S.
 - (b) Yes. (c) Yes.
- 1.95 In order for $|A \times (B \cup C)| = |A \times B| + |A \times C|$, the sets B and C must be disjoint.

Exercises for Chapter 2

Exercises for Section 2.1: Statements

- 2.1 (a) A false statement.
 - (b) A true statement.
 - (c) Not a statement.
 - (d) Not a statement (an open sentence).
 - (e) Not a statement.
 - (f) Not a statement (an open sentence).
 - (g) Not a statement.
- 2.2 (a) A true statement since $A = \{3n-2 : n \in \mathbb{N}\}$ and so $3 \cdot 9 2 = 25 \in A$.
 - (b) A false statement. Starting with the 3rd term in D, each element is the sum of the two preceding terms. Therefore, all terms following 21 exceed 33 and so $33 \notin D$.
 - (c) A false statement since $3 \cdot 8 2 = 22 \in A$.
 - (d) A true statement since every prime except 2 is odd.
 - (e) A false statement since B and D consist only of integers.
 - (f) A false statement since 53 is prime.
- 2.3 (a) False. \emptyset has no elements.
 - (b) True.
 - (c) True.
 - (d) False. $\{\emptyset\}$ has \emptyset as its only element.
 - (e) True.
 - (f) False. 1 is not a set.
- 2.4 (a) x = -2 and x = 3.
 - (b) All $x \in \mathbf{R}$ such that $x \neq -2$ and $x \neq 3$.
- 2.5 (a) $\{x \in \mathbf{Z} : x > 2\}.$
 - (b) $\{x \in \mathbf{Z} : x \le 2\}.$
- 2.6 (a) A can be any of the sets \emptyset , $\{1\}$, $\{2\}$, $\{1,2\}$, that is, A is any subset of $\{1,2,4\}$ that does not contain 4.
 - (b) A can be any of the sets $\{1,4\}, \{2,4\}, \{1,2,4\}, \{4\}$, that is, A is any subset of $\{1,2,4\}$ that contains 4.
 - (c) $A = \emptyset$ and $A = \{4\}$.

- 2.7 3, 5, 11, 17, 41, 59.
- 2.8 (a) $S_1 = \{1, 2, 5\}$ (b) $S_2 = \{0, 3, 4\}$.
- 2.9 P(n): $\frac{n-1}{2}$ is even. P(n) is true only for n=5 and n=9.
- 2.10 P(n) : $\frac{n}{2}$ is odd. Q(n): $\frac{n^2-2n}{8}$ is even. or Q(n): n^2+9 is a prime.

Exercises for Section 2.2: Negations

- 2.11 (a) $\sqrt{2}$ is not a rational number.
 - (b) 0 is a negative integer.
 - (c) 111 is not a prime number.
- 2.12 See Figure 1.

P	Q	$\sim P$	$\sim Q$
T	T	F	F
T	F	F	T
F	T	T	F
F	F	T	T

Figure 1: Answer for Exercise 2.12

- 2.13 (a) The real number r is greater than $\sqrt{2}$.
 - (b) The absolute value of the real number a is at least 3.
 - (c) At most one angle of the triangle is 45° .
 - (d) The area of the circle is less than 9π .
 - (e) The sides of the triangle have different lengths.
 - (f) The point P lies on or within the circle C.
- 2.14 (a) At most one of my library books is overdue.
 - (b) My two friends did not misplace their homework assignments.
 - (c) Someone expected this to happen.
 - (d) My instructor often teaches that course.
 - (e) It's not surprising that two students received the same exam score.

Exercises for Section 2.3: Disjunctions and Conjunctions

- 2.15 See Figure 2.
- 2.16 (a) True. (b) False. (c) False. (d) True. (e) True.
- 2.17 (a) $P \vee Q$: 15 is odd or 21 is prime. (True)

P	Q	$\sim Q$	$P \wedge (\sim Q)$
T	T	F	F
T	F	T	T
F	T	F	F
\overline{F}	F	T	F

Figure 2: Answer for Exercise 2.15

- (b) $P \wedge Q$: 15 is odd and 21 is prime. (False)
- (c) $(\sim P) \vee Q$: 15 is not odd or 21 is prime. (False)
- (d) $P \wedge (\sim Q)$: 15 is odd and 21 is not prime. (True)
- 2.18 (a) All nonempty subsets of $\{1, 3, 5\}$.
 - (b) All subsets of $\{1,3,5\}$.
 - (c) There are no subsets A of S for which $(\sim P(A)) \land (\sim Q(A))$ is true.

Exercises for Section 2.4: Implications

- 2.19 (a) $\sim P$: 17 is not even (or 17 is odd). (True)
 - (b) $P \vee Q$: 17 is even or 19 is prime. (True)
 - (c) $P \wedge Q$: 17 is even and 19 is prime. (False)
 - (d) $P \Rightarrow Q$: If 17 is even, then 19 is prime. (True)
- 2.20 See Figure 3.

P	Q	$\sim P$	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow (\sim P)$
T	T	F	T	F
T	F	F	F	T
F	T	T	T	T
F	F	T	T	T

Figure 3: Answer for Exercise 2.20

- 2.21 (a) $P \Rightarrow Q$: If $\sqrt{2}$ is rational, then 22/7 is rational. (True)
 - (b) $Q \Rightarrow P$: If 22/7 is rational, then $\sqrt{2}$ is rational. (False)
 - (c) $(\sim P) \Rightarrow (\sim Q)$: If $\sqrt{2}$ is not rational, then 22/7 is not rational. (False)
 - (d) $(\sim Q) \Rightarrow (\sim P)$: If 22/7 is not rational, then $\sqrt{2}$ is not rational. (True)
- 2.22 (a) $(P \wedge Q) \Rightarrow R$: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational. (True)
 - (b) $(P \wedge Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ is rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational. (True)
 - (c) $((\sim P) \land Q) \Rightarrow R$: If $\sqrt{2}$ is not rational and $\frac{2}{3}$ is rational, then $\sqrt{3}$ is rational. (False)
 - (d) $(P \vee Q) \Rightarrow (\sim R)$: If $\sqrt{2}$ is rational or $\frac{2}{3}$ is rational, then $\sqrt{3}$ is not rational. (True)

- 2.23 (a), (c), (d) are true.
- 2.24 (b), (d), (f) are true.
- 2.25 (a) True. (b) False. (c) True. (d) True. (e) True.
- 2.26 (a) False. (b) True. (c) True. (d) False.
- 2.27 Cindy and Don attended the talk.
- 2.28 (b), (d), (f), (g) are true.
- 2.29 Only (c) implies that $P \vee Q$ is false.

Exercises for Section 2.5: More on Implications

- 2.30 (a) $P(n) \Rightarrow Q(n)$: If 5n + 3 is prime, then 7n + 1 is prime.
 - (b) $P(2) \Rightarrow Q(2)$: If 13 is prime, then 15 is prime. (False)
 - (c) $P(6) \Rightarrow Q(6)$: If 33 is prime, then 43 is prime. (True)
- 2.31 (a) $P(x) \Rightarrow Q(x)$: If |x| = 4, then x = 4.

$$P(-4) \Rightarrow Q(-4)$$
 is false.

$$P(-3) \Rightarrow Q(-3)$$
 is true.

$$P(1) \Rightarrow Q(1)$$
 is true.

$$P(4) \Rightarrow Q(4)$$
 is true.

$$P(5) \Rightarrow Q(5)$$
 is true.

- (b) $P(x) \Rightarrow Q(x)$: If $x^2 = 16$, then |x| = 4. True for all $x \in S$.
- (c) $P(x) \Rightarrow Q(x)$: If x > 3, then 4x 1 > 12. True for all $x \in S$.
- 2.32 (a) All $x \in S$ for which $x \neq 7$.
 - (b) All $x \in S$ for which x > -1.
 - (c) All $x \in S$.
 - (d) All $x \in S$.
- 2.33 (a) True for (x, y) = (3, 4) and (x, y) = (5, 5) and false for (x, y) = (1, -1).
 - (b) True for (x, y) = (1, 2) and (x, y) = (6, 6) and false for (x, y) = (2, -2).
 - (c) True for $(x, y) \in \{(1, -1), (-3, 4), (1, 0)\}$ and false for (x, y) = (0, -1).
- 2.34 (a) If the x-coordinate of a point on the straight line with equation 2y + x 3 = 0 is an integer, then its y-coordinate is also an integer. Or: If $-2n + 3 \in \mathbf{Z}$, then $n \in \mathbf{Z}$.
 - (b) If n is an odd integer, then n^2 is an odd integer.
 - (c) Let $n \in \mathbf{Z}$. If 3n + 7 is even, then n is odd.

- (d) If $f(x) = \cos x$, then $f'(x) = -\sin x$.
- (e) If a circle has circumference 4π , then its area is also 4π .
- (f) Let $n \in \mathbf{Z}$. If n^3 is even, then n is even.

Exercises for Section 2.6: Biconditionals

- 2.35 $P \Leftrightarrow Q$: 18 is odd if and only if 25 is even. (True)
- 2.36 The integer x is odd if and only if x^2 is odd.

That the integer x is odd is a necessary and sufficient condition for x^2 to be odd.

2.37 Let $x \in \mathbb{R}$. Then |x - 3| < 1 if and only if $x \in (2, 4)$.

For $x \in \mathbb{R}$, |x-3| < 1 is a necessary and sufficient condition for $x \in (2,4)$.

- 2.38 (a) $\sim P(x)$: $x \neq -2$. True if x = 0, 2.
 - (b) $P(x) \vee Q(x)$: x = -2 or $x^2 = 4$. True if x = -2, 2.
 - (c) $P(x) \wedge Q(x)$: x = -2 and $x^2 = 4$. True if x = -2.
 - (d) $P(x) \Rightarrow Q(x)$: If x = -2, then $x^2 = 4$. True for all x.
 - (e) $Q(x) \Rightarrow P(x)$: If $x^2 = 4$, then x = -2. True if x = 0, -2.
 - (f) $P(x) \Leftrightarrow Q(x)$: x = -2 if and only if $x^2 = 4$. True if x = 0, -2.
- 2.39 (a) True for all $x \in S \{-4\}$.
 - (b) True for $x \in S \{3\}$.
 - (c) True for $x \in S \{-4, 0\}$.
- 2.40 (a) True for $(x, y) \in \{(3, 4), (5, 5)\}.$
 - (b) True for $(x, y) \in \{(1, 2), (6, 6)\}.$
 - (c) True for $(x, y) \in \{(1, -1), (1, 0)\}.$
- 2.41 True if n = 3.
- 2.42 True if n = 3.
- $2.43 \ P(1) \Rightarrow Q(1)$ is false (since P(1) is true and Q(1) is false).
 - $Q(3) \Rightarrow P(3)$ is false (since Q(3) is true and P(3) is false).
 - $P(2) \Leftrightarrow Q(2)$ is true (since P(2) and Q(2) are both true).
- 2.44 (i) $P(1) \Rightarrow Q(1)$ is false;
 - (ii) $Q(4) \Rightarrow P(4)$ is true;
 - (iii) $P(2) \Leftrightarrow R(2)$ is true;
 - (iv) $Q(3) \Leftrightarrow R(3)$ is false.
- 2.45 True for all $n \in S$.

Exercises for Section 2.7: Tautologies and Contradictions

2.46 The compound statement $P \Rightarrow (P \lor Q)$ is a tautology since it is true for all combinations of truth values for the component statements P and Q. See the truth table below.

P	Q	$P \lor Q$	$P \Rightarrow (P \lor Q)$
T	T	T	T
T	F	T	\mathbf{T}
F	T	T	\mathbf{T}
F	F	F	\mathbf{T}

2.47 The compound statements $(P \land (\sim Q)) \land (P \land Q)$ and $(P \Rightarrow \sim Q) \land (P \land Q)$ are contradictions. See the truth table below.

P	Q	$\sim Q$	$P \wedge Q$	$P \wedge (\sim Q)$	$(P \land (\sim Q)) \land (P \land Q)$	$P \Rightarrow \sim Q$	$(P \Rightarrow \sim Q) \land (P \land Q)$
T	Т	F	T	F	\mathbf{F}	F	F
T	F	T	F	T	\mathbf{F}	T	F
F	Т	F	F	F	\mathbf{F}	T	F
F	F	T	F	F	\mathbf{F}	Т	F

2.48 The compound statement $(P \land (P \Rightarrow Q)) \Rightarrow Q$ is a tautology since it is true for all combinations of truth values for the component statements P and Q. See the truth table below.

	P	Q	$P \Rightarrow Q$	$P \wedge (P \Rightarrow Q)$	$(P \land (P \Rightarrow Q)) \Rightarrow Q$
ĺ	T	Т	T	T	T
-	Τ	F	F	F	${f T}$
	F	Т	T	F	${f T}$
ı	F	F	T	F	${f T}$

$$(P \wedge (P \Rightarrow Q)) \Rightarrow Q$$
: If P and P implies Q , then Q .

2.49 The compound statement $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$ is a tautology since it is true for all combinations of truth values for the component statements P, Q and R. See the truth table below.

P	Q	R	$P \Rightarrow Q$	$Q \Rightarrow R$	$(P \Rightarrow Q) \land (Q \Rightarrow R)$	$P \Rightarrow R$	$((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow (P \Rightarrow R)$
T	T	Т	Т	T	T	T	T
T	F	Т	F	T	F	T	T
F	T	Т	Т	Т	Т	T	T
F	F	Т	Т	T	Т	T	T
T	T	F	Т	F	F	F	T
T	F	F	F	T	F	F	T
F	Т	F	Т	F	F	T	T
F	F	F	T	T	T	T	T

$$((P\Rightarrow Q)\wedge (Q\Rightarrow R))\Rightarrow (P\Rightarrow R)\text{: If P implies Q and Q implies R, then P implies R.}$$

- 2.50 (a) $R \vee S$ is a tautology. (b) $R \wedge S$ is a contradiction.
 - (c) $R \Rightarrow S$ is a contradiction. (d) $S \Rightarrow R$ is a tautology.
- 2.51 The compound statement $(P \lor Q) \lor (Q \Rightarrow P)$ is a tautology.

P	Q	$P \vee Q$	$Q \Rightarrow P$	$(P \lor Q) \lor (Q \Rightarrow P)$
T	Т	Т	T	T
T	F	T	T	\mathbf{T}
F	Т	T	F	\mathbf{T}
F	F	F	T	\mathbf{T}

2.52 The compound statement $R = ((P \Rightarrow Q) \Rightarrow P) \Rightarrow (P \Rightarrow (Q \Rightarrow P))$ is a tautology.

P	Q	$P \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow P$	$Q \Rightarrow P$	$P \Rightarrow (Q \Rightarrow P)$	R
T	T	T	T	T	T	T
T	F	F	T	T	T	\mathbf{T}
F	Т	T	F	F	T	\mathbf{T}
F	F	T	F	T	T	\mathbf{T}

Exercises for Section 2.8: Logical Equivalence

2.53 (a) See the truth table below.

P	Q	$\sim P$	$\sim Q$	$P \Rightarrow Q$	$(\sim P) \Rightarrow (\sim Q)$
T	T	F	F	T	T
T	F	F	T	\mathbf{F}	T
F	T	Т	F	\mathbf{T}	\mathbf{F}
F	F	Т	T	\mathbf{T}	T

Since $P \Rightarrow Q$ and $(\sim P) \Rightarrow (\sim Q)$ do not have the same truth values for all combinations of truth values for the component statements P and Q, the compound statements $P \Rightarrow Q$ and $(\sim P) \Rightarrow (\sim Q)$ are not logically equivalent. Note that the last two columns in the truth table are not the same.

- (b) The implication $Q \Rightarrow P$ is logically equivalent to $(\sim P) \Rightarrow (\sim Q)$.
- 2.54 (a) See the truth table below.

[P	Q	$\sim P$	$\sim Q$	$P \vee Q$	$\sim (P \lor Q)$	$(\sim P) \lor (\sim Q)$
	Τ	T	F	F	T	\mathbf{F}	F
ı	Τ	F	F	T	T	\mathbf{F}	\mathbf{T}
	F	Т	Т	F	T	\mathbf{F}	\mathbf{T}
	F	F	T	Т	F	\mathbf{T}	\mathbf{T}

Since $\sim (P \vee Q)$ and $(\sim P) \vee (\sim Q)$ do not have the same truth values for all combinations of truth values for the component statements P and Q, the compound statements $\sim (P \vee Q)$ and $(\sim P) \vee (\sim Q)$ are not logically equivalent.

- (b) The biconditional $\sim (P \vee Q) \Leftrightarrow ((\sim P) \vee (\sim Q))$ is not a tautology as there are instances when this biconditional is false.
- 2.55 (a) The statements $P \Rightarrow Q$ and $(P \land Q) \Leftrightarrow P$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P and Q. See the truth table.

P	Q	$P \Rightarrow Q$	$P \wedge Q$	$(P \land Q) \Leftrightarrow P$
T	T	T	T	T
T	F	F	F	\mathbf{F}
F	T	T	F	\mathbf{T}
F	F	T	F	T

(b) The statements $P \Rightarrow (Q \lor R)$ and $(\sim Q) \Rightarrow ((\sim P) \lor R)$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P, Q and R. See the truth table.

P	Q	R	$\sim P$	$\sim Q$	$Q \vee R$	$P \Rightarrow (Q \lor R)$	$(\sim P) \vee R$	$(\sim Q) \Rightarrow ((\sim P) \vee R)$
T	T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T	\mathbf{T}
F	T	Т	Т	F	T	\mathbf{T}	T	\mathbf{T}
F	F	Т	Т	Т	T	\mathbf{T}	T	\mathbf{T}
T	T	F	F	F	T	\mathbf{T}	F	${f T}$
T	F	F	F	T	F	\mathbf{F}	F	\mathbf{F}
F	T	F	T	F	T	\mathbf{T}	T	\mathbf{T}
F	F	F	Т	T	F	\mathbf{T}	T	\mathbf{T}

2.56 The statements Q and $(\sim Q) \Rightarrow (P \land (\sim P))$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P and Q. See the truth table below.

P	Q	$\sim P$	$\sim Q$	$P \wedge (\sim P)$	$(\sim Q) \Rightarrow (P \land (\sim P))$
T	T	F	F	F	T
T	F	F	T	F	F
F	T	T	F	F	\mathbf{T}
F	F	T	Т	F	\mathbf{F}

2.57 The statements $(P \lor Q) \Rightarrow R$ and $(P \Rightarrow R) \land (Q \Rightarrow R)$ are logically equivalent since they have the same truth values for all combinations of truth values for the component statements P, Q and R. See the truth table.

P	Q	R	$P \lor Q$	$(P \lor Q) \Rightarrow R$	$P \Rightarrow R$	$Q \Rightarrow R$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
T	T	T	Т	T	Т	T	T
T	F	T	T	T	T	T	\mathbf{T}
F	Т	Т	Т	\mathbf{T}	T	T	\mathbf{T}
F	F	Т	F	\mathbf{T}	T	T	${f T}$
T	Т	F	Т	F	F	F	\mathbf{F}
T	F	F	T	F	F	T	\mathbf{F}
F	Т	F	T	F	T	F	\mathbf{F}
F	F	F	F	T	T	T	\mathbf{T}

- 2.58 If S and T are not logically equivalent, there is some combination of truth values of the component statements P, Q and R for which S and T have different truth values.
- 2.59 Since there are only four different combinations of truth values of P and Q for the second and third rows of the statements S_1, S_2, S_3, S_4 and S_5 , at least two of these must have identical truth tables and so are logically equivalent.

Exercises for Section 2.9: Some Fundamental Properties of Logical Equivalence

- 2.60 (a) The statement $P \vee (Q \wedge R)$ is logically equivalent to $(P \vee Q) \wedge (P \vee R)$ since the last two columns in the truth table in Figure 4 are the same.
 - (b) The statement $\sim (P \vee Q)$ is logically equivalent to $(\sim P) \wedge (\sim Q)$ since the last two columns in the truth table in Figure 5 are the same.
- 2.61 (a) Both $x \neq 0$ and $y \neq 0$.
 - (b) Either the integer a is odd or the integer b is odd.

P	Q	R	$P \vee Q$	$P \vee R$	$Q \wedge R$	$P \lor (Q \land R)$	$(P \lor Q) \land (P \lor R)$
T	T	T	T	T	T	Т	Т
T	F	T	T	T	F	Т	T
F	T	T	T	T	T	Т	T
F	F	T	F	T	F	F	F
T	T	F	T	T	F	Т	T
T	F	F	T	T	F	T	Т
F	T	F	T	\overline{F}	F	F	F
F	F	F	F	F	F	F	F

Figure 4: Answer for Exercise 2.60(a)

P	Q	$\sim P$	$\sim Q$	$P\vee Q$	$\sim (P \vee Q)$	$(\sim P) \land (\sim Q)$
T	T	F	F	T	\mathbf{F}	F
T	F	F	T	T	F	F
F	T	T	F	T	F	F
F	F	T	T	F	T	Т

Figure 5: Answer for Exercise 2.60(b)

- 2.62 (a) x and y are even only if xy is even.
 - (b) If xy is even, then x and y are even.
 - (c) Either at least one of x and y is odd or xy is even.
 - (d) x and y are even and xy is odd.
- 2.63 Either $x^2 = 2$ and $x \neq \sqrt{2}$ or $x = \sqrt{2}$ and $x^2 \neq 2$.
- 2.64 The statement $[(P \lor Q) \land \sim (P \land Q)]$ is logically equivalent to $\sim (P \Leftrightarrow Q)$ since the last two columns in the truth table below are the same.

P	Q	$P \lor Q$	$P \wedge Q$	$\sim (P \land Q)$	$P \Leftrightarrow Q$	$(P \lor Q) \land \sim (P \land Q)$	$\sim (P \Leftrightarrow Q)$
Т	T	Т	Т	F	T	F	F
T	F	Т	F	T	F	T	T
F	Т	Т	F	Т	F	T	T
F	F	F	F	Т	Т	F	F

- 2.65 If 3n + 4 is odd, then 5n 6 is odd.
- 2.66 n^3 is odd if and only if 7n + 2 is even.

Exercises for Section 2.10: Quantified Statements

- $2.67 \ \forall x \in S, P(x)$: For every odd integer x, the integer $x^2 + 1$ is even.
 - $\exists x \in S, Q(x)$: There exists an odd integer x such that x^2 is even.
- 2.68 Let $R(x): x^2 + x + 1$ is even. and let $S = \{x \in \mathbf{Z}: x \text{ is odd}\}.$
 - $\forall x \in S, R(x)$: For every odd integer x, the integer $x^2 + x + 1$ is even.
 - $\exists x \in S, R(x)$: There exists an odd integer x such that $x^2 + x + 1$ is even.