2 FUNCTIONS

EXERCISE 2-1

10. The table specifies a function, since for each domain value there corresponds one and only one range value.

12. The table does not specify a function, since more than one range value corresponds to a given domain value.

(Range values 1, 2 correspond to domain value 9.)

- **14.** This is a function.
- 16. The graph specifies a function; each vertical line in the plane intersects the graph in at most one point.
- **18.** The graph does not specify a function. There are vertical lines which intersect the graph in more than one point. For example, the *y*-axis intersects the graph in two points.
- 20. The graph does not specify a function.
- 22. $y = 4x + \frac{1}{x}$ is neither linear nor constant. 24. 2x 4y 6 = 0 is linear.
- **26.** x + xy + 1 = 0 is neither linear nor constant.
- 28. $\frac{y-x}{2} + \frac{3+2x}{4} = 1$ simplifies to $y = \frac{1}{2}$ constant.

38. $f(x) = \frac{3x^2}{x^2 + 2}$. Since the denominator is bigger than 1, we note that the values of *f* are between 0 and 3. Furthermore, the function *f* has the property that f(-x) = f(x). So, adding points x = 3, x = 4, x = 5, we have:

Domain: $x \ge -5$ or $[-5,\infty)$. 52.

40.

44.

48.

Domain: all real numbers except x = 2.

Given 6x - 7y = 21. Solving for y we have: -7y = 21 - 6x and $y = \frac{6}{7}x - 3$. 54.

This equation specifies a function. The domain is R, the set of real numbers.

56. Given x(x + y) = 4. Solving for y we have: $xy + x^2 = 4$ and $y = \frac{4 - x^2}{x}$.

This equation specifies a function. The domain is all real numbers except 0

- **58.** Given $x^2 + y^2 = 9$. Solving for y we have: $y^2 = 9 x^2$ and $y = \pm \sqrt{9 x^2}$. This equation does not define y as a function of x. For example, when x = 0, $y = \pm 3$.
- **60.** Given $\sqrt{x} y^3 = 0$. Solving for y we have: $y^3 = \sqrt{x}$ and $y = x^{1/6}$. This equation specifies a function. The domain is all nonnegative real numbers, i.e., $x \ge 0$.

62.
$$f(-3x) = (-3x)^2 - 4 = 9x^2 - 4$$

64.
$$f(x-1) = (x-1)^2 - 4 = x^2 - 2x + 1 - 4 = x^2 - 2x - 3$$

66.
$$f(x^3) = (x^3)^2 - 4 = x^6 - 4$$

68.
$$f(\sqrt[4]{x}) = (x^{1/4})^2 - 4 = x^{1/2} - 4 = \sqrt{x} - 4$$

70.
$$f(-3) + f(h) = (-3)^2 - 4 + h^2 - 4 = 5 + h^2 - 4 = h^2 + 1$$

72.
$$f(-3+h) = (-3+h)^2 - 4 = 9 - 6h + h^2 - 4 = 5 - 6h + h^2$$

74.
$$f(-3+h) - f(-3) = \left[(-3+h)^2 - 4\right] - \left[(-3)^2 - 4\right] = (9-6h+h^2-4) - (9-4) = -6h+h^2$$

76. (A)
$$f(x+h) = -3(x+h) + 9 = -3x - 3h + 9$$

(B)
$$f(x+h) - f(x) = (-3x - 3h + 9) - (-3x + 9) = -3h$$

(C)
$$\frac{f(x+h) - f(x)}{h} = \frac{-3h}{h} = -3$$

78. (A)
$$f(x+h) = 3(x+h)^2 + 5(x+h) - 8$$

= $3(x^2 + 2xh + h^2) + 5x + 5h - 8$
= $3x^2 + 6xh + 3h^2 + 5x + 5h - 8$

(B)
$$f(x+h) - f(x) = (3x^2 + 6xh + 3h^2 + 5x + 5h - 8) - (3x^2 + 5x - 8)$$

= $6xh + 3h^2 + 5h$

(C)
$$\frac{f(x+h) - f(x)}{h} = \frac{6xh + 3h^2 + 5h}{h} = 6x + 3h + 5$$

80. (A)
$$f(x+h) = x^2 + 2xh + h^2 + 40x + 40h$$

(B)
$$f(x+h) - f(x) = 2xh + h^2 + 40h$$

(C)
$$\frac{f(x+h) - f(x)}{h} = 2x + h + 40$$

- 82. Given A = l w = 81. Thus, $w = \frac{81}{l}$. Now $P = 2l + 2w = 2l + 2\frac{81}{l} = 2l + \frac{162}{l}$. The domain is l > 0.
- 84. Given $P = 2 \ell + 2w = 160$ or $\ell + w = 80$ and $\ell = 80 w$. Now $A = \ell w = (80 - w)w$ and $A = 80w - w^2$. The domain is $0 \le w \le 80$. [Note: $w \le 80$ since w > 80 implies $\ell < 0$.]

(B) p(11) = 1,340 dollars per computer p(18) = 920 dollars per computer

88. (A) R(x) = xp(x)= x(2,000 - 60x) thousands of dollars

Domain: $1 \le x \le 25$

(B) Table 11 Revenue		(C)	R(x)
<i>x</i> (thousands)	R(x)(thousands)		\$15,000
1	\$1,940		•
5	8,500		T 🖌
10	14,000		1/
15	16,500		
20	16,000		●
25	12,500		25 x

90. (A)
$$P(x) = R(x) - C(x)$$

= $x(2,000 - 60x) - (4,000 + 500x)$ thousand dollars
= $1,500x - 60x^2 - 4,000$

Domain: $1 \le x \le 25$

(B) Table 13 Profit		(C)	P(x)
<i>x</i> (thousands)	P(x) (thousands)		\$5,00
1	-\$2,560		
5	2,000		
10	5,000		
15	5,000		
20	2,000		
25	-4,000		

- 92. (A) Given 5v 2s = 1.4. Solving for v, we have: v = 0.4s + 0.28. If s = 0.51, then v = 0.4(0.51) + 0.28 = 0.484 or 48.4%.
 - (B) Solving the equation for *s*, we have: s = 2.5v - 0.7. If v = 0.51, then s = 2.5(0.51) - 0.7 = 0.575 or 57.5%.

EXERCISE 2-2

- **2.** $f(x) = 1 + \sqrt{x}$ Domain: $[0, \infty)$; range: $[1, \infty)$.
- 4. $f(x) = x^2 + 10$ Domain: all real numbers; range: $[10, \infty)$.
- 6. f(x) = 5x + 3 Domain: all real numbers; range: all real numbers.
- 8. f(x) = 15 20|x| Domain: all real numbers; range: $(-\infty, 15]$.
- 10. $f(x) = -8 + \sqrt[3]{x}$ Domain: all real numbers; range: all real numbers.

28. The graph of h(x) = -|x - 5| is the graph of y = |x| reflected in the *x* axis and shifted 5 units to the right.

32. The graph of $g(x) = -6 + \sqrt[3]{x}$ is the graph of $y = \sqrt[3]{x}$ shifted 6 units down.

26.

30. The graph of $m(x) = (x + 3)^2 + 4$ is the graph of $y = x^2$ shifted 3 units to the left and 4 units up.

34. The graph of $m(x) = -0.4x^2$ is the graph of $y = x^2$ reflected in the *x* axis and vertically contracted by a factor of 0.4.

- 36. The graph of the basic function y = |x| is shifted 3 units to the right and 2 units up. y = |x-3| + 2
- **38.** The graph of the basic function y = |x| is reflected in the *x* axis, shifted 2 units to the left and 3 units up. Equation: y = 3 |x + 2|
- **40.** The graph of the basic function $\sqrt[3]{x}$ is reflected in the *x* axis and shifted up 2 units. Equation: $y = 2 \sqrt[3]{x}$
- 42. The graph of the basic function $y = x^3$ is reflected in the x axis, shifted to the right 3 units and up 1 unit. Equation: $y = 1 - (x - 3)^3$

- 56. The graph of the basic function y = x is reflected in the x axis and vertically expanded by a factor of 2. Equation: y = -2x
- **58.** The graph of the basic function y = |x| is vertically expanded by a factor of 4. Equation: y = 4|x|
- 60. The graph of the basic function $y = x^3$ is vertically contracted by a factor of 0.25. Equation: $y = 0.25x^3$.
- **62.** Vertical shift, reflection in *y* axis.

Reversing the order does not change the result. Consider a point (a, b) in the plane. A vertical shift of *k* units followed by a reflection in *y* axis moves (a, b) to (a, b + k) and then to (-a, b + k). In the reverse order, a reflection in *y* axis followed by a vertical shift of *k* units moves (a, b) to (-a, b + k). The results are the same.

64. Vertical shift, vertical expansion.

Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of k units followed by a vertical expansion of h (h > 1) moves (a, b) to (a, b + k) and then to (a, bh + kh). In the reverse order, a vertical expansion of h followed by a vertical shift of k units moves (a, b) to (a, bh + kh) and then to $(a, bh + kh) \neq (a, bh + k)$.

70.

(A)

(B)

(B)

- **66.** Horizontal shift, vertical contraction. Reversing the order does not change the result. Consider a point (a, b) in the plane. A horizontal shift of k units followed by a vertical contraction of h (0 < h < 1) moves (a, b) to (a + k, b) and then to (a + k, bh). In the reverse order, a vertical contraction of h followed by a horizontal shift of k units moves (a, b) to (a, bh) and then to (a + k, bh). The results are the same.
- **68.** (A) The graph of the basic function $y = \sqrt{x}$ is vertically expanded by a factor of 4.
 - (B) p(x)100 50 0 100 200 x
- 72. (A) Let x = number of kwh used in a winter month. For $0 \le x \le 700$, the charge is 8.5 + .065x. At x = 700, the charge is \$54. For x > 700, the charge is 54 + .053(x - 700) = 16.9 + 0.053x.

Thus,

$$W(x) = \begin{cases} 8.5 + .065x & \text{if } 0 \le x \le 700\\ 16.9 + 0.053x & \text{if } x > 700 \end{cases}$$

74. (A) Let x = taxable income.

If $0 \le x \le 12,500$, the tax due is 0.2x. At x = 12,500, the tax due is 250. For $12,500 < x \le 50,000$, the tax due is 250 + .04(x - 12,500) = .04x - 250. For x > 50,000, the tax due is 1,250 + .06(x - 50,000) = .06x - 1,250.

Thus,

$$T(x) = \begin{cases} 0.02x & \text{if } 0 \le x \le 12,500\\ 0.04x - 250 & \text{if } 12,500 < x \le 50,000\\ 0.06x - 1,250 & \text{if } x > 50,000 \end{cases}$$

EXERCISE 2-3

2. $x^2 + 16x$ (standard form) $x^2 + 16x + 64 - 64$ (completing the square) $(x+8)^2 - 64$ (vertex form)

6.
$$3x^2 + 18x + 21$$
 (standard form)

 $3(x^{2} + 6x) + 21$ $3(x^{2} + 6x + 9 - 9) + 21 \text{ (completing the square)}$ $3(x + 3)^{2} + 21 - 27$ $3(x + 3)^{2} - 6 \text{ (vertex form)}$

8. $-5x^2 + 15x - 11$ (standard form)

 $-5(x^{2} - 3x) - 11$ -5(x² - 3x + $\frac{9}{4} - \frac{9}{4}$) - 11 (completing the square) -5(x - $\frac{3}{2}$)² - 11 + $\frac{45}{4}$ -5(x - $\frac{3}{2}$)² + $\frac{1}{4}$ (vertex form)

(C)
$$T(32,000) = \$1,030$$

 $T(64,000) = \$2,590$

78. (A) The graph of the basic function $y = \sqrt[3]{x}$ is reflected in the x axis and shifted up 10 units.

4. $x^{2} - 12x - 8$ (standard form) $(x^{2} - 12x) - 8$ $(x^{2} - 12x + 36) + 8 - 36$ (completing the square) $(x - 6)^{2} - 44$ (vertex form)

- 10. The graph of g(x) is the graph of $y = x^2$ shifted right 1 unit and down 6 units; $g(x) = (x-1)^2 6$.
- 12. The graph of n(x) is the graph of $y = x^2$ reflected in the x axis, then shifted right 4 units and up 7 units; $n(x) = -(x-4)^2 + 7$.
- **14.** (A) g (B) m (C) n (D) f
- **16.** (A) x intercepts: -5, -1; y intercept: -5 (B) Vertex: (-3, 4) (C) Maximum: 4 (D) Range: $y \le 4$ or $(-\infty, 4]$
- **18.** (A) *x* intercepts: 1, 5; *y* intercept: 5 (B) Vertex: (3, -4) (C) Minimum: -4 (D) Range: $y \ge -4$ or $[-4, \infty)$
- 20. $g(x) = -(x+2)^2 + 3$ (A) x intercepts: $-(x+2)^2 + 3 = 0$ $(x+2)^2 = 3$ $x+2 = \pm \sqrt{3}$ $x = -2 - \sqrt{3}, -2 + \sqrt{3}$

y intercept: -1

(B) Vertex: (-2, 3) (C) Maximum: 3 (D) Range: $y \le 3$ or (- ∞ , 3]

22.
$$n(x) = (x-4)^2 - 3$$

(A) x intercepts: $(x-4)^2 - 3 = 0$
 $(x-4)^2 = 3$
 $x-4 = \pm \sqrt{3}$
 $x = 4 - \sqrt{3}, 4 + \sqrt{3}$

y intercept: 13

(B) Vertex:
$$(4, -3)$$
 (C) Minimum: -3 (D) Range: $y \ge -3$ or $[-3, \infty)$

24.
$$y = -(x-4)^2 + 2$$

26. $y = [x - (-3)]^2 + 1$ or $y = (x+3)^2 + 1$
28. $g(x) = x^2 - 6x + 5 = x^2 - 6x + 9 - 4 = (x-3)^2 - 4$
(A) x intercepts: $(x-3)^2 - 4 = 0$
 $(x-3)^2 = 4$
 $x - 3 = \pm 2$
 $x = 1, 5$

y intercept: 5

(B) Vertex: (3, -4) (C) Minimum: -4 (D) Range: $y \ge -4$ or $[-4, \infty)$

30.
$$s(x) = -4x^2 - 8x - 3 = -4\left[x^2 + 2x + \frac{3}{4}\right] = -4\left[x^2 + 2x + 1 - \frac{1}{4}\right]$$

= $-4\left[(x+1)^2 - \frac{1}{4}\right] = -4(x+1)^2 + 1$

(A) x intercepts:
$$-4(x+1)^2 + 1 = 0$$

 $4(x+1)^2 = 1$
 $(x+1)^2 = \frac{1}{4}$
 $x+1 = \pm \frac{1}{2}$
 $x = -\frac{3}{2}, -\frac{1}{2}$

y intercept: -3

(B) Vertex:
$$(-1, 1)$$
 (C) Maximum: 1 (D) Range: $y \le 1$ or $(-\infty, 1]$

32.
$$v(x) = 0.5x^2 + 4x + 10 = 0.5[x^2 + 8x + 20] = 0.5[x^2 + 8x + 16 + 4]$$

= $0.5[(x + 4)^2 + 4]$
= $0.5(x + 4)^2 + 2$

(A) x intercepts: none y intercept: 10

(B) Vertex: (-4, 2) (C) Minimum: 2 (D) Range: $y \ge 2$ or $[2, \infty)$

34.
$$g(x) = -0.6x^2 + 3x + 4$$

(A) $g(x) = -2: -0.6x^2 + 3x + 4 = -2$
 $0.6x^2 - 3x - 6 = 0$
(B) $g(x) = 5: -0.6x^2 + 3x + 4 = 5$
 $-0.6x^2 + 3x - 1 = 0$
 $0.6x^2 - 3x + 1 = 0$
 $0.6x^2 - 3x + 1 = 0$
 $x = -1.53, 6.53$
(C) $g(x) = 8: -0.6x^2 + 3x + 4 = 8$
 $-0.6x^2 + 3x - 4 = 0$

No solution

 $0.6x^2 - 3x + 4 = 0$

36. Using a graphing utility with $y = 100x - 7x^2 - 10$ and the calculus option with maximum command, we obtain 347.1429 as the maximum value.

38.
$$m(x) = 0.20x^2 - 1.6x - 1 = 0.20(x^2 - 8x - 5)$$

= $0.20[(x - 4)^2 - 21] = 0.20(x - 4)^2 - 4.2$

(A) x intercepts:
$$0.20(x-4)^2 - 4.2 = 0$$

 $(x-4)^2 = 21$
 $x-4 = \pm \sqrt{21}$
 $x = 4 - \sqrt{21} = -0.6, 4 + \sqrt{21} = 8.6;$

y intercept: -1

(B) Vertex: (4, -4.2) (C) Minimum: -4.2 (D) Range:
$$y \ge -4.2$$
 or $[-4.2, \infty)$

40.
$$n(x) = -0.15x^2 - 0.90x + 3.3 = -0.15(x^2 + 6x - 22) = -0.15[(x + 3)^2 - 31] = -0.15(x + 3)^2 + 4.65$$

(A) x intercepts:
$$-0.15(x+3)^2 + 4.65 = 0$$

 $(x+3)^2 = 31$
 $x+3 = \pm \sqrt{31}$
 $x = -3 - \sqrt{31} = -8.6, -3 + \sqrt{31} = 2.6;$

y intercept: 3.30

(B) Vertex: (-3, 4.65) (C) Maximum: 4.65 (D) Range: $x \le 4.65$ or $(-\infty, 4.65]$

42.
$$(x+6)(x-3) < 0$$

Therefore, either (x+6) < 0 and (x-3) > 0 or (x+6) > 0 and (x-3) < 0. The first case is impossible. The second case implies -6 < x < 3. Solution set: (-6,3).

44. $x^2 + 7x + 12 = (x+3)(x+4) \ge 0$

Therefore, either $(x+3) \ge 0$ and $(x+4) \ge 0$ or $(x+3) \le 0$ and $(x+4) \le 0$. The first case implies $x \ge -3$ and the second case implies $x \le -4$. Solution set: $(-\infty, -4] \cup [-3, \infty)$.

52. f is a quadratic function and $\max f(x) = f(-3) = -5$ Axis: x = -3Vertex: (-3, -5)Range: $y \le -5$ or $(-\infty, -5]$ x intercepts: None

(C) f(x) > g(x) for 1.08 < x < 6.35

(D) f(x) < g(x) for $0 \le x < 1.08$ or $6.35 < x \le 9$

58. The graph of a quadratic with no real zeros will not intersect the x-axis.

60. Such an equation will have $b^2 - 4ac = 0$.

62. Such an equation will have
$$\frac{k}{a} < 0$$
.

64.
$$ax^{2} + bx + c = a(x - h)^{2} + k$$

= $a(x^{2} - 2hx + h^{2}) + k$
= $ax^{2} - 2ahx + ah^{2} + k$

Equating constant terms gives $k = c - ah^2$. Since h is the vertex, we have $h = -\frac{b}{2a}$. Substituting then gives

$$k = c - ah^{2} = c - a\left(\frac{b^{2}}{4a^{2}}\right) = c - \frac{b^{2}}{4a}$$
$$= \frac{4ac - b^{2}}{4a}$$

$$66. \quad f(x) = -0.0117x^2 + 0.32x + 17.9$$

(C) For 2025, x = 45 and $f(45) = -0.0117(45)^2 + 0.32(45) + 17.9 = 8.6\%$ For 2028, x = 48 and $f(48) = -0.0117(48)^2 + 0.32(48) + 17.9 = 6.3\%$

(D) Market share rose from 18.8% in 1985 to a maximum of 20.7% in 1995 and then fell to 15.3% in 2010.

68. Verify

(C) 2000 - 60(50/3) = \$1,000

(B)
$$R(x) = C(x)$$

 $x(2,000 - 60x) = 4,000 + 500x$
 $2,000x - 60x^2 = 4,000 + 500x$
 $60x^2 - 1,500x + 4,000 = 0$
 $6x^2 - 150x + 400 = 0$
 $x = 3.035, 21.965$

Break-even at 3.035 thousand (3,035) and 21.965 thousand (21,965)

(C) Loss: $1 \le x < 3.035$ or $21.965 < x \le 25$; Profit: 3.035 < x < 21.965

74. (A)
$$P(x) = R(x) - C(x)$$

= 1,500x - 60x² - 4,000
y
16,000
y
16,000
y
16,000
y
16,000
y
16,000
x
76. Solve: $f(x) = 1,000(0.04 - x^2) = 30$

- (B) and (C) Intercepts and break-even points: 3,035 computers and 21,965 computers
- (D) Maximum profit is \$5,375,000 when 12,500 computers are produced. This is much smaller than the maximum revenue of \$16,666,667.

EXERCISE 2-4

- 2. $f(x) = x^2 5x + 6$
 - (A) Degree: 2

(B)
$$x^2 - 5x + 6 = 0$$

 $(x-2)(x-3) = 30$
 $x = 2, 3$

x-intercepts: x = 2, 3

(C)
$$f(0) = 0^2 - 5(0) + 6 = 6$$

y-intercept: 6

$$6. \quad f(x) = 5x^6 + x^4 + x^8 + 10$$

- (A) Degree: 8
- (B) $f(x) \ge 10$ for all x. No x-intercepts.
- (C) $f(0) = 5(0)^6 + (0)^4 + (0)^8 + 10 = 10$ y-intercept: 10

For
$$x = 2,300$$
, the estimated fuel consumption is
 $y = a(2,300)^2 + b(2,300) + c = 5.6$ mpg.

- 4. f(x) = 30 3x
 - (A) Degree: 1
 - (B) 30-3x = 03x = 30x = 10
 - x-intercept: 10

(C)
$$f(0) = 30 - 3(0) = 30$$

y-intercept: 30

- 8. $f(x) = (x-5)^2(x+7)^2$
 - (A) Degree: 4

(B)
$$(x-5)^2(x+7)^2 = 0$$

 $x = 5, -7$
x-intercepts: $x = 5, -7$

(C) $f(0) = (0-5)^2(0+7)^2 = 1,225$ y-intercept: 1,225

10.
$$f(x) = (2x-5)^2(x^2-9)^4$$

(A) Degree: 10

(B)
$$(2x-5)^2 (x^2-9)^4 = 0$$

 $x = \frac{5}{2}, -3, 3 \quad x = -3, \frac{1}{2}$
x-intercepts: -3, 5/2, 3

(C) $f(0) = [2(0) - 5]^2 [(0)^2 - 9)^4 = 5^2 9^4 = 164,025$ y-intercept: 164,025

4

- **12**. (A) Minimum degree: 2
 - (B) Negative it must have even degree, and positive values in the domain are mapped to negative values in the range.

- 14. (A) Minimum degree: 3
 - (B) Negative it must have odd degree, and positive values in the domain are mapped to negative values in the range.
- **16.** (A) Minimum degree: 4
 - (B) Positive it must have even degree, and positive values in the domain are mapped to positive values in the range.
- **18.** (A) Minimum degree: 5
 - (B) Positive it must have odd degree, and large positive values in the domain are mapped to positive values in the range.
- 20. A polynomial of degree 7 can have at most 7 x intercepts.
- 22. A polynomial of degree 6 may have no x intercepts. For example, the polynomial $f(x) = x^6 + 1$ has no x intercepts.
- 24. (A) Intercepts:

x-intercept(s):	y-intercept:
x - 3 = 0	$f(0) = \frac{0-3}{-1} = -1$
<i>x</i> = 3	$\int (0)^{-} 0+3^{-1}$
(3,0)	(0, -1)

- (B) Domain: all real numbers except x = -3
- (C) Vertical asymptote at x = -3 by case 1 of the vertical asymptote procedure on page 57. Horizontal asymptote at y = 1 by case 2 of the horizontal asymptote procedure on page 57.

26. (A) Intercepts:

<i>x</i> -intercept(s):	y-intercept:
2x = 0	$f(0) = \frac{2(0)}{2} = 0$
x = 0	$\int (0)^{-1} 0 - 3^{-0}$
(0, 0)	(0, 0)

(B) Domain: all real numbers except x = 3.

(C) Vertical asymptote at x = 3 by case 1 of the vertical asymptote procedure on page 57. Horizontal asymptote at y = 2 by case 2 of the horizontal asymptote procedure on page 57.

28. (A) Intercepts:

x-intercept: 3-3x=0	y-intercept: 3-3(0) 3
x = 1	$f(0) = \frac{s(0)}{0-2} = -\frac{s}{2}$
(1, 0)	$\left(0,-\frac{3}{2}\right)$

- (B) Domain: all real numbers except x = 2
- (C) Vertical asymptote at x = 2 by case 1 of the vertical asymptote procedure on page 57. Horizontal asymptote at y = -3 by case 2 of the horizontal asymptote procedure on page 57.

- 34. $y = \frac{6}{4}$, by case 2 for horizontal asymptotes on page 57.
- **36.** $y = -\frac{1}{2}$, by case 2 for horizontal asymptotes on page 57.
- **38.** y = 0, by case 1 for horizontal asymptotes on page 57.
- 40. No horizontal asymptote, by case 3 for horizontal asymptotes on page 57.
- 42. Here we have denominator $(x^2 4)(x^2 16) = (x 2)(x + 2)(x 4)(x + 4)$. Since none of these linear terms are factors of the numerator, the function has vertical asymptotes at x = 2, x = -2, x = 4, and x = -4.
- 44. Here we have denominator $x^2 + 7x 8 = (x 1)(x + 8)$. Also, we have numerator $x^2 8x + 7 = (x 1)(x 7)$. By case 2 of the vertical asymptote procedure on page 57, we conclude that the function has a vertical asymptote at x = -8.
- 46. Here we have denominator $x^3 3x^2 + 2x = x(x^2 3x + 2) = x(x 2)(x 1)$. We also have numerator $x^2 + x 2 = (x + 2)(x 1)$. By case 2 of the vertical asymptote procedure on page 57, we conclude that the function has vertical asymptotes at x = 0 and x = 2.

48. (A) Intercepts:

x-intercept(s):	y-intercept:
$3x^2 = 0$	f(0) = 0
x = 0	
(0, 0)	(0, 0)

(B) Vertical asymptote when $x^2 + x - 6 = (x - 2)(x + 3) = 0$; so, vertical asymptotes at x = 2, x = -3. Horizontal asymptote y = 3.

50. (A) Intercepts:

<i>x</i> -intercept(s):	y-intercept:
$3 - 3x^2 = 0$	$f(0) = -\frac{3}{2}$
$3x^2 = 3$	4
$x = \pm 1$	$\left(0,\frac{-3}{4}\right)$
(1,0), (-1,0)	(4)

(B) Vertical asymptotes when $x^2 - 4 = 0$; i.e. at x = 2 and x = -2. Horizontal asymptote at y = -3

52. (A) Intercepts:

<i>x</i> -intercept(s):	y-intercept:
5x - 10 = 0	$f(0) = \frac{-10}{-10} = \frac{5}{-10}$
x = 2	-12^{-6}
(2,0)	(0,5/6)

Vertical asymptote when $x^2 + x - 12 = (x + 4)(x - 3) = 0$; i.e. when x = -4 and when x = 3. (B) Horizontal asymptote at y = 0.

• • •

m(20) + 300 = 5,10020m = 4800m = 240C(x) = 240x + 300

(B)
$$\overline{C}(x) = \frac{C(x)}{x} = \frac{240x + 300}{x} = 240 + \frac{300}{x}$$

• • •

- (C) $\overline{C}(\mathbf{x})$ 600 <u>30</u> r $\overline{C}(x) = \frac{x^2 + 2x + 2,000}{x^2 + 2x + 2,000}$ **60**. (A)
- Average cost tends towards \$240 as (D) production increases.

- (A) Cubic regression model CUbicRe9 y=ax³+bx²+cx+d a=.0902777778 b=-1.87202381 c=10.14484127 d=241.5714286
- **66.** (A) The horizontal asymptote is y = 55.

68. (A) Cubic regression model

(C) A minimum average cost of \$566.84 is achieved at a production level of x = 8.67thousand cases per month.

(B) y(21) = 583 eggs

(B) This model gives an estimate of 2.5 divorces per 1,000 marriages.

EXERCISE 2-5

- 12. The graph of g is the graph of f shifted 2 units to the right.
- 14. The graph of g is the graph of f reflected in the x axis.
- 16. The graph of g is the graph of f shifted 2 units down.
- 18. The graph of g is the graph of f vertically contracted by a factor of 0.5 and shifted 1 unit to the right.

20. (A) y = f(x) + 2

$$(C) \quad y = 2f(x) - 4$$

22. $G(t) = 3^{\frac{t}{100}}; [-200, 200]$

x	G(t)
-200	$\frac{1}{9}$
-100	$\frac{1}{3}$
0	1
100	3
200	9

24.
$$y = 2 + e^{x-2}; [-1, 5]$$

x	у
-1	≈ 2.05
0	≈ 2.14
1	≈ 2.37
3	≈ 4.72
5	≈ 22.09

(B)
$$y = f(x-3)$$

(D)
$$y = 4 - f(x+2)$$

26. $y = e^{-|x|}; [-3, 3]$

- **28.** a = 2, b = -2 for example. The exponential function property: For $x \neq 0$, $a^x = b^x$ if and only if a = b assumes a > 0 and b > 0.
- **30.** $3^{x+4} = 3^{2x-5}$ x+4 = 2x-5-x = -9x = 9
- 34. $(3x+4)^4 = (52)^4$ 3x+4=52 3x = 48x = 16
- 38. $(4x+1)^4 = (5x-10)^4$ $(4x+1)^2 = (5x-10)^2$ $4x+1 = \pm 5(x-2)$ 4x+1 = 5(x-2), x = 114x+1 = -5(x-2), x = 1

42.
$$x^2 e^{-x} - 9e^{-x} = 0$$

 $e^{-x}(x^2 - 9) = 0$
 $(x^2 - 9) = 0$ (since $e^{-x} \neq 0$)
 $x = -3, 3$

46.
$$e^{3x-1} - e = 0$$

 $e^{3x-1} = e^{1}$
 $3x - 1 = 1$
 $x = 2/3$

32.
$$5^{x^{2}-x} = 5^{42}$$
$$x^{2} - x = 42$$
$$x^{2} - x - 42 = 0$$
$$(x - 7)(x + 6) = 0$$
$$x = -6, 7$$
36.
$$(2x + 1)^{2} = (3x - 1)^{2}$$

$$4x^{2} + 4x + 1 = 9x^{2} - 6x + 1$$

$$5x^{2} - 10x = 0$$

$$x(x - 2) = 0$$

$$x = 0, 2$$

40.
$$10xe^{x} - 5e^{x} = 0$$

 $e^{x}(10x - 5) = 0$
 $10x - 5 = 0$ (since $e^{x} \neq 0$)
 $x = \frac{1}{2}$

44. $e^{4x} + e > 0$ for all x; $e^{4x} + e = 0$ has no solutions.

2-26 **CHAPTER 2: FUNCTIONS**

48.
$$m(x) = x(3^{-x}); [0, 3]$$

x	m(x)
0	0
1	$\frac{1}{3}$
2	$\frac{2}{9}$
3	$\frac{1}{9}$

50.
$$N = \frac{200}{1+3e^{-t}}; [0,5]$$

$$x N$$

$$0 50$$

$$1 \approx 95.07$$

$$2 \approx 142.25$$

$$3 \approx 174.01$$

$$4 \approx 184.58$$

$$5 \approx 196.04$$

52. $A = Pe^{rt}$

 $A = (24,000)e^{(0.0435)(7)}$

$$A = (24,000)e^{0.3045}$$

A = (24,000)(1.35594686)

A = \$32, 542.72

54. (A)
$$A = P(1 + \frac{r}{m})^{mt}$$

 $A = 4000(1 + \frac{0.06}{52})^{(52)(0.5)}$
 $A = 4000(1.0011538462)^{26}$
 $A = 4000(1.030436713)$
 $A = 4121.75

 $A = P(1 + \frac{r}{m})^{mt}$ 56. $40,000 = P(1 + \frac{0.055}{365})^{(365)(17)}$ $40,000 = P(1.0001506849)^{6205}$ 40,000 = P(2.547034043)P = \$15,705

58. (A)
$$A = P(1 + \frac{r}{m})^{mt}$$

 $A = 10,000(1 + \frac{0.0135}{4})^{(4)(5)}$
 $A = 10,000(1.003375)^{20}$
 $A = 10,000(1.069709)$
 $A = \$10,697.09$

N. 200

(B)
$$A = P(1 + \frac{r}{m})^{mt}$$

 $A = 4000(1 + \frac{0.06}{52})^{(52)(10)}$
 $A = 4000(1.0011538462)^5$
 $A = 4000(1.821488661)$

5 7

B)
$$A = P(1 + \frac{1}{m})^{m}$$
$$A = 4000(1 + \frac{0.06}{52})^{(52)(10)}$$
$$A = 4000(1.0011538462)^{520}$$
$$A = 4000(1.821488661)$$
$$A = \$7285.95$$

(B)
$$A = P(1 + \frac{r}{m})^{mt}$$

 $A = 10,000(1 + \frac{0.0130}{12})^{(12)(5)}$
 $A = 10,000(1.00108333)^{60}$
 $A = 10,000(1.067121479)$
 $A = \$10,671.21$

Copyright © 2019 Pearson Education, Inc.

(C)
$$A = P(1 + \frac{r}{m})^{mt}$$

 $A = 10,000(1 + \frac{0.0125}{365})^{(365)(5)}$
 $A = 10,000(1.000034245)^{1825}$
 $A = 10,000(1.06449332)$
 $A = \$10,644.93$

60.
$$N = 40(1 - e^{-0.12t}); [0, 30]$$

The maximum number of boards an average employee can be expected to produce in 1 day is 40.

62. The exponential regression model ExpRe9 9=a*b^x a=3.996184237 b=1.523286295

(B)
$$y(10) = 268.8$$
 exabytes per month

30 7

64. (A)
$$I(50) = I_o e^{-0.00942(50)} \approx 62\%$$

66. (A)
$$P = 204e^{0.0077t}$$

(B) $I(100) = I_o e^{-0.00942(100)} \approx 39 \%$

(B) Population in 2030: $P(15) = 204e^{0.0077(15)} \approx 229$ million.

- **68.** (A) $P = 7.4e^{0.0113t}$
 - (B) Population in 2025: $P(10) = 7.4e^{0.0113(10)} \approx 8.29$ billion Population in 2033: $P(18) = 7.4e^{0.0113(18)} \approx 9.07$ billion

EXERCISE 2-6

 $2. \quad \log_2 32 = 5 \Longrightarrow 32 = 2^5$

6.
$$\log_9 27 = \frac{3}{2} \Longrightarrow 27 = 9^{\frac{3}{2}}$$

10.
$$9 = 27^{\frac{2}{3}} \Longrightarrow \log_{27} 9 = \frac{2}{3}$$

1

$$14. \quad \log_{10} \frac{1}{1000} = \log_{10} 10^{-3} = -3$$

 $18. \quad \log_2 \frac{1}{64} = \log_2 2^{-6} = -6$

- 4. $\log_e 1 = 0 \Rightarrow e^0 = 1$
- 8. $36 = 6^2 \Rightarrow \log_6 36 = 2$
- 12. $M = b^x \Longrightarrow \log_b M = x$
- **16.** $\log_{10} 10,000 = \log_{10} 10^4 = 4$
- **20.** $\ln(-1)$ is not defined.

- 22. $\ln(e^{-1}) = -1$ $24. \quad \log_h FG = \log_h F + \log_h G$ $28. \quad \frac{\log_3 P}{\log_2 R} = \log_R P$ **26.** $\log_b w^{15} = 15 \log_b w$ 32. $\log_b \frac{1}{25} = 2$ 30. $\log_{10} x = 1$ $x = 10^1 = 10$ $b^2 = \frac{1}{25}$ $b = \frac{1}{5}$ **36.** $\log_h 10,000 = 2$ 34. $\log_{49} 7 = y$ $49^{y} = 7$ $b^2 = 10.000$ b = 100v = 1/2
- 38. $\log_8 x = \frac{5}{3}$ $x = 8^{5/3} = (8^{1/3})^5 = 2^5 = 32$
- **40.** False; an example of a polynomial function of odd degree that is not one-to-one is $f(x) = x^3 x$. f(-1) = f(0) = f(1) = 0.
- 42. False; the graph of every function (not necessarily one-to-one) intersects each vertical line at most once.

For example, $f(x) = \frac{1}{x-1}$ is a one-to-one function which does not intersect the vertical line x = 1.

- 44. False; x = -1 is in the domain of f, but cannot be in the range of g.
- **46.** True; since g is the inverse of f, then (a, b) is on the graph of f if and only if (b, a) is on the graph of g. Therefore, f is also the inverse of g.
- **48.** $\log_b x = \frac{2}{3} \log_b 27 + 2 \log_b 2 \log_b 3$ $\log_b x = \log_b 27^{\frac{2}{3}} + \log_b 2^2 - \log_b 3$ $\log_b x = \log_b 9 + \log_b 4 - \log_b 3$ $\log_b x = \log_b \frac{(9)(4)}{3}$ $\log_b x = \log_b 12$ x = 12 **50.** $\log_b x = 3 \log_b 2 + \frac{1}{2} \log_b 25 - \log_b 20$ $\log_b x = 3 \log_b 2 + \frac{1}{2} \log_b 25 - \log_b 20$ $\log_b x = \log_b 2^3 + \log_b 25^{\frac{1}{2}} - \log_b 20$ $\log_b x = \log_b 8 + \log_b 5 - \log_b 20$ $\log_b x = \log_b \frac{(8)(5)}{20}$ $\log_b x = \log_b 2$ x = 2

52.
$$\log_b (x+2) + \log_b x = \log_b 24$$

 $\log_b (x+2)x = \log_b 24$
 $\log_b (x^2 + 2x) = \log_b 24$
 $x^2 + 2x = 24$
 $x^2 + 2x - 24 = 0$
 $(x+6)(x-4) = 0$
 $x = -6, 4$

Since the domain of \log_h is $(0,\infty)$, omit the negative solution. Therefore, the solution is x = 4.

54.
$$\log_{10}(x+6) - \log_{10}(x-3) = 1$$

 $\log_{10}\frac{x+6}{x-3} = 1$
 $10^1 = \frac{x+6}{x-3}$
 $10(x-3) = x+6$
 $10x-30 = x+6$
 $x = 4$

56.
$$y = \log_3(x+2)$$

$$3^{y} = x + 2$$

$$3^{y} - 2 = x$$

$$\boxed{\begin{array}{c|c} x & y \\ \hline -\frac{53}{27} & -3 \\ \hline -\frac{17}{9} & -2 \\ \hline -\frac{5}{3} & -1 \\ \hline -1 & 0 \\ \hline 1 & 1 \\ \hline 7 & 2 \\ \hline 25 & 3 \end{array}}$$

58. The graph of $y = \log_3(x+2)$ is the graph of $y = \log_3 x$ shifted to the left 2 units.

- 60. The domain of logarithmic function is defined for positive values only. Therefore, the domain of the function is x-1>0 or x>1. The range of a logarithmic function is all real numbers. In interval notation the domain is $(1, \infty)$ and the range is $(-\infty, \infty)$.
- 62. (A) $\log 72.604 = 1.86096$ (B) $\log 0.033041 = -1.48095$

 (C) $\ln 40,257 = 10.60304$ (D) $\ln 0.0059263 = -5.12836$

 64. (A) $\log x = 2.0832$ (B) $\log x = -1.1577$
 $x = \log^{-1}(2.0832)$ $x = \log^{-1}(-1.1577)$

 x = 121.1156 x = 0.0696

(C)
$$\ln x = 3.1336$$

 $x = \ln^{-1}(3.1336)$
 $x = 22.9565$
(D) $\ln x = -4.3281$
 $x = \ln^{-1}(-4.3281)$
 $x = 0.0132$

66. $10^{x} = 153$
 $\log 10^{x} = \log 153$
 $x = 2.1847$

68. $e^{x} = 0.3059$
 $\ln e^{x} = \ln 0.3059$
 $x = -1.1845$

70. $1.02^{4t} = 2$
 $\ln 1.02^{4t} = \ln 2$
 $4t \ln 1.02 = \ln 2$
 $t = \frac{\ln 2}{4 \ln 1.02}$
 $t = 8.7507$

72. $y = -\ln x; x > 0$

 $\boxed{\frac{x \quad y}{0.5 \quad \approx 0.69}}$
 $\frac{1}{1 \quad 0}$
 $\frac{2}{2} \quad \approx -0.69}$
 $\frac{4}{4} \quad \approx -1.39}$
 $5 \quad \approx -1.61$

Based on the graph above, the function is decreasing on the interval $(0, \infty)$.

74.
$$y = \ln |x|$$

Based on the graph above, the function is decreasing on the interval $(-\infty, 0)$ and increasing on the interval $(0, \infty)$.

76. $y = 2 \ln x + 2$

Based on the graph above, the function is increasing on the interval $(0, \infty)$.

78. $y = 4\ln(x-3)$

Based on the graph above, the function is increasing on the interval $(3, \infty)$.

80. It is not possible to find a power of 1 that is an arbitrarily selected real number, because 1 raised to any power is 1.

82.

A function *f* is "smaller than" a function *g* on an interval [*a*, *b*] if f(x) < g(x) for $a \le x \le b$. Based on the graph above, $\log x < \sqrt[3]{x} < x$ for $1 < x \le 16$.

84. Use the compound interest formula: $A = P(1+r)^t$. The problem is asking for the original amount to double, therefore A = 2P.

```
2P = P(1+0.0958)^{t}
2 = (1.0958)^{t}
\ln 2 = \ln(1.0958)^{t}
\ln 2 = t \ln(1.0958)
\frac{\ln 2}{\ln 1.0958} = t
7.58 \approx t
It will take approximately 8 years for the original amount to double.
```

Copyright © 2019 Pearson Education, Inc.

86. Use the compound interest formula: $A = P(1 + \frac{r}{m})^{mt}$.

(A)

$$7500 = 5000(1 + \frac{0.08}{2})^{2t}$$

$$1.5 = (1.04)^{2t}$$

$$\ln 1.5 = \ln(1.04)^{2t}$$

$$\ln 1.5 = 2t \ln(1.04)$$

$$\frac{\ln 1.5}{2 \ln 1.04} = t$$

$$5.17 \approx t$$

It will take approximately 5.17 years for \$5000 to grow to \$7500 if compounded semiannually.

(B)

$$7500 = 5000(1 + \frac{0.08}{12})^{12t}$$

$$1.5 = (1.0066667)^{12t}$$

$$\ln 1.5 = \ln(1.0066667)^{12t}$$

$$\ln 1.5 = 12t \ln(1.0066667)$$

$$\frac{\ln 1.5}{12 \ln 1.0066667} = t$$

$$5.09 \approx t$$

It will take approximately 5.09 years for \$5000 to grow to \$7500 if compounded monthly.

88. Use the compound interest formula: $A = Pe^{rt}$.

$$41,000 = 17,000e^{0.0295t}$$
$$\frac{41}{17} = e^{0.0295t}$$
$$\ln \frac{41}{17} = \ln e^{0.0295t}$$
$$\ln \frac{41}{17} = 0.0295t$$
$$\ln \frac{41}{17} = 0.0295t$$
$$\frac{\ln \frac{41}{17}}{0.0295} = t$$
$$29.84 \approx t$$

It will take approximately 29.84 years for \$17,000 to grow to \$41,000 if compounded continuously.

90. Equilibrium occurs when supply and demand are equal. The models from Problem 85 have the demand and supply functions defined by $y = 256.4659159 - 24.03812068 \ln x$ and

 $y = -127.8085281 + 20.01315349 \ln x$, respectively. Set both equations equal to each other to yield:

 $256.4659159 - 24.03812068 \ln x = -127.8085281 + 20.01315349 \ln x$ $384.274444 = 44.05127417 \ln x$ $\frac{384.274444}{44.05127417} = \ln x$ $e^{\frac{384.274444}{44.05127417}} = e^{\ln x}$ $6145 \approx x$

Substitute the value above into either equation.

 $y = 256.4659159 - 24.03812068 \ln x$ $y = 256.4659159 - 24.03812068 \ln(6145)$ y = 256.4659159 - 24.03812068(8.723394022)y = 46.77

Therefore, equilibrium occurs when 6145 units are produced and sold at a price of \$46.77.

92. (A)
$$N = 10 \log \frac{I}{I_0} = 10 \log \frac{10^{-13}}{10^{-16}} = 10 \log 10^3 = 30$$

(B)
$$N = 10 \log \frac{I}{I_0} = 10 \log \frac{3.16 \times 10^{-10}}{10^{-16}} = 10 \log 3.16 \times 10^6 \approx 65$$

(C)
$$N = 10 \log \frac{I}{I_0} = 10 \log \frac{10^{-8}}{10^{-16}} = 10 \log 10^8 = 80$$

(D)
$$N = 10 \log \frac{I}{I_0} = 10 \log \frac{10^{-1}}{10^{-16}} = 10 \log 10^{15} = 150$$

94.

2024: t = 124; $y(124) \approx 12,628$. Therefore, according to the model, the total production in the year 2024 will be approximately 12,628 million bushels.

96.

$$A = A_0 e^{-0.000124t}$$

$$0.1A_0 = A_0 e^{-0.000124t}$$

$$0.1 = e^{-0.000124t}$$

$$\ln 0.1 = \ln e^{-0.000124t}$$

$$\ln 0.1 = -0.000124t$$

$$18,569 \approx t$$

If 10% of the original amount is still remaining, the skull would be approximately 18,569 years old.

CHAPTER 2 REVIEW

11. $\log_x 36 = 2$ $x^2 = 36$ x = 6 (2-6)

- **13.** $10^{x} = 143.7$ $x = \log 143.7$ $x \approx 2.157$ (2-6)
- **15.** $\log x = 3.105$ $x = 10^{3.105} \approx 1273.503$ (2-6)
- **17.** (A) y = 4(B) x = 0(E) y = -2(F) x = -5 or 5

12.
$$\log_2 16 = x$$

 $2^x = 16$
 $x = 4$ (2-6)

14. $e^{x} = 503,000$ $x = \ln 503,000 \approx 13.128$ (2-6)

16.
$$\ln x = -1.147$$

 $x = e^{-1.147} \approx 0.318$ (2-6)

(D) x = -1

(B)

(C) y = 1

(D)

19.
$$f(x) = -x^2 + 4x = -(x^2 - 4x)$$

= $-(x^2 - 4x + 4) + 4$
= $-(x - 2)^2 + 4$ (vertex form)

(2-2)

The graph of f(x) is the graph of $y = x^2$ reflected in the x axis, then shifted right 2 units and up 4 units. (2-3)

20. (A)
$$g$$
 (B) m (C) n (D) f (2-2, 2-3)

21.
$$y = f(x) = (x + 2)^2 - 4$$

(A) x intercepts: $(x + 2)^2 - 4 = 0$; y intercept: 0
 $(x + 2)^2 = 4$
 $x + 2 = -2 \text{ or } 2$
 $x = -4, 0$

(B) Vertex:
$$(-2, -4)$$
 (C) Minimum: -4 (D) Range: $y \ge -4$ or $[-4, \infty)$ (2-3)

22.
$$y = 4 - x + 3x^2 = 3x^2 - x + 4$$
; quadratic function. (2-3)

23.
$$y = \frac{1+5x}{6} = \frac{5}{6}x + \frac{1}{6}$$
; linear function. (2-1, 2-3)

24.
$$y = \frac{7-4x}{2x} = \frac{7}{2x} - 2$$
; none of these. (2-1), (2-3)

25.
$$y = 8x + 2(10 - 4x) = 8x + 20 - 8x = 20$$
; constant function

26.
$$\log(x+5) = \log(2x-3)$$

 $x+5 = 2x-3$
 $-x = -8$
 $x = 8$ (2-6)
27. $2 \ln(x-1) = \ln(x^2-5)$
 $\ln(x-1)^2 = \ln(x^2-5)$
 $(x-1)^2 = x^2-5$
 $x^2 - 2x + 1 = x^2 - 5$
 $-2x = -6$
 $x = 3$ (2-6)

28.
$$9^{x-1} = 3^{1+x}$$
29. $e^{2x} = e^{x^2-3}$ $(3^2)^{x-1} = 3^{1+x}$ $2x = x^2 - 3$ $3^{2x-2} = 3^{1+x}$ $x^2 - 2x - 3 = 0$ $2x - 2 = 1 + x$ $(x - 3)(x + 1) = 0$ $x = 3$ (2-5) $x = 3, -1$ (2-5)

30.
$$2x^2e^x = 3xe^x$$

 $2x^2 = 3x$
 $2x^2 = 3x$
 $2x^2 - 3x = 0$
 $x(2x-3) = 0$
 $x = 0, 3/2$ (2-5)
31. $\log_{1/3} 9 = x$
 $\left(\frac{1}{3}\right)^x = 9$
 $\frac{1}{3^x} = 9$
 $3^x = \frac{1}{9}$
 $x = -2$ (2-6)

32. $\log_x 8 = -3$

$$x = -2$$
 (2-6)
33. $\log_9 x = \frac{3}{2}$
 $9^{3/2} = x$
 $x = 27$ (2-6)

(2-1)

$$x^{-3} = 8$$

$$\frac{1}{x^3} = 8$$

$$x = \frac{1}{2}$$
34. $x = 3(e^{1.49}) \approx 13.3113$

$$x = 10^{-2.0144}$$

$$x \approx 10^{-2.0144} \approx 0.0097$$
(2-6)
$$y^{3/2} = x$$

$$x = 27$$
(2-6)
$$x = 27$$
(2-6)
$$x = 230(10^{-0.161}) \approx 158.7552$$
(2-5)
$$x = 230(10^{-0.161}) \approx 158.7552$$
(2-5)
$$x = e^{0.3618} \approx 1.4359$$
(2-6)

(2-1)

38.
$$35 = 7(3^{X})$$

 $3^{X} = 5$
 $\ln 3^{X} = \ln 5$
 $x \ln 3 = \ln 5$
 $x = \frac{\ln 5}{\ln 3} \approx 1.4650$ (2-6)
40. $8,000 = 4,000(1.08)^{X}$

$$8,000 = 4,000(1.08)^{x}$$

$$(1.08)^{x} = 2$$

$$\ln(1.08)^{x} = \ln 2$$

$$x \ln 1.08 = \ln 2$$

$$x = \frac{\ln 2}{\ln 1.08} \approx 9.0065 \quad (2-6)$$

39.
$$0.01 = e^{-0.05x}$$
$$\ln(0.01) = \ln (e^{-0.05x}) = -0.05x$$
$$Thus, x = \frac{\ln(0.01)}{-0.05} \approx 92.1034$$
(2-6)

41.
$$5^{2x-3} = 7.08$$
$$\ln(5^{2x-3}) = \ln 7.08$$
$$(2x-3) \ln 5 = \ln 7.08$$
$$2x \ln 5 - 3 \ln 5 = \ln 7.08$$
$$x = \frac{\ln 7.08 + 3 \ln 5}{2 \ln 5}$$
$$x \approx 2.1081 \qquad (2-6)$$

Domain: x < 5 or $(-\infty, 5)$

42. (A)
$$x^2 - x - 6 = 0$$
 at $x = -2, 3$ (B) $5 - x > 0$ for $x < 5$
Domain: all real numbers except $x = -2, 3$ Domain: $x < 5$ or (

43.
$$f(x) = 4x^2 + 4x - 3 = 4(x^2 + x) - 3$$

= $4\left(x^2 + x + \frac{1}{4}\right) - 3 - 1$
= $4\left(x + \frac{1}{2}\right)^2 - 4$ (vertex form)

Intercepts:

y intercept:
$$f(0) = 4(0)^2 + 4(0) - 3 = -3$$

x intercepts: $f(x) = 0$
 $4\left(x + \frac{1}{2}\right)^2 - 4 = 0$
 $\left(x + \frac{1}{2}\right)^2 = 1$
 $x + \frac{1}{2} = \pm 1$
 $x = -\frac{1}{2} \pm 1 = -\frac{3}{2}, \frac{1}{2}$
Vertex: $\left(-\frac{1}{2}, -4\right)$; minimum: -4; range: $y \ge -4$ or $[-4, \infty)$ (2-3)

Copyright © 2019 Pearson Education, Inc.

(B)
$$f(a+h) = (a+h)^2 - 3(a+h) + 1 = a^2 + 2ah + h^2 - 3a - 3h + 1$$

(C) $f(a+h) - f(a) = a^2 + 2ah + h^2 - 3a - 3h + 1 - (a^2 - 3a + 1)$
 $= 2ah + h^2 - 3h$
(D) $\frac{f(a+h) - f(a)}{h} = \frac{2ah + h^2 - 3h}{h} = \frac{h(2a+h-3)}{h} = 2a + h - 3$ (2-1)

53. The graph of *m* is the graph of y = |x| reflected in the *x* axis and shifted 4 units to the right. (2-2)

- 54. The graph of g is the graph of $y = x^3$ vertically contracted by a factor of 0.3 and shifted up 3 units. (2-2)
- 55. The graph of $y = x^2$ is vertically expanded by a factor of 2, reflected in the *x* axis and shifted to the left 3 units. Equation: $y = -2(x + 3)^2$ (2-2)
- 56. Equation: $f(x) = 2\sqrt{x+3} 1$ f(x) f(x)

57. $f(x) = \frac{n(x)}{d(x)} = \frac{5x+4}{x^2-3x+1}$. Since degree n(x) = 1 < 2 = degree d(x), y = 0 is the horizontal asymptote.

(2-4)

58.
$$f(x) = \frac{n(x)}{d(x)} = \frac{3x^2 + 2x - 1}{4x^2 - 5x + 3}$$
. Since degree $n(x) = 2$ = degree $d(x)$, $y = \frac{3}{4}$ is the horizontal asymptote (2-4)

59.
$$f(x) = \frac{n(x)}{d(x)} = \frac{x^2 + 4}{100x + 1}$$
. Since degree $n(x) = 2 > 1 = \text{degree } d(x)$, there is no horizontal asymptote.

60.
$$f(x) = \frac{n(x)}{d(x)} = \frac{x^2 + 100}{x^2 - 100} = \frac{x^2 + 100}{(x - 10)(x + 10)}$$
. Since $n(x) = x^2 + 100$ has no real zeros and $d(10) = d(-10) = 0$, $x = 10$ and $x = -10$ are the vertical asymptotes of the graph of f. (2-4)

61.
$$f(x) = \frac{n(x)}{d(x)} = \frac{x^2 + 3x}{x^2 + 2x} = \frac{x(x+3)}{x(x+2)} = \frac{x+3}{x+2}, x \neq 0. x = -2$$
 is a vertical asymptote of the graph of f .
(2-4)

62. True;
$$p(x) = \frac{p(x)}{1}$$
 is a rational function for every polynomial *p*. (2-4)

63. False;
$$f(x) = \frac{1}{x} = x^{-1}$$
 is not a polynomial function. (2-4)

64. False;
$$f(x) = \frac{1}{x^2 + 1}$$
 has no vertical asymptotes. (2-4)

- **65.** True: let $f(x) = b^{x}$, $(b > 0, b \neq 1)$, then the positive *x*-axis is a horizontal asymptote if 0 < b < 1, and the negative *x*-axis is a horizontal asymptote if b > 1. (2-5)
- 66. True: let $f(x) = \log_b x \ (b > 0, b \neq 1)$. If 0 < b < 1, then the positive *y*-axis is a vertical asymptote; if b > 1, then the negative *y*-axis is a vertical asymptote. (2-6)
- 67. True; $f(x) = \frac{x}{x-1}$ has vertical asymptote x = 1 and horizontal asymptote y = 1. (2-4)

70.
$$y = -(x-4)^2 + 3$$
 (2-2, 2-3)

71.
$$f(x) = -0.4x^2 + 3.2x + 1.2 = -0.4(x^2 - 8x + 16) + 7.6$$

= $-0.4(x - 4)^2 + 7.6$

10

-10

(A) *y* intercept: 1.2

x intercepts:
$$-0.4(x-4)^2 + 7.6 = 0$$

 $(x-4)^2 = 19$
 $x = 4 + \sqrt{19} \approx 8.4, 4 - \sqrt{19} \approx -0.4$
(B) Vertex: (4.0, 7.6) (C) Maximum: 7.6 (D) Range: $y \le 7.6$ or $(-\infty, 7.6]$
(2-3)

73.
$$\log 10^{\pi} = \pi \log 10 = \pi$$

 $10^{\log \sqrt{2}} = y$ is equivalent to $\log y = \log \sqrt{2}$
which implies $y = \sqrt{2}$
Similarly, $\ln e^{\pi} = \pi \ln e = \pi$ (Section 2-5, 4.b & g) and $e^{\ln \sqrt{2}} = y$ implies $\ln y = \ln \sqrt{2}$ and
 $y = \sqrt{2}$. (2-6)

74.
$$\log x - \log 3 = \log 4 - \log (x + 4)$$

 $\log \frac{x}{3} = \log \frac{4}{x+4}$
 $\frac{x}{3} = \frac{4}{x+4}$
 $x(x+4) = 12$
 $x^2 + 4x - 12 = 0$
 $(x+6)(x-2) = 0$
 $x = -6, 2$

Since $\log(-6)$ is not defined, -6 is not a solution. Therefore, the solution is x = 2. (2-6)

75.
$$\ln(2x-2) - \ln(x-1) = \ln x$$

 $\ln\left(\frac{2x-2}{x-1}\right) = \ln x$
 $\ln\left[\frac{2(x-1)}{x-1}\right] = \ln x$
 $\ln 2 = \ln x$
 $x = 2$ (2-6)
76. $\ln(x+3) - \ln x = 2 \ln 2$
 $\ln\left(\frac{x+3}{x}\right) = \ln(2^2)$
 $\frac{x+3}{x} = 4$
 $x+3 = 4x$
 $3x = 3$
 $x = 1$ (2-6)

77.
$$\log 3x^2 = 2 + \log 9x$$

 $\log 3x^2 - \log 9x = 2$
 $\log \left(\frac{3x^2}{9x}\right) = 2$
 $\log \left(\frac{x}{3}\right) = 2$
 $\frac{x}{3} = 10^2 = 100$
 $x = 300$ (2-6)
78. $\ln y = -5t + \ln c$
 $\ln y - \ln c = -5t$
 $\ln \frac{y}{c} = -5t$
 $\frac{y}{c} = e^{-5t}$
 $y = ce^{-5t}$ (2-6)

79. Let *x* be *any* positive real number and suppose $\log_1 x = y$. Then $1^y = x$.

But, $1^{y} = 1$, so x = 1, i.e., x = 1 for all positive real numbers x. This is clearly impossible. (2-6)

80. The graph of $y = \sqrt[3]{x}$ is vertically expanded by a factor of 2, reflected in the *x* axis, shifted 1 unit to the left and 1 unit down. Equation: $y = -2\sqrt[3]{x+1} - 1$ (2-2)

81.
$$G(x) = 0.3x^2 + 1.2x - 6.9 = 0.3(x^2 + 4x + 4) - 8.1$$

 $= 0.3(x + 2)^2 - 8.1$
(A) y intercept: -6.9
 x intercepts: $0.3(x + 2)^2 - 8.1 = 0$
 $(x + 2)^2 = 27$
 $x = -2 + \sqrt{27} \approx 3.2, -2 - \sqrt{27} \approx -7.2$
(B) Vertex: (-2, -8.1) (C) Minimum: -8.1 (D) Range: $y \ge -8.1$ or [-8.1, ∞) (2-3)
82. (A) y intercept: -6.9
 x intercept: -7.2, 3.2
(B) Vertex: (-2, -8.1)
 (C) Minimum: -8.1
 (D) Range: $y \ge -8.1$ or [-8.1, ∞) (2-3)
83. (A) $S(x) = 3$ if $0 \le x \le 20$;
 $S(x) = 3 + 0.057(x - 20)$
 $= 0.057x + 1.86$ if $20 < x \le 200$;
 $S(200) = 13.26$
 $S(x) = 34 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 40.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 40.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 40.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $= 0.0217x + 19.24$ if $x > 1000$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94$
 $S(x) = 40.94 + 0.0217(x - 1000)$
 $S(1000) = 60.94 + 0.0217(x - 1000)$
 $S(100) = 60.94 + 0.0217($

Copyright © 2019 Pearson Education, Inc.

(2-5)

85.
$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$
; $P = 5,000$, $r = 0.0105$, $m = 365$, $t = 5$
 $A = 5000\left(1 + \frac{0.0105}{365}\right)^{365(5)} = 5000\left(1 + \frac{0.0105}{365}\right)^{1825} \approx 5269.51$
After 5 years, the CD will be worth \$5.260.51

After 5 years, the CD will be worth \$5,269.51.

86.
$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$
, $r = 0.0659$, $m = 12$
Solve $P\left(1 + \frac{0.0659}{12}\right)^{12t} = 3P$ or $(1.005492)^{12t} = 3$
for t:
 $12t \ln(1.005492) = \ln 3$

$$t = \frac{\ln 3}{12\ln(1.005492)} \approx 16.7 \text{ year.}$$
(2-5)

87. $A = Pe^{rt}$, r = 0.0739. Solve $2P = Pe^{0.0739t}$ for t.

$$2P = Pe^{0.0739t}$$

$$e^{0.0739t} = 2$$

$$0.0739t = \ln 2$$

$$t = \frac{\ln 2}{0.0739} \approx 9.38 \text{ years.}$$
(2-5)

88. p(x) = 50 - 1.25x Price-demand function C(x) = 160 + 10x Cost function R(x) = xp(x)= x(50 - 1.25x) Revenue function

> (A) R(x) C(x) 600 C R 40^{x}

(B)
$$R = C$$

 $x(50 - 1.25x) = 160 + 10x$
 $-1.25x^2 + 50x = 160 + 10x$
 $-1.25x^2 + 40x = 160$
 $-1.25(x^2 - 32x + 256) = 160 - 320$
 $-1.25(x - 16)^2 = -160$
 $(x - 16)^2 = 128$
 $x = 16 + \sqrt{128} \approx 27.314,$
 $16 - \sqrt{128} \approx 4.686$

R = C at x = 4.686 thousand units (4,686 units) and x = 27.314 thousand units (27,314 units) R < C for $1 \le x < 4.686$ or $27.314 < x \le 40$ R > C for 4.686 < x < 27.314

Max Rev: $50x - 1.25x^2 = R$ (C) $-1.25(x^2 - 40x + 400) + 500 = R$ $-1.25(x-20)^2 + 500 = R$

Vertex at (20, 500)

Max. Rev. = 500 thousand (\$500,000) occurs when output is 20 thousand (20,000 units) <u>Wholesale price</u> at this output: p(x) = 50 - 1.25xp(2

$$0) = 50 - 1.25(20) = $25$$
 (2-3)

89. (A)
$$P(x) = R(x) - C(x) = x(50 - 1.25x) - (160 + 10x)$$

= $-1.25x^2 + 40x - 160$

- (B) P = 0 for x = 4.686 thousand units (4,686 units) and x = 27.314 thousand units (27,314 units) P < 0 for $1 \le x < 4.686$ or $27.314 < x \le 40$ P > 0 for 4.686 < x < 27.314
- (C) Maximum profit is 160 thousand dollars (\$160,000), and this occurs at x = 16 thousand units(16,000 units). The wholesale price at this output is p(16) = 50 - 1.25(16) = \$30, which is \$5 greater than the \$25 found in 88(C). (2-3)
- **90.** (A) The area enclosed by the storage areas is given by

$$A = (2y)x$$

Now, $3x + 4y = 840$
so $y = 210 - \frac{3}{4}x$
Thus $A(x) = 2\left(210 - \frac{3}{4}x\right)x$
 $= 420x - \frac{3}{2}x^2$

(B) Clearly *x* and *y* must be nonnegative; the fact (C) that $y \ge 0$ implies

 $210 - \frac{3}{4}x \ge 0$ and $210 \ge \frac{3}{4}x$

$$840 \ge 3x$$
$$280 \ge x$$

Thus, domain *A*: $0 \le x \le 280$

(D) Graph
$$A(x) = 420x - \frac{3}{2}x^2$$
 and $y = 25,000$ together.

There are two values of x that will produce storage areas with a combined area of 25,000 square feet, one near x = 90 and the other near x = 190.

(E)
$$x = 86, x = 194$$

(F)
$$A(x) = 420x - \frac{3}{2}x^2 = -\frac{3}{2}(x^2 - 280x)$$

Completing the square, we have

$$A(x) = -\frac{3}{2} (x^2 - 280x + 19,600 - 19,600)$$
$$= -\frac{3}{2} [(x - 140)^2 - 19,600]$$
$$= -\frac{3}{2} (x - 140)^2 + 29,400$$

The dimensions that will produce the maximum combined area are: x = 140 ft, y = 105 ft. The maximum area is 29,400 sq. ft.

(2-3)

91. (A) Quadratic regression model,

(B) Linear regression model,

the equation $ax^2 + bx + c = 180$ for x. The result is $x \approx 2,833$ sets.

To estimate the supply at a price level of \$180, we solve the equation

To estimate the demand at price level of \$180, we solve

ax + b = 180for x. The result is $x \approx 4,836$ sets.

- (C) The condition is not stable; the price is likely to decrease since the supply at the price level of \$180 exceeds the demand at this level.
- (D) Equilibrium price: \$131.59Equilibrium quantity: 3,587 cookware set.

(2-3)

92. (A) Cubic Regression CubicRe3 y=ax3+bx2+cx+d 2614 03947 a= 2.99286831 .29231232 b= 31232 82066 \mathbf{C}^{i} d= 5604 $y = 0.30395x^3 - 12.993x^2 + 38.292x + 5,604.8$ $y = 0.30395(38)^3 - 12.993(38)^2 + 38.292(38) + 5,604.8 \approx 4,976$ (B) The predicted crime index in 2025 is 4,976.

93. (A)
$$N(0) = 1$$
 (B) We need to solve:
 $N\left(\frac{1}{2}\right) = 2$ $2^{2t} = 10^9$
 $\log 2^{2t} = \log 10^9 = 9$
 $N(1) = 4 = 2^2$ $2t \log 2 = 9$
 $N\left(\frac{3}{2}\right) = 8 = 2^3$ $t = \frac{9}{2\log 2} \approx 14.95$
 $N(2) = 16 = 2^4$ Thus, the mouse will die in 15 days.
 \vdots
Thus, we conclude that
 $N(t) = 2^{2t}$ or $N = 4^t$ (2-6)
94. Given $I = I_0 e^{-kd}$. When $d = 73.6$, $I = \frac{1}{2}I_0$. Thus, we have:
 $\frac{1}{2}I_0 = I_0 e^{-k(73.6)}$

$$e^{-k(73.6)} = \frac{1}{2}$$

-k(73.6) = ln $\frac{1}{2}$
 $k = \frac{\ln(0.5)}{-73.6} \approx 0.00942$

Thus, $k \approx 0.00942$.

To find the depth at which 1% of the surface light remains, we set $I = 0.01I_0$ and solve

$$0.01I_0 = I_0 e^{-0.00942d} \text{ for } d:$$

$$0.01 = e^{-0.00942d}$$

$$-0.00942d = \ln 0.01$$

$$d = \frac{\ln 0.01}{-0.00942} \approx 488.87$$

Thus, 1% of the surface light remains at approximately 489 feet.

(2-6)

95. (A) Logarithmic regression model:

Year 2023 corresponds to x = 83; $y(83) \approx 6,134,000$ cows.

(B)
$$\ln(0)$$
 is not defined.

(2-6)

96. Using the continuous compounding model, we have: 0.024

$$2P_0 = P_0 e^{0.03t}$$

$$2 = e^{0.03t}$$

$$0.03t = \ln 2$$

$$t = \frac{\ln 2}{0.03} \approx 23.1$$

Thus, the model predicts that the population will double in approximately 23.1 years. (2-5)

The exponential regression model is $y = 47.194(1.0768)^{x}$.

To estimate for the year 2025, let $x = 45 \Rightarrow y = 47.19368975(1.076818175)^{45} \approx 1,319.140047$. The estimated annual expenditure for Medicare by the U.S. government, rounded to the nearest billion, is approximately \$1,319 billion. (This is \$1.319 trillion.)

(B) To find the year, solve 47.194(1.0768)^x = 2,000. Note: Use 2,000 because expenditures are in billions of dollars, and 2 trillion is 2,000 billion.

$$47.194(1.0768)^{x} = 2,000$$

$$1.0768^{x} = \frac{2,000}{47.194}$$

$$\ln(1.0768^{x}) = \ln\left(\frac{2,000}{47.194}\right)$$

$$x\ln 1.0768 = \ln\left(\frac{2,000}{47.194}\right)$$

$$x = \frac{\ln\left(\frac{2,000}{47.194}\right)}{\ln 1.0768} \approx 50.6 \text{ years}$$

1,980 + 50.63 = 2,030.63 Annual expenditures exceed two trillion dollars in the year 2031. (2-5)