2 FUNCTIONS

EXERCISE 2-1

2.

6.

4.

8.

10. The table specifies a function, since for each domain value there corresponds one and only one range value.
12. The table does not specify a function, since more than one range value corresponds to a given domain value.
(Range values 1, 2 correspond to domain value 9.)
14. This is a function.
16. The graph specifies a function; each vertical line in the plane intersects the graph in at most one point.
18. The graph does not specify a function. There are vertical lines which intersect the graph in more than one point. For example, the y-axis intersects the graph in two points.
20. The graph does not specify a function.
22. $y=4 x+\frac{1}{x}$ is neither linear nor constant.
26. $x+x y+1=0$ is neither linear nor constant.
24. $2 x-4 y-6=0$ is linear.
28. $\frac{y-x}{2}+\frac{3+2 x}{4}=1$ simplifies to $y=\frac{1}{2}$ constant.
30.

32.

34.

36.

38. $f(x)=\frac{3 x^{2}}{x^{2}+2}$. Since the denominator is bigger than 1 , we note that the values of f are between 0 and 3 .

Furthermore, the function f has the property that $f(-x)=f(x)$. So, adding points $x=3, x=4$, $x=5$, we have:

x	-5	-4	-3	-2	-1	0	1	2	3	4	5
$F(x)$	2.78	2.67	2.45	2	1	0	1	2	2.45	2.67	2.78

The sketch is:

40. $y=f(4)=0$
44. $f(x)=4$ at $x=5$.
48. Domain: all real numbers.
52. Domain: $x \geq-5$ or $[-5, \infty)$.
42. $y=f(-2)=3$
46. $f(x)=0$ at $x=-5,0,4$.
50. Domain: all real numbers except $x=2$.
54. Given $6 x-7 y=21$. Solving for y we have: $-7 y=21-6 x$ and $y=\frac{6}{7} x-3$.

This equation specifies a function. The domain is R, the set of real numbers.
56. Given $x(x+y)=4$. Solving for y we have: $x y+x^{2}=4$ and $y=\frac{4-x^{2}}{x}$.

This equation specifies a function. The domain is all real numbers except 0
58. Given $x^{2}+y^{2}=9$. Solving for y we have: $y^{2}=9-x^{2}$ and $y= \pm \sqrt{9-x^{2}}$.

This equation does not define y as a function of x. For example, when $x=0, y= \pm 3$.
60. Given $\sqrt{x}-y^{3}=0$. Solving for y we have: $y^{3}=\sqrt{x}$ and $y=x^{1 / 6}$.

This equation specifies a function. The domain is all nonnegative real numbers, i.e., $x \geq 0$.
62. $f(-3 x)=(-3 x)^{2}-4=9 x^{2}-4$
64. $f(x-1)=(x-1)^{2}-4=x^{2}-2 x+1-4=x^{2}-2 x-3$
66. $f\left(x^{3}\right)=\left(x^{3}\right)^{2}-4=x^{6}-4$
68. $f(\sqrt[4]{x})=\left(x^{1 / 4}\right)^{2}-4=x^{1 / 2}-4=\sqrt{x}-4$
70. $f(-3)+f(h)=(-3)^{2}-4+h^{2}-4=5+h^{2}-4=h^{2}+1$
72. $f(-3+h)=(-3+h)^{2}-4=9-6 h+h^{2}-4=5-6 h+h^{2}$
74. $f(-3+h)-f(-3)=\left[(-3+h)^{2}-4\right]-\left[(-3)^{2}-4\right]=\left(9-6 h+h^{2}-4\right)-(9-4)=-6 h+h^{2}$
76. (A) $f(x+h)=-3(x+h)+9=-3 x-3 h+9$
(B) $f(x+h)-f(x)=(-3 x-3 h+9)-(-3 x+9)=-3 h$
(C) $\frac{f(x+h)-f(x)}{h}=\frac{-3 h}{h}=-3$
78. (A) $f(x+h)=3(x+h)^{2}+5(x+h)-8$

$$
\begin{aligned}
& =3\left(x^{2}+2 x h+h^{2}\right)+5 x+5 h-8 \\
& =3 x^{2}+6 x h+3 h^{2}+5 x+5 h-8
\end{aligned}
$$

(B) $f(x+h)-f(x)=\left(3 x^{2}+6 x h+3 h^{2}+5 x+5 h-8\right)-\left(3 x^{2}+5 x-8\right)$

$$
=6 x h+3 h^{2}+5 h
$$

(C) $\frac{f(x+h)-f(x)}{h}=\frac{6 x h+3 h^{2}+5 h}{h}=6 x+3 h+5$
80. (A) $f(x+h)=x^{2}+2 x h+h^{2}+40 x+40 h$
(B) $f(x+h)-f(x)=2 x h+h^{2}+40 h$
(C) $\frac{f(x+h)-f(x)}{h}=2 x+h+40$
82. Given $A=l w=81$.

Thus, $w=\frac{81}{l}$. Now $P=2 l+2 w=2 l+2 \frac{81}{l}=2 l+\frac{162}{l}$.
The domain is $l>0$.
84. Given $P=2 \ell+2 w=160$ or $\ell+w=80$ and $\ell=80-w$.

Now $A=\ell w=(80-w) w$ and $A=80 w-w^{2}$.
The domain is $0 \leq w \leq 80$. [Note: $w \leq 80$ since $w>80$ implies $\ell<0$.]
86. (A)

88. (A) $R(x)=x p(x)$

$$
=x(2,000-60 x) \text { thousands of dollars }
$$

Domain: $1 \leq x \leq 25$
(B) Table 11 Revenue

x (thousands)	$R(x)$ (thousands)
1	$\$ 1,940$
5	8,500
10	14,000
15	16,500
20	16,000
25	12,500

(C)

90. (A) $\quad P(x)=R(x)-C(x)$

$$
\begin{aligned}
& =x(2,000-60 x)-(4,000+500 x) \text { thousand dollars } \\
& =1,500 x-60 x^{2}-4,000
\end{aligned}
$$

Domain: $1 \leq x \leq 25$
(B) Table 13 Profit

x (thousands)	$P(x)$ (thousands)
1	$-\$ 2,560$
5	2,000
10	5,000
15	5,000
20	2,000
25	$-4,000$

(C)

92. (A) Given $5 v-2 s=1.4$. Solving for v, we have:
$v=0.4 s+0.28$.
If $s=0.51$, then $v=0.4(0.51)+0.28=0.484$ or 48.4%.
(B) Solving the equation for s, we have:
$s=2.5 v-0.7$.
If $v=0.51$, then $s=2.5(0.51)-0.7=0.575$ or 57.5%.

EXERCISE 2-2

2. $f(x)=1+\sqrt{x}$ Domain: $[0, \infty)$; range: $[1, \infty)$.
3. $f(x)=x^{2}+10$ Domain: all real numbers; range: $[10, \infty)$.
4. $f(x)=5 x+3$ Domain: all real numbers; range: all real numbers.
5. $f(x)=15-20|x|$ Domain: all real numbers; range: $(-\infty, 15]$.
6. $f(x)=-8+\sqrt[3]{x}$ Domain: all real numbers; range: all real numbers.
7.

14.

16.

18.

20.

22.

24.

28. The graph of $h(x)=-|x-5|$ is the graph of $y=|x|$ reflected in the x axis and shifted 5 units to the right.

32. The graph of $g(x)=-6+\sqrt[3]{x}$ is the graph of $y=\sqrt[3]{x}$ shifted 6 units down.

26.

30. The graph of $m(x)=(x+3)^{2}+4$ is the graph of $y=x^{2}$ shifted 3 units to the left and 4 units up.

34. The graph of $m(x)=-0.4 x^{2}$ is the graph of $y=x^{2}$ reflected in the x axis and vertically contracted by a factor of 0.4.

36. The graph of the basic function $y=|x|$ is shifted 3 units to the right and 2 units up. $y=|x-3|+2$
38. The graph of the basic function $y=|x|$ is reflected in the x axis, shifted 2 units to the left and 3 units up.

Equation: $y=3-|x+2|$
40. The graph of the basic function $\sqrt[3]{x}$ is reflected in the x axis and shifted up 2 units. Equation: $y=2-\sqrt[3]{x}$
42. The graph of the basic function $y=x^{3}$ is reflected in the x axis, shifted to the right 3 units and up 1 unit. Equation: $y=1-(x-3)^{3}$

48. $g(x)=4-(x+2)^{2}$

46. $g(x)=-|x-1|$

50. $g(x)=\left\{\begin{array}{r}x+1 \text { if } x<-1 \\ 2+2 x \text { if } x \geq-1\end{array}\right.$

52. $h(x)=\left\{\begin{array}{clc}10+2 x & \text { if } & 0 \leq x \leq 20 \\ 40+0.5 x & \text { if } & x>20\end{array}\right.$

54. $h(x)=\left\{\begin{array}{ccc}4 x+20 & \text { if } & 0 \leq x \leq 20 \\ 2 x+60 & \text { if } & 20<x \leq 100 \\ -x+360 & \text { if } & x>100\end{array}\right.$

56. The graph of the basic function $y=x$ is reflected in the x axis and vertically expanded by a factor of 2 .

Equation: $y=-2 x$
58. The graph of the basic function $y=|x|$ is vertically expanded by a factor of 4 . Equation: $y=4|x|$
60. The graph of the basic function $y=x^{3}$ is vertically contracted by a factor of 0.25 . Equation: $y=0.25 x^{3}$.
62. Vertical shift, reflection in y axis.

Reversing the order does not change the result. Consider a point
(a, b) in the plane. A vertical shift of k units followed by a reflection in y axis moves (a, b) to $(a, b+k)$ and then to $(-a, b+k)$. In the reverse order, a reflection in y axis followed by a vertical shift of k units moves (a, b) to $(-a, b)$ and then to $(-a, b+k)$. The results are the same.
64. Vertical shift, vertical expansion.

Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of k units followed by a vertical expansion of $h(h>1)$ moves (a, b) to $(a, b+k)$ and then to $(a, b h+k h)$. In the reverse order, a vertical expansion of h followed by a vertical shift of k units moves (a, b) to $(a, b h)$ and then to $(a, b h+k) ;(a, b h+k h) \neq(a, b h+k)$.
66. Horizontal shift, vertical contraction.

Reversing the order does not change the result. Consider a point (a, b) in the plane. A horizontal shift of k units followed by a vertical contraction of $h(0<h<1)$ moves (a, b) to $(a+k, b)$ and then to $(a+k, b h)$. In the reverse order, a vertical contraction of h followed by a horizontal shift of k units moves (a, b) to $(a, b h)$ and then to $(a+k, b h)$. The results are the same.
68. (A) The graph of the basic function $y=\sqrt{x}$ is vertically expanded by a factor of 4 .
(B)

72. (A) Let $x=$ number of kwh used in a winter month. For $0 \leq x \leq 700$, the charge is $8.5+.065 x$. At $x=700$, the charge is $\$ 54$.
For $x>700$, the charge is
$54+.053(x-700)=16.9+0.053 x$.
Thus,
$W(x)=\left\{\begin{array}{c}8.5+.065 x \text { if } 0 \leq x \leq 700 \\ 16.9+0.053 x \text { if } x>700\end{array}\right.$
70. (A) The graph of the basic function $y=x^{2}$ is reflected in the x axis, vertically contracted by a factor of 0.013 , and shifted 10 units to the right and 190 units up.
(B)

(B)

74. (A) Let $x=$ taxable income.

If $0 \leq x \leq 12,500$, the tax due is $\$.02 x$. At $x=12,500$, the tax due is $\$ 250$. For $12,500<x \leq 50,000$, the tax due is $250+.04(x-12,500)=.04 x-250$. For $x>50,000$, the tax due is $1,250+.06(x-50,000)=.06 x-1,250$.

Thus,
$T(x)=\left\{\begin{array}{cl}0.02 x & \text { if } 0 \leq x \leq 12,500 \\ 0.04 x-250 & \text { if } 12,500<x \leq 50,000 \\ 0.06 x-1,250 & \text { if } x>50,000\end{array}\right.$
(B)

(C) $\quad T(32,000)=\$ 1,030$ $T(64,000)=\$ 2,590$
76. (A) The graph of the basic function $y=x^{3}$ is vertically expanded by a factor of 463 .
(B)

78. (A) The graph of the basic function $y=\sqrt[3]{x}$ is reflected in the x axis and shifted up 10 units.
(B)

EXERCISE 2-3

2. $x^{2}+16 x$ (standard form)
$x^{2}+16 x+64-64 \quad$ (completing the square)
$(x+8)^{2}-64 \quad$ (vertex form)
3. $x^{2}-12 x-8 \quad$ (standard form)
$\left(x^{2}-12 x\right)-8$
$\left(x^{2}-12 x+36\right)+8-36$
(completing the square)
$(x-6)^{2}-44 \quad$ (vertex form)
4. $3 x^{2}+18 x+21$ (standard form)
$3\left(x^{2}+6 x\right)+21$
$3\left(x^{2}+6 x+9-9\right)+21$ (completing the square)
$3(x+3)^{2}+21-27$
$3(x+3)^{2}-6$ (vertex form)
5. $-5 x^{2}+15 x-11 \quad$ (standard form)
$-5\left(x^{2}-3 x\right)-11$
$-5\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)-11$ (completing the square)
$-5\left(x-\frac{3}{2}\right)^{2}-11+\frac{45}{4}$
$-5\left(x-\frac{3}{2}\right)^{2}+\frac{1}{4} \quad$ (vertex form)
6. The graph of $g(x)$ is the graph of $y=x^{2}$ shifted right 1 unit and down 6 units; $g(x)=(x-1)^{2}-6$.
7. The graph of $n(x)$ is the graph of $y=x^{2}$ reflected in the x axis, then shifted right 4 units and up 7 units; $n(x)=-(x-4)^{2}+7$.
8. (A) g (B) m (C) $n \quad$ (D) f
9. (A) x intercepts: $-5,-1 ; y$ intercept: $-5 \quad$ (B) Vertex: $(-3,4)$
(C) Maximum: 4 (D) Range: $y \leq 4$ or $(-\infty, 4]$
10. (A) x intercepts: 1,$5 ; y$ intercept: 5 (B) Vertex: $(3,-4)$
(C) Minimum: -4 (D) Range: $y \geq-4$ or $[-4, \infty)$
11. $g(x)=-(x+2)^{2}+3$
(A) x intercepts: $-(x+2)^{2}+3=0$

$$
\begin{aligned}
(x+2)^{2} & =3 \\
x+2 & = \pm \sqrt{3} \\
x & =-2-\sqrt{3},-2+\sqrt{3}
\end{aligned}
$$

y intercept: -1
$\begin{array}{lll}\text { (B) Vertex: }(-2,3) & \text { (C) Maximum: } 3 & \text { (D) Range: } y \leq 3 \text { or }(-\infty, 3]\end{array}$
22. $n(x)=(x-4)^{2}-3$
(A) $\quad x$ intercepts: $(x-4)^{2}-3=0$

$$
\begin{aligned}
(x-4)^{2} & =3 \\
x-4 & = \pm \sqrt{3} \\
x & =4-\sqrt{3}, 4+\sqrt{3}
\end{aligned}
$$

y intercept: 13
$\begin{array}{lll}\text { (B) Vertex: }(4,-3) & \text { (C) Minimum: }-3 & \text { (D) Range: } y \geq-3 \text { or }[-3, \infty)\end{array}$
24. $y=-(x-4)^{2}+2$
26. $y=[x-(-3)]^{2}+1$ or $y=(x+3)^{2}+1$
28. $g(x)=x^{2}-6 x+5=x^{2}-6 x+9-4=(x-3)^{2}-4$
(A) $\quad x$ intercepts: $(x-3)^{2}-4=0$

$$
\begin{array}{r}
(x-3)^{2}=4 \\
x-3= \pm 2 \\
x=1,5
\end{array}
$$

y intercept: 5
$\begin{array}{lll}\text { (B) Vertex: }(3,-4) & \text { (C) Minimum: }-4 & \text { (D) Range: } y \geq-4 \text { or }[-4, \infty)\end{array}$
30. $s(x)=-4 x^{2}-8 x-3=-4\left[x^{2}+2 x+\frac{3}{4}\right]=-4\left[x^{2}+2 x+1-\frac{1}{4}\right]$

$$
=-4\left[(x+1)^{2}-\frac{1}{4}\right]=-4(x+1)^{2}+1
$$

(A) $\quad x$ intercepts: $\quad-4(x+1)^{2}+1=0$

$$
\begin{aligned}
& 4(x+1)^{2}=1 \\
& (x+1)^{2}=\frac{1}{4} \\
& x+1= \pm \frac{1}{2} \\
& x=-\frac{3}{2},-\frac{1}{2}
\end{aligned}
$$

y intercept: - 3
(B) Vertex: $(-1,1)$
(C) Maximum: 1
(D) Range: $y \leq 1$ or $(-\infty, 1]$
32. $v(x)=0.5 x^{2}+4 x+10=0.5\left[x^{2}+8 x+20\right]=0.5\left[x^{2}+8 x+16+4\right]$

$$
\begin{aligned}
& =0.5\left[(x+4)^{2}+4\right] \\
& =0.5(x+4)^{2}+2
\end{aligned}
$$

(A) x intercepts: none
y intercept: 10
$\begin{array}{lll}\text { (B) Vertex: } & (-4,2) & \text { (C) Minimum: } 2\end{array}$ (D) Range: $y \geq 2$ or $[2, \infty)$
34. $g(x)=-0.6 x^{2}+3 x+4$
(A) $g(x)=-2:-0.6 x^{2}+3 x+4=-2$
(B) $g(x)=5:-0.6 x^{2}+3 x+4=5$

$x=-1.53,6.53$
(C) $g(x)=8:-0.6 x^{2}+3 x+4=8$
$-0.6 x^{2}+3 x-4=0$
$0.6 x^{2}-3 x+4=0$

No solution
36. Using a graphing utility with $y=100 x-7 x^{2}-10$ and the calculus option with maximum command, we obtain 347.1429 as the maximum value.
38. $m(x)=0.20 x^{2}-1.6 x-1=0.20\left(x^{2}-8 x-5\right)$

$$
=0.20\left[(x-4)^{2}-21\right]=0.20(x-4)^{2}-4.2
$$

(A) $\quad x$ intercepts: $\quad 0.20(x-4)^{2}-4.2=0$

$$
\begin{aligned}
(x-4)^{2} & =21 \\
x-4 & = \pm \sqrt{21} \\
x & =4-\sqrt{21}=-0.6,4+\sqrt{21}=8.6
\end{aligned}
$$

y intercept: -1
(B) Vertex: $(4,-4.2)$
(C) Minimum: -4.2
(D) Range: $y \geq-4.2$ or $[-4.2, \infty)$
40. $n(x)=-0.15 x^{2}-0.90 x+3.3=-0.15\left(x^{2}+6 x-22\right)=-0.15\left[(x+3)^{2}-31\right]=-0.15(x+3)^{2}+4.65$
(A) $\quad x$ intercepts: $\quad-0.15(x+3)^{2}+4.65=0$

$$
\begin{aligned}
(x+3)^{2} & =31 \\
x+3 & = \pm \sqrt{31} \\
x & =-3-\sqrt{31}=-8.6,-3+\sqrt{31}=2.6
\end{aligned}
$$

y intercept: 3.30
(B) Vertex: $(-3,4.65)$
(C) Maximum: 4.65
(D) Range: $x \leq 4.65$ or $(-\infty, 4.65]$
42. $(x+6)(x-3)<0$

Therefore, either $(x+6)<0$ and $(x-3)>0$ or $(x+6)>0$ and $(x-3)<0$. The first case is impossible.
The second case implies $-6<x<3$. Solution set: $(-6,3)$.
44. $x^{2}+7 x+12=(x+3)(x+4) \geq 0$

Therefore, either $(x+3) \geq 0$ and $(x+4) \geq 0$ or $(x+3) \leq 0$ and $(x+4) \leq 0$. The first case implies $x \geq-3$ and the second case implies $x \leq-4$. Solution set: $(-\infty,-4] \cup[-3, \infty)$.
46.

48.

$$
-0.88 \leq x \leq 3.52
$$

50.

$x<-1$ or $x>2.72$

$$
x=-1.27,2.77
$$

52. f is a quadratic function and $\max f(x)=f(-3)=-5$

Axis: $x=-3$
Vertex: $(-3,-5)$
Range: $y \leq-5$ or $(-\infty,-5]$
x intercepts: None
54. (A)

(B) $f(x)=g(x):-0.7 x(x-7)=0.5 x+3.5$

$$
\begin{aligned}
& -0.7 x^{2}+4.4 x-3.5=0 \\
& x=\frac{-4.4 \pm \sqrt{(4.4)^{2}-4(0.7)(3.5)}}{-1.4}=0.93,5.35
\end{aligned}
$$

(C) $f(x)>g(x)$ for $0.93<x<5.35$
(D) $f(x)<g(x)$ for $0 \leq x<0.93$ or $5.35<x \leq 7$
56. (A)

(B) $f(x)=g(x):-0.7 x^{2}+6.3 x=1.1 x+4.8$

$$
\begin{aligned}
& -0.7 x^{2}+5.2 x-4.8=0 \\
& 0.7 x^{2}-5.2 x+4.8=0 \\
& x=\frac{-(-5.2) \pm \sqrt{(-5.2)^{2}-4(0.7)(4.8)}}{1.4}=1.08,6.35
\end{aligned}
$$

(C) $f(x)>g(x)$ for $1.08<x<6.35$
(D) $f(x)<g(x)$ for $0 \leq x<1.08$ or $6.35<x \leq 9$
58. The graph of a quadratic with no real zeros will not intersect the x-axis.
60. Such an equation will have $b^{2}-4 a c=0$.
62. Such an equation will have $\frac{k}{a}<0$.
64. $a x^{2}+b x+c=a(x-h)^{2}+k$

$$
\begin{aligned}
& =a\left(x^{2}-2 h x+h^{2}\right)+k \\
& =a x^{2}-2 a h x+a h^{2}+k
\end{aligned}
$$

Equating constant terms gives $k=c-a h^{2}$. Since h is the vertex, we have $h=-\frac{b}{2 a}$. Substituting then gives

$$
\begin{aligned}
k & =c-a h^{2}=c-a\left(\frac{b^{2}}{4 a^{2}}\right)=c-\frac{b^{2}}{4 a} \\
& =\frac{4 a c-b^{2}}{4 a}
\end{aligned}
$$

66. $f(x)=-0.0117 x^{2}+0.32 x+17.9$
(A)

x	Mkt Share	$f(x)$
5	18.8	19.2
10	20.0	19.9
15	20.7	20.1
20	20.2	19.6
25	17.4	18.6
30	16.4	17
35	15.3	14.8

(B)

(C) For 2025, $x=45$ and $f(45)=-0.0117(45)^{2}+0.32(45)+17.9=8.6 \%$

For 2028, $x=48$ and $f(48)=-0.0117(48)^{2}+0.32(48)+17.9=6.3 \%$
(D) Market share rose from 18.8% in 1985 to a maximum of 20.7% in 1995 and then fell to 15.3% in 2010.
68. Verify
70. (A)

(B) $R(x)=2,000 x-60 x^{2}$

$$
=-60\left(x^{2}-\frac{100}{3} x\right)
$$

$$
=-60\left[x^{2}-\frac{100}{3} x+\frac{2500}{9}-\frac{2500}{9}\right]
$$

$$
=-60\left[\left(x-\frac{50}{3}\right)^{2}-\frac{2500}{9}\right]
$$

$$
=-60\left(x-\frac{50}{3}\right)^{2}+\frac{50,000}{3}
$$

16.667 thousand computers
(16,667 computers); 16,666.667 thousand dollars $(\$ 16,666,667)$
(C) $2000-60(50 / 3)=\$ 1,000$
72. (A)

$$
p\left(\frac{50}{3}\right)=2,000-60\left(\frac{50}{3}\right)=\$ 1,000
$$

(B) $\quad R(x)=C(x)$

$$
\begin{aligned}
x(2,000-60 x) & =4,000+500 x \\
2,000 x-60 x^{2} & =4,000+500 x \\
60 x^{2}-1,500 x+4,000 & =0 \\
6 x^{2}-150 x+400 & =0 \\
x & =3.035,21.965
\end{aligned}
$$

Break-even at 3.035 thousand $(3,035)$ and 21.965 thousand $(21,965)$
(C) Loss: $1 \leq x<3.035$ or $21.965<x \leq 25$;

Profit: $3.035<x<21.965$
74. (A) $P(x)=R(x)-C(x)$

(B) and (C) Intercepts and break-even points: 3,035 computers and 21,965 computers
(D) Maximum profit is $\$ 5,375,000$ when 12,500 computers are produced. This is much smaller than the maximum revenue of $\$ 16,666,667$.
76. Solve: $f(x)=1,000\left(0.04-x^{2}\right)=30$

$$
\begin{aligned}
40-1000 x^{2} & =30 \\
1000 x^{2} & =10 \\
x^{2} & =0.01 \\
x & =0.10 \mathrm{~cm}
\end{aligned}
$$

78.

For $x=2,300$, the estimated fuel consumption is

$$
y=a(2,300)^{2}+b(2,300)+c=5.6 \mathrm{mpg} .
$$

EXERCISE 2-4

2. $f(x)=x^{2}-5 x+6$
(A) Degree: 2

$$
\text { (B) } \begin{aligned}
x^{2}-5 x+6 & =0 \\
(x-2)(x-3) & =30 \\
x & =2,3
\end{aligned}
$$

x-intercepts: $x=2,3$
(C) $f(0)=0^{2}-5(0)+6=6$
y-intercept: 6
6. $f(x)=5 x^{6}+x^{4}+x^{8}+10$
(A) Degree: 8
(B) $f(x) \geq 10$ for all x.

No x-intercepts.
(C) $f(0)=5(0)^{6}+(0)^{4}+(0)^{8}+10=10$
y-intercept: 10
10. $f(x)=(2 x-5)^{2}\left(x^{2}-9\right)^{4}$
(A) Degree: 10
(B) $\quad(2 x-5)^{2}\left(x^{2}-9\right)^{4}=0$
$x=\frac{5}{2},-3,3 \quad x=-3, \frac{1}{2}$
x-intercepts: $-3,5 / 2,3$
(C) $\quad f(0)=[2(0)-5]^{2}\left[(0)^{2}-9\right)^{4}=5^{2} 9^{4}=164,025$ y-intercept: 164,025
4. $f(x)=30-3 x$
(A) Degree: 1
(B) $30-3 x=0$

$$
\begin{aligned}
3 x & =30 \\
x & =10
\end{aligned}
$$

x-intercept: 10
(C) $f(0)=30-3(0)=30$ y-intercept: 30
8. $f(x)=(x-5)^{2}(x+7)^{2}$
(A) Degree: 4
(B) $(x-5)^{2}(x+7)^{2}=0$
$x=5,-7$ x-intercepts: $x=5,-7$
(C) $f(0)=(0-5)^{2}(0+7)^{2}=1,225$
y-intercept: 1,225

Minimum degree: 2
(B) Negative - it must have even degree, and positive values in the domain are mapped to negative values in the range.
14. (A) Minimum degree: 3
(B) Negative - it must have odd degree, and positive values in the domain are mapped to negative values in the range.
16. (A) Minimum degree: 4
(B) Positive - it must have even degree, and positive values in the domain are mapped to positive values in the range.
18. (A) Minimum degree: 5
(B) Positive - it must have odd degree, and large positive values in the domain are mapped to positive values in the range.
20. A polynomial of degree 7 can have at most $7 x$ intercepts.
22. A polynomial of degree 6 may have no x intercepts. For example, the polynomial $f(x)=x^{6}+1$ has no x intercepts.
24. (A) Intercepts:

x-intercept(s):	
$x-3=0$	
$x=3$	
$(3,0)$	y-intercept:
$f(0)=\frac{0-3}{0+3}=-1$	
$(0,-1)$	

(B) Domain: all real numbers except $x=-3$
(C) Vertical asymptote at $x=-3$ by case 1 of the vertical asymptote procedure on page 57 .

Horizontal asymptote at $y=1$ by case 2 of the horizontal asymptote procedure on page 57 .
(D)

(E)

26. (A) Intercepts:
$\left[\begin{array}{l}x \text {-intercept(s): } \\ 2 x=0 \\ x=0 \\ (0,0)\end{array} \quad \begin{array}{l}y \text {-intercept: } \\ f(0)=\frac{2(0)}{0-3}=0 \\ (0,0)\end{array}\right.$
(B) Domain: all real numbers except $x=3$.
(C) Vertical asymptote at $x=3$ by case 1 of the vertical asymptote procedure on page 57 .

Horizontal asymptote at $y=2$ by case 2 of the horizontal asymptote procedure on page 57 .
(D)

(E)

28. (A) Intercepts:
$\left\{\begin{array}{l}x \text {-intercept: } \\ 3-3 x=0 \\ x=1 \\ (1,0)\end{array} \quad \begin{array}{l}y \text {-intercept: } \\ f(0)=\frac{3-3(0)}{0-2}=-\frac{3}{2} \\ \left(0,-\frac{3}{2}\right)\end{array}\right.$
(B) Domain: all real numbers except $x=2$
(C) Vertical asymptote at $x=2$ by case 1 of the vertical asymptote procedure on page 57 .

Horizontal asymptote at $y=-3$ by case 2 of the horizontal asymptote procedure on page 57 .
(D)

(E)

30. (A)

(B)

(B)

32. (A)
34. $y=\frac{6}{4}$, by case 2 for horizontal asymptotes on page 57 .
36. $y=-\frac{1}{2}$, by case 2 for horizontal asymptotes on page 57 .
38. $y=0$, by case 1 for horizontal asymptotes on page 57 .
40. No horizontal asymptote, by case 3 for horizontal asymptotes on page 57.
42. Here we have denominator $\left(x^{2}-4\right)\left(x^{2}-16\right)=(x-2)(x+2)(x-4)(x+4)$. Since none of these linear terms are factors of the numerator, the function has vertical asymptotes at $x=2, x=-2, x=4$, and $x=-4$.
44. Here we have denominator $x^{2}+7 x-8=(x-1)(x+8)$. Also, we have numerator $x^{2}-8 x+7=(x-1)(x-7)$. By case 2 of the vertical asymptote procedure on page 57 , we conclude that the function has a vertical asymptote at $x=-8$.
46. Here we have denominator $x^{3}-3 x^{2}+2 x=x\left(x^{2}-3 x+2\right)=x(x-2)(x-1)$. We also have numerator $x^{2}+x-2=(x+2)(x-1)$. By case 2 of the vertical asymptote procedure on page 57 , we conclude that the function has vertical asymptotes at $x=0$ and $x=2$.
48. (A) Intercepts:

x-intercept(s):	y-intercept: $3 x^{2}=0$ $x=0$ $(0,0)$
$f(0)=0$	
$(0,0)$	

(B) Vertical asymptote when $x^{2}+x-6=(x-2)(x+3)=0$; so, vertical asymptotes at $x=2, x=-3$. Horizontal asymptote $y=3$.
(C)

(D)

50. (A) Intercepts:
$\left\{\begin{array}{l}x \text {-intercept(s): } \\ 3-3 x^{2}=0 \\ 3 x^{2}=3 \\ x= \pm 1 \\ (1,0),(-1,0)\end{array} \quad \begin{array}{l}y \text {-intercept: } \\ f(0)=-\frac{3}{4} \\ \hline\end{array}\right.$
(B) Vertical asymptotes when $x^{2}-4=0$; i.e. at $x=2$ and $x=-2$.

Horizontal asymptote at $y=-3$
(C)

(D)

52. (A) Intercepts:
$\left\{\begin{array}{l}x \text {-intercept(s): } \\ 5 x-10=0 \\ x=2 \\ (2,0)\end{array}\left\{\begin{array}{l}y \text {-intercept: } \\ f(0)=\frac{-10}{-12}=\frac{5}{6} \\ (0,5 / 6)\end{array}\right.\right.$
(B) Vertical asymptote when $x^{2}+x-12=(x+4)(x-3)=0$; i.e. when $x=-4$ and when $x=3$.

Horizontal asymptote at $y=0$.
(C)

(D)

54. $f(x)=-(x+2)(x-1)=-x^{2}-x+2$
56. $f(x)=x(x+1)(x-1)=x\left(x^{2}-1\right)=x^{3}-x$
58. (A) We want $C(x)=m x+b$. Fix costs are $b=\$ 300$ per day. Given $C(20)=5,100$ we have

$$
\begin{aligned}
& m(20)+300=5,100 \\
& 20 m=4800 \\
& m=240 \\
& C(x)=240 x+300
\end{aligned}
$$

(B) $\bar{C}(x)=\frac{C(x)}{x}=\frac{240 x+300}{x}=240+\frac{300}{x}$
(C)

(D) Average cost tends towards $\$ 240$ as production increases.
60. (A) $\bar{C}(x)=\frac{x^{2}+2 x+2,000}{x}$
(B)

(C) A daily production level of $x=45$ units per day, results in the lowest average cost of $\bar{C}(45)=\$ 91.44$ per unit
(D)

62. (A) $\bar{C}(x)=\frac{20 x^{3}-360 x^{2}+2,300 x-1,000}{x}$
(B)

(C) A minimum average cost of $\$ 566.84$ is achieved at a production level of $x=8.67$ thousand cases per month.
(B) $y(21)=583$ eggs

¢icerg
$=3 \times 20 \times 2+0$
$=.6927778$
$\mathrm{b}=-1.872$
$5=16.14484127$
-241-51420

66. (A) The horizontal asymptote is $y=55$.
(B)

67. (A) Cubic regression model

$-3=x^{2}+6 \times 2+c \times+$ $5=4.444444 E=5$ に= - 246

(B) This model gives an estimate of 2.5 divorces per 1,000 marriages.
2. A. graph g
B. graph f
C. graph h
D. graph k
4. $y=3^{x} ;[-3,3]$

x	y
-3	$\frac{1}{27}$
-1	$\frac{1}{3}$
0	1
1	3
3	27

6. $y=3^{-x} ;[-3,3]$

x	y
-3	27
-1	3
0	1
1	$\frac{1}{3}$
3	$\frac{1}{27}$

8. $g(x)=-3^{-x} ;[-3,3]$

x	$g(x)$
-3	-27
-1	-3
0	-1
1	$-\frac{1}{3}$
3	$-\frac{1}{27}$

10. $y=-e^{x} ;[-3,3]$

x	y
-3	≈-0.05
-1	≈-0.37
0	-1
1	≈-2.72
3	≈-20.09

12. The graph of g is the graph of f shifted 2 units to the right.
14. The graph of g is the graph of f reflected in the x axis.
16. The graph of g is the graph of f shifted 2 units down.
18. The graph of g is the graph of f vertically contracted by a factor of 0.5 and shifted 1 unit to the right.
20. (A) $y=f(x)+2$

(C) $y=2 f(x)-4$

22. $G(t)=3^{1 / 100} ;[-200,200]$

x	$G(t)$
-200	$\frac{1}{9}$
-100	$\frac{1}{3}$
0	1
100	3
200	9

24. $y=2+e^{x-2} ;[-1,5]$

x	y
-1	≈ 2.05
0	≈ 2.14
1	≈ 2.37
3	≈ 4.72
5	≈ 22.09

26. $y=e^{-|x|} ;[-3,3]$

x	y
-3	≈ 0.05
-1	≈ 0.37
0	1
1	≈ 0.37
3	≈ 0.05

28. $a=2, b=-2$ for example. The exponential function property: For $x \neq 0, a^{x}=b^{x}$ if and only if $a=b$ assumes $a>0$ and $b>0$.
30. $3^{x+4}=3^{2 x-5}$
$x+4=2 x-5$

$$
-x=-9
$$

$$
x=9
$$

34. $(3 x+4)^{4}=(52)^{4}$

$$
\begin{aligned}
3 x+4 & =52 \\
3 x & =48 \\
x & =16
\end{aligned}
$$

38. $(4 x+1)^{4}=(5 x-10)^{4}$

$$
\begin{aligned}
(4 x+1)^{2} & =(5 x-10)^{2} \\
4 x+1 & = \pm 5(x-2) \\
4 x+1 & =5(x-2), x=11 \\
4 x+1 & =-5(x-2), x=1
\end{aligned}
$$

42. $x^{2} e^{-x}-9 e^{-x}=0$

$$
\begin{aligned}
e^{-x}\left(x^{2}-9\right) & =0 \\
\left(x^{2}-9\right) & =0 \quad\left(\text { since } e^{-x} \neq 0\right) \\
x & =-3,3
\end{aligned}
$$

46. $e^{3 x-1}-e=0$

$$
\begin{aligned}
e^{3 x-1} & =e^{1} \\
3 x-1 & =1 \\
x & =2 / 3
\end{aligned}
$$

32. $5^{x^{2}-x}=5^{42}$
$x^{2}-x=42$
$x^{2}-x-42=0$
$(x-7)(x+6)=0$
$x=-6,7$
33. $(2 x+1)^{2}=(3 x-1)^{2}$
$4 x^{2}+4 x+1=9 x^{2}-6 x+1$
$5 x^{2}-10 x=0$
$x(x-2)=0$
$x=0,2$
34. $10 x e^{x}-5 e^{x}=0$
$\mathrm{e}^{x}(10 x-5)=0$
$10 x-5=0 \quad\left(\right.$ since $\left.e^{x} \neq 0\right)$
$x=\frac{1}{2}$
35. $e^{4 x}+e>0$ for all x;
$e^{4 x}+e=0$ has no solutions.
36. $m(x)=x\left(3^{-x}\right) ;[0,3]$

x	$m(x)$
0	0
1	$\frac{1}{3}$
2	$\frac{2}{9}$
3	$\frac{1}{9}$

50. $\quad N=\frac{200}{1+3 e^{-t}} ;[0,5]$

x	N
0	50
1	≈ 95.07
2	≈ 142.25
3	≈ 174.01
4	≈ 184.58
5	≈ 196.04

52. $A=P e^{r t}$
$A=(24,000) e^{(0.0435)(7)}$
$A=(24,000) e^{0.3045}$
$A=(24,000)(1.35594686)$
$A=\$ 32,542.72$
54. (A) $A=P\left(1+\frac{r}{m}\right)^{m t}$
$A=4000\left(1+\frac{0.06}{52}\right)^{(52)(0.5)}$
$A=4000(1.0011538462)^{26}$
$A=4000(1.030436713)$
$A=\$ 4121.75$
(B) $A=P\left(1+\frac{r}{m}\right)^{m t}$
$A=4000\left(1+\frac{0.06}{52}\right)^{(52)(10)}$
$A=4000(1.0011538462)^{520}$
$A=4000(1.821488661)$
$A=\$ 7285.95$
56. $A=P\left(1+\frac{r}{m}\right)^{m t}$
$40,000=P\left(1+\frac{0.055}{365}\right)^{(365)(17)}$
$40,000=P(1.0001506849)^{6205}$
$40,000=P(2.547034043)$

$$
P=\$ 15,705
$$

58. (A) $A=P\left(1+\frac{r}{m}\right)^{m t}$
$A=10,000\left(1+\frac{0.0135}{4}\right)^{(4)(5)}$
$A=10,000(1.003375)^{20}$
$A=10,000(1.069709)$
$A=\$ 10,697.09$
(B) $\quad A=P\left(1+\frac{r}{m}\right)^{m t}$
$A=10,000\left(1+\frac{0.0130}{12}\right)^{(12)(5)}$
$A=10,000(1.00108333)^{60}$
$A=10,000(1.067121479)$
$A=\$ 10,671.21$
(C) $\quad A=P\left(1+\frac{r}{m}\right)^{m t}$

$$
\begin{aligned}
& A=10,000\left(1+\frac{0.0125}{365}\right)^{(365)(5)} \\
& A=10,000(1.000034245)^{1825} \\
& A=10,000(1.06449332) \\
& A=\$ 10,644.93
\end{aligned}
$$

60. $N=40\left(1-e^{-0.12 t}\right) ;[0,30]$

x	N
0	0
10	≈ 27.95
20	≈ 36.37
30	≈ 38.91

The maximum number of boards an average employee can be expected to produce in 1 day is 40 .
62. The exponential regression model
(B) $\quad y(10)=268.8$ exabytes per month
E×FREg

64. (A) $I(50)=I_{o} e^{-0.00942(50)} \approx 62 \%$
(B) $I(100)=I_{o} e^{-0.00942(100)} \approx 39 \%$
66. (A) $\quad P=204 e^{0.0077 t}$.
(B) Population in 2030:
$P(15)=204 e^{0.0077(15)} \approx 229$ million.
68. (A) $\quad P=7.4 e^{0.0113 t}$
(B) Population in 2025: $\quad P(10)=7.4 e^{0.0113(10)} \approx 8.29$ billion

Population in 2033: $P(18)=7.4 e^{0.0113(18)} \approx 9.07$ billion

EXERCISE 2-6

2. $\log _{2} 32=5 \Rightarrow 32=2^{5}$
3. $\log _{e} 1=0 \Rightarrow e^{0}=1$
4. $\quad \log _{9} 27=\frac{3}{2} \Rightarrow 27=9^{3 / 2}$
5. $36=6^{2} \Rightarrow \log _{6} 36=2$
6. $9=27^{2 / 3} \Rightarrow \log _{27} 9=\frac{2}{3}$
7. $M=b^{x} \Rightarrow \log _{b} M=x$
8. $\log _{10} \frac{1}{1000}=\log _{10} 10^{-3}=-3$
9. $\log _{10} 10,000=\log _{10} 10^{4}=4$
10. $\log _{2} \frac{1}{64}=\log _{2} 2^{-6}=-6$
11. $\ln (-1)$ is not defined.
12. $\quad \ln \left(e^{-1}\right)=-1$
13. $\log _{b} w^{15}=15 \log _{b} w$
14. $\log _{10} x=1$
$x=10^{1}=10$
15. $\quad \log _{49} 7=y$
$49^{y}=7$

$$
y=1 / 2
$$

24. $\log _{b} F G=\log _{b} F+\log _{b} G$
25. $\frac{\log _{3} P}{\log _{3} R}=\log _{R} P$
26. $\log _{b} \frac{1}{25}=2$

$$
\begin{aligned}
b^{2} & =\frac{1}{25} \\
b & =\frac{1}{5}
\end{aligned}
$$

36. $\log _{b} 10,000=2$
$b^{2}=10,000$
$b=100$
37. $\log _{8} x=\frac{5}{3}$

$$
x=8^{5 / 3}=\left(8^{1 / 3}\right)^{5}=2^{5}=32
$$

40. False; an example of a polynomial function of odd degree that is not one-to-one is $f(x)=x^{3}-x$. $f(-1)=f(0)=f(1)=0$.
41. False; the graph of every function (not necessarily one-to-one) intersects each vertical line at most once. For example, $f(x)=\frac{1}{x-1}$ is a one-to-one function which does not intersect the vertical line $x=1$.
42. False; $x=-1$ is in the domain of f, but cannot be in the range of g.
43. True; since g is the inverse of f, then (a, b) is on the graph of f if and only if (b, a) is on the graph of g. Therefore, f is also the inverse of g.
44. $\log _{b} x=\frac{2}{3} \log _{b} 27+2 \log _{b} 2-\log _{b} 3$
$\log _{b} x=\log _{b} 27^{2 / 3}+\log _{b} 2^{2}-\log _{b} 3$
$\log _{b} x=\log _{b} 9+\log _{b} 4-\log _{b} 3$
45. $\log _{b} x=3 \log _{b} 2+\frac{1}{2} \log _{b} 25-\log _{b} 20$

$$
\log _{b} x=\log _{b} 2^{3}+\log _{b} 25^{1 / 2}-\log _{b} 20
$$

$$
\log _{b} x=\log _{b} 8+\log _{b} 5-\log _{b} 20
$$

$\log _{b} x=\log _{b} \frac{(9)(4)}{3}$

$$
\log _{b} x=\log _{b} \frac{(8)(5)}{20}
$$

$\log _{b} x=\log _{b} 12$

$$
\log _{b} x=\log _{b} 2
$$

$x=12$

$$
x=2
$$

52. $\log _{b}(x+2)+\log _{b} x=\log _{b} 24$

$$
\begin{aligned}
\log _{b}(x+2) x & =\log _{b} 24 \\
\log _{b}\left(x^{2}+2 x\right) & =\log _{b} 24 \\
x^{2}+2 x & =24 \\
x^{2}+2 x-24 & =0 \\
(x+6)(x-4) & =0 \\
x & =-6,4
\end{aligned}
$$

Since the domain of $\log _{b}$ is $(0, \infty)$, omit the negative solution. Therefore, the solution is $x=4$.
54. $\log _{10}(x+6)-\log _{10}(x-3)=1$

$$
\begin{aligned}
\log _{10} \frac{x+6}{x-3} & =1 \\
10^{1} & =\frac{x+6}{x-3} \\
10(x-3) & =x+6 \\
10 x-30 & =x+6 \\
x & =4
\end{aligned}
$$

56. $y=\log _{3}(x+2)$

$$
3^{y}=x+2
$$

$3^{y}-2=x$

x	y
$-\frac{53}{27}$	-3
$-\frac{17}{9}$	-2
$-\frac{5}{3}$	-1
-1	0
1	1
7	2
25	3

58. The graph of $y=\log _{3}(x+2)$ is the graph of $y=\log _{3} x$ shifted to the left 2 units.
60. The domain of logarithmic function is defined for positive values only. Therefore, the domain of the function is $x-1>0$ or $x>1$. The range of a logarithmic function is all real numbers. In interval notation the domain is $(1, \infty)$ and the range is $(-\infty, \infty)$.
62. (A) $\log 72.604=1.86096$
(B) $\quad \log 0.033041=-1.48095$
(C) $\quad \ln 40,257=10.60304$
(D) $\quad \ln 0.0059263=-5.12836$
64. (A) $\quad \log x=2.0832$

$$
\begin{aligned}
& x=\log ^{-1}(2.0832) \\
& x=121.1156
\end{aligned}
$$

(B) $\log x=-1.1577$

$$
\begin{aligned}
& x=\log ^{-1}(-1.1577) \\
& x=0.0696
\end{aligned}
$$

(C) $\quad \ln x=3.1336$

$$
\begin{aligned}
& x=\ln ^{-1}(3.1336) \\
& x=22.9565
\end{aligned}
$$

(D) $\quad \ln x=-4.3281$
$x=\ln ^{-1}(-4.3281)$
$x=0.0132$
66. $10^{x}=153$

$$
\begin{aligned}
\log 10^{x} & =\log 153 \\
x & =2.1847
\end{aligned}
$$

68. $e^{x}=0.3059$

$$
\begin{aligned}
\ln e^{x} & =\ln 0.3059 \\
x & =-1.1845
\end{aligned}
$$

70. $1.02^{4 t}=2$
$\ln 1.02^{4 t}=\ln 2$
$4 t \ln 1.02=\ln 2$

$$
\begin{aligned}
& t=\frac{\ln 2}{4 \ln 1.02} \\
& t=8.7507
\end{aligned}
$$

72. $y=-\ln x ; x>0$

x	y
0.5	≈ 0.69
1	0
2	≈-0.69
4	≈-1.39
5	≈-1.61

Based on the graph above, the function is decreasing on the interval $(0, \infty)$.
74. $y=\ln |x|$

x	y
-5	≈ 1.61
-2	≈ 0.69
1	0
2	≈ 0.69
5	≈ 1.61

Based on the graph above, the function is decreasing on the interval $(-\infty, 0)$ and increasing on the interval $(0, \infty)$.
76. $y=2 \ln x+2$

x	y
0.5	≈ 0.61
1	2
2	≈ 3.39
4	≈ 4.77
5	≈ 5.22

Based on the graph above, the function is increasing on the interval $(0, \infty)$.
78. $y=4 \ln (x-3)$

x	y
4	0
6	≈ 4.39
8	≈ 6.44
10	≈ 7.78
12	≈ 8.79

Based on the graph above, the function is increasing on the interval $(3, \infty)$.
80. It is not possible to find a power of 1 that is an arbitrarily selected real number, because 1 raised to any power is 1 .
82.

A function f is "smaller than" a function g on an interval $[a, b]$ if $f(x)<g(x)$ for $a \leq x \leq b$. Based on the graph above, $\log x<\sqrt[3]{x}<x$ for $1<x \leq 16$.
84. Use the compound interest formula: $A=P(1+r)^{t}$. The problem is asking for the original amount to double, therefore $A=2 P$.

$$
\begin{aligned}
2 P & =P(1+0.0958)^{t} \\
2 & =(1.0958)^{t} \\
\ln 2 & =\ln (1.0958)^{t} \\
\ln 2 & =t \ln (1.0958) \\
\frac{\ln 2}{\ln 1.0958} & =t
\end{aligned}
$$

$$
7.58 \approx t \quad \text { It will take approximately } 8 \text { years for the original amount to double. }
$$

86. Use the compound interest formula: $A=P\left(1+\frac{r}{m}\right)^{m t}$.
(A)

$$
\begin{aligned}
7500 & =5000\left(1+\frac{0.08}{2}\right)^{2 t} \\
1.5 & =(1.04)^{2 t} \\
\ln 1.5 & =\ln (1.04)^{2 t} \\
\ln 1.5 & =2 t \ln (1.04) \\
\frac{\ln 1.5}{2 \ln 1.04} & =t \\
5.17 & \approx t
\end{aligned}
$$

It will take approximately 5.17 years for $\$ 5000$ to grow to $\$ 7500$ if compounded semiannually.
(B)

$$
\begin{aligned}
7500 & =5000\left(1+\frac{0.08}{12}\right)^{12 t} \\
1.5 & =(1.0066667)^{12 t} \\
\ln 1.5 & =\ln (1.0066667)^{12 t} \\
\ln 1.5 & =12 t \ln (1.0066667) \\
\frac{\ln 1.5}{12 \ln 1.0066667} & =t \\
5.09 & \approx t
\end{aligned}
$$

It will take approximately 5.09 years for $\$ 5000$ to grow to $\$ 7500$ if compounded monthly.
88. Use the compound interest formula: $A=P e^{r t}$.

$$
\begin{aligned}
41,000 & =17,000 e^{0.0295 t} \\
\frac{41}{17} & =e^{0.0295 t} \\
\ln \frac{41}{17} & =\ln e^{0.0295 t} \\
\ln \frac{41}{17} & =0.0295 t \\
\frac{\ln \frac{41}{17}}{0.0295} & =t \\
29.84 & \approx t
\end{aligned}
$$

It will take approximately 29.84 years for $\$ 17,000$ to grow to $\$ 41,000$ if compounded continuously.
90. Equilibrium occurs when supply and demand are equal. The models from Problem 85 have the demand and supply functions defined by $y=256.4659159-24.03812068 \ln x$ and $y=-127.8085281+20.01315349 \ln x$, respectively. Set both equations equal to each other to yield:

$$
\begin{aligned}
256.4659159-24.03812068 \ln x & =-127.8085281+20.01315349 \ln x \\
384.274444 & =44.05127417 \ln x \\
\frac{384.274444}{44.05127417} & =\ln x \\
e^{384.274444 / 44.05127417} & =e^{\ln x} \\
6145 & \approx x
\end{aligned}
$$

Substitute the value above into either equation.

$$
\begin{aligned}
& y=256.4659159-24.03812068 \ln x \\
& y=256.4659159-24.03812068 \ln (6145) \\
& y=256.4659159-24.03812068(8.723394022) \\
& y=46.77
\end{aligned}
$$

Therefore, equilibrium occurs when 6145 units are produced and sold at a price of \$46.77.
92. (A)

$$
N=10 \log \frac{I}{I_{0}}=10 \log \frac{10^{-13}}{10^{-16}}=10 \log 10^{3}=30
$$

(B)

$$
N=10 \log \frac{I}{I_{0}}=10 \log \frac{3.16 \times 10^{-10}}{10^{-16}}=10 \log 3.16 \times 10^{6} \approx 65
$$

(C) $\quad N=10 \log \frac{I}{I_{0}}=10 \log \frac{10^{-8}}{10^{-16}}=10 \log 10^{8}=80$
(D) $\quad N=10 \log \frac{I}{I_{0}}=10 \log \frac{10^{-1}}{10^{-16}}=10 \log 10^{15}=150$
94.

2024: $t=124 ; y(124) \approx 12,628$. Therefore, according to the model, the total production in the year 2024 will be approximately 12,628 million bushels.
96. $A=A_{0} e^{-0.000124 t}$
$0.1 A_{0}=A_{0} e^{-0.000124 t}$
$0.1=e^{-0.000124 t}$
$\ln 0.1=\ln e^{-0.000124 t}$
$\ln 0.1=-0.000124 t$
$18,569 \approx t$
If 10% of the original amount is still remaining, the skull would be approximately 18,569 years old.

CHAPTER 2 REVIEW

1.

2. $x^{2}=y^{2}$:

x	-3	-2	-1	0	1	2	3
y	± 3	± 2	± 1	0	± 1	± 2	± 3

(2-1)
3. $y^{2}=4 x^{2}$:

x	-3	-2	-1	0	1	2	3
y	± 6	± 4	± 2	0	± 2	± 4	± 6

4. (A) Not a function; fails vertical line test
(B) A function
(C) A function
(D) Not a function; fails vertical line test
5. $f(x)=2 x-1, g(x)=x^{2}-2 x$
(A) $f(-2)+g(-1)=2(-2)-1+(-1)^{2}-2(-1)=-2$
(B) $f(0) \cdot g(4)=(2 \cdot 0-1)\left(4^{2}-2 \cdot 4\right)=-8$
(C) $\frac{g(2)}{f(3)}=\frac{2^{2}-2 \cdot 2}{2 \cdot 3-1}=0$
(D) $\frac{f(3)}{g(2)}$ not defined because $g(2)=0$
6. $\begin{aligned} u & =e^{v} \\ v & =\ln u\end{aligned}$
7. $x=10^{y}$
$y=\log x$
8. $\ln M=N$

$$
\begin{equation*}
M=e^{N} \tag{2-6}
\end{equation*}
$$

9. $\log u=v$
$u=10 v$
10. $\log _{3} x=2$
$x=3^{2}=9$
11. $\begin{aligned} \log _{x} 36 & =2 \\ x^{2} & =36 \\ x & =6\end{aligned}$

$$
x^{2}=36
$$

$$
\begin{equation*}
x=6 \tag{2-6}
\end{equation*}
$$

13. $10^{x}=143.7$
$x=\log 143.7$

$$
\begin{equation*}
x \approx 2.157 \tag{2-6}
\end{equation*}
$$

15. $\log x=3.105$

$$
\begin{equation*}
x=10^{3.105} \approx 1273.503 \tag{2-6}
\end{equation*}
$$

17. (A) $y=4$
(B) $x=0$
(C) $y=1$
(D) $x=-1$ or 1
(E) $y=-2$
(F) $x=-5$ or 5
18. $\log _{2} 16=x$

$$
\begin{align*}
2^{x} & =16 \\
x & =4 \tag{2-6}
\end{align*}
$$

14. $e^{x}=503,000$

$$
\begin{equation*}
x=\ln 503,000 \approx 13.128 \tag{2-6}
\end{equation*}
$$

16. $\ln x=-1.147$

$$
\begin{equation*}
x=e^{-1.147} \approx 0.318 \tag{2-6}
\end{equation*}
$$

18. (A)
(B)
(C)

(D)

19. $f(x)=-x^{2}+4 x=-\left(x^{2}-4 x\right)$

$$
\begin{aligned}
& =-\left(x^{2}-4 x+4\right)+4 \\
& =-(x-2)^{2}+4 \quad(\text { vertex form })
\end{aligned}
$$

The graph of $f(x)$ is the graph of $y=x^{2}$ reflected in the x axis, then shifted right 2 units and up 4 units.
20. (A) g
(B) m
(C) n
(D) f
(2-2, 2-3)
21. $y=f(x)=(x+2)^{2}-4$
(A) x intercepts: $(x+2)^{2}-4=0 ; \quad y$ intercept: 0

$$
\begin{aligned}
(x+2)^{2} & =4 \\
x+2 & =-2 \text { or } 2 \\
x & =-4,0
\end{aligned}
$$

(B) Vertex: $(-2,-4)$
(C) Minimum: -4
(D) Range: $y \geq-4$ or $[-4, \infty)$
22. $y=4-x+3 x^{2}=3 x^{2}-x+4$; quadratic function.
23. $y=\frac{1+5 x}{6}=\frac{5}{6} x+\frac{1}{6}$; linear function.
24. $y=\frac{7-4 x}{2 x}=\frac{7}{2 x}-2$; none of these.
25. $y=8 x+2(10-4 x)=8 x+20-8 x=20$; constant function
26. $\log (x+5)=\log (2 x-3)$

$$
\begin{align*}
x+5 & =2 x-3 \\
-x & =-8 \\
x & =8 \tag{2-6}
\end{align*}
$$

$$
\text { 28. } \begin{align*}
9^{x-1} & =3^{1+x} \\
\left(3^{2}\right)^{x-1} & =3^{1+x} \\
3^{2 x-2} & =3^{1+x} \\
2 x-2 & =1+x \\
x & =3 \tag{2-5}
\end{align*}
$$

30. $2 x^{2} e^{x}=3 x e^{x}$

$$
\begin{align*}
& 2 x^{2}=3 x \\
& 2 x^{2}-3 x=0 \\
& x(2 x-3)=0 \\
& x=0,3 / 2 \tag{2-5}
\end{align*}
$$

32. $\log _{x} 8=-3$

$$
\begin{align*}
x^{-3} & =8 \\
\frac{1}{x^{3}} & =8 \\
x^{3} & =\frac{1}{8} \\
x & =\frac{1}{2} \tag{2-6}
\end{align*}
$$

34. $x=3\left(e^{1.49}\right) \approx 13.3113$
35. $\log x=-2.0144$

$$
\begin{equation*}
x \approx 10^{-2.0144} \approx 0.0097 \tag{2-6}
\end{equation*}
$$

27. $2 \ln (x-1)=\ln \left(x^{2}-5\right)$

$$
\ln (x-1)^{2}=\ln \left(x^{2}-5\right)
$$

$$
(x-1)^{2}=x^{2}-5
$$

$$
x^{2}-2 x+1=x^{2}-5
$$

$$
-2 x=-6
$$

$$
\begin{equation*}
x=3 \tag{2-6}
\end{equation*}
$$

29. $\begin{aligned} e^{2 x} & =e^{x^{2}-3} \\ 2 x & =x^{2}-3 \\ x^{2}-2 x-3 & =0 \\ (x-3)(x+1) & =0 \\ x & =3,-1\end{aligned}$
30. $\log _{1 / 3} 9=x$

$$
\begin{align*}
\left(\frac{1}{3}\right)^{x} & =9 \\
\frac{1}{3^{x}} & =9 \\
3^{x} & =\frac{1}{9} \\
x & =-2 \tag{2-6}
\end{align*}
$$

33. $\log _{9} x=\frac{3}{2}$

$$
9^{3 / 2}=x
$$

$$
\begin{equation*}
x=27 \tag{2-6}
\end{equation*}
$$

35. $x=230\left(10^{-0.161}\right) \approx 158.7552 \quad(2-5)$
36. $\ln x=0.3618$

$$
\begin{equation*}
x=e^{0.3618} \approx 1.4359 \tag{2-6}
\end{equation*}
$$

38. $35=7\left(3^{x}\right)$

$$
3^{x}=5
$$

$\ln 3^{x}=\ln 5$
$x \ln 3=\ln 5$

$$
\begin{equation*}
x=\frac{\ln 5}{\ln 3} \approx 1.4650 \tag{2-6}
\end{equation*}
$$

40. $8,000=4,000(1.08)^{x}$
$(1.08)^{x}=2$
$\ln (1.08)^{x}=\ln 2$
$x \ln 1.08=\ln 2$

$$
\begin{equation*}
x=\frac{\ln 2}{\ln 1.08} \approx 9.0065 \tag{2-6}
\end{equation*}
$$

42. (A) $x^{2}-x-6=0$ at $x=-2,3$ Domain: all real numbers except $x=-2,3$
43. $f(x)=4 x^{2}+4 x-3=4\left(x^{2}+x\right)-3$

$$
\begin{aligned}
& =4\left(x^{2}+x+\frac{1}{4}\right)-3-1 \\
& =4\left(x+\frac{1}{2}\right)^{2}-4 \text { (vertex form) }
\end{aligned}
$$

Intercepts:
y intercept: $f(0)=4(0)^{2}+4(0)-3=-3$
x intercepts: $f(x)=0$

$$
\begin{align*}
4\left(x+\frac{1}{2}\right)^{2}-4 & =0 \\
\left(x+\frac{1}{2}\right)^{2} & =1 \\
x+\frac{1}{2} & = \pm 1 \\
x & =-\frac{1}{2} \pm 1=-\frac{3}{2}, \frac{1}{2} \tag{2-3}
\end{align*}
$$

Vertex: $\left(-\frac{1}{2},-4\right)$; minimum: -4 ; range: $y \geq-4$ or $[-4, \infty)$
44. $f(x)=e^{x}-1, g(x)=\ln (x+2)$

Points of intersection:

$(-1.54,-0.79),(0.69,0.99)$

46. $f(x)=\frac{-66}{2+x^{2}}$:

$$
\begin{array}{l|rrrrrrr}
x & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\hline f(x) & -6 & -11 & -22 & -66 & -22 & -11 & -6
\end{array}
$$

For Problems 47-50, $f(x)=5 x+1$.
47. $f(f(0))=f(5(0)+1)=f(1)=5(1)+1=6$
48. $f(f(-1))=f(5(-1)+1)=f(-4)=5(-4)+1=-19$
49. $f(2 x-1)=5(2 x-1)+1=10 x-4$
50. $f(4-x)=5(4-x)+1=20-5 x+1=21-5 x$
51. $f(x)=3-2 x$
(A) $f(2)=3-2(2)=3-4=-1$
(B) $f(2+h)=3-2(2+h)=3-4-2 h=-1-2 h$
(C) $f(2+h)-f(2)=-1-2 h-(-1)=-2 h$
(D) $\frac{f(2+h)-f(2)}{h}=-\frac{2 h}{h}=-2$
52. $f(x)=x^{2}-3 x+1$
(A) $f(a)=a^{2}-3 a+1$
(B) $f(a+h)=(a+h)^{2}-3(a+h)+1=a^{2}+2 a h+h^{2}-3 a-3 h+1$
(C) $f(a+h)-f(a)=a^{2}+2 a h+h^{2}-3 a-3 h+1-\left(a^{2}-3 a+1\right)$

$$
=2 a h+h^{2}-3 h
$$

(D) $\frac{f(a+h)-f(a)}{h}=\frac{2 a h+h^{2}-3 h}{h}=\frac{h(2 a+h-3)}{h}=2 a+h-3$
53. The graph of m is the graph of $y=|x|$ reflected in the x axis and shifted 4 units to the right.
54. The graph of g is the graph of $y=x^{3}$ vertically contracted by a factor of 0.3 and shifted up 3 units.
55. The graph of $y=x^{2}$ is vertically expanded by a factor of 2 , reflected in the x axis and shifted to the left 3 units.
Equation: $y=-2(x+3)^{2}$
56. Equation: $f(x)=2 \sqrt{x+3}-1$

57. $f(x)=\frac{n(x)}{d(x)}=\frac{5 x+4}{x^{2}-3 x+1}$. Since degree $n(x)=1<2=$ degree $d(x), y=0$ is the horizontal asymptote.
58. $f(x)=\frac{n(x)}{d(x)}=\frac{3 x^{2}+2 x-1}{4 x^{2}-5 x+3}$. Since degree $n(x)=2=$ degree $d(x), y=\frac{3}{4}$ is the horizontal asymptote.
59. $f(x)=\frac{n(x)}{d(x)}=\frac{x^{2}+4}{100 x+1}$. Since degree $n(x)=2>1=$ degree $d(x)$, there is no horizontal asymptote.
60. $f(x)=\frac{n(x)}{d(x)}=\frac{x^{2}+100}{x^{2}-100}=\frac{x^{2}+100}{(x-10)(x+10)}$. Since $n(x)=x^{2}+100$ has no real zeros and $d(10)=d(-10)=0, x=10$ and $x=-10$ are the vertical asymptotes of the graph of f.
61. $f(x)=\frac{n(x)}{d(x)}=\frac{x^{2}+3 x}{x^{2}+2 x}=\frac{x(x+3)}{x(x+2)}=\frac{x+3}{x+2}, x \neq 0 . \quad x=-2$ is a vertical asymptote of the graph of f.
62. True; $p(x)=\frac{p(x)}{1}$ is a rational function for every polynomial p.
63. False; $f(x)=\frac{1}{x}=x^{-1}$ is not a polynomial function.
64. False; $f(x)=\frac{1}{x^{2}+1}$ has no vertical asymptotes.
65. True: let $f(x)=b^{x},(b>0, b \neq 1)$, then the positive x-axis is a horizontal asymptote if $0<b<1$, and the negative x-axis is a horizontal asymptote if $b>1$.
66. True: let $f(x)=\log _{b} x(b>0, b \neq 1)$. If $0<b<1$, then the positive y-axis is a vertical asymptote; if $b>1$, then the negative y-axis is a vertical asymptote.
67. True; $f(x)=\frac{x}{x-1}$ has vertical asymptote $x=1$ and horizontal asymptote $y=1$.
68.

69. $\quad \begin{gathered}y \\ \\ 80\end{gathered}$

70. $y=-(x-4)^{2}+3$
71. $f(x)=-0.4 x^{2}+3.2 x+1.2=-0.4\left(x^{2}-8 x+16\right)+7.6$

$$
=-0.4(x-4)^{2}+7.6
$$

(A) y intercept: 1.2

$$
x \text { intercepts: } \begin{aligned}
-0.4(x-4)^{2}+7.6 & =0 \\
(x-4)^{2} & =19 \\
x & =4+\sqrt{19} \approx 8.4,4-\sqrt{19} \approx-0.4
\end{aligned}
$$

(B) Vertex: $(4.0,7.6)$
(C) Maximum: 7.6
(D) Range: $y \leq 7.6$ or $(-\infty, 7.6]$
72.

(A) y intercept: 1.2 x intercepts: $-0.4,8.4$
(B) Vertex: $(4.0,7.6)$
(C) Maximum: 7.6
(D) Range: $y \leq 7.6$ or $(-\infty, 7.6]$
73. $\log 10^{\pi}=\pi \log 10=\pi$
$10^{\log \sqrt{2}}=y$ is equivalent to $\log y=\log \sqrt{2}$
which implies $y=\sqrt{2}$
Similarly, $\ln e^{\pi}=\pi \ln e=\pi$ (Section 2-5, 4.b \& g) and $e^{\ln \sqrt{2}}=y$ implies $\ln y=\ln \sqrt{2}$ and $y=\sqrt{2}$.
74. $\log x-\log 3=\log 4-\log (x+4)$

$$
\begin{align*}
\log \frac{x}{3} & =\log \frac{4}{x+4} \\
\frac{x}{3} & =\frac{4}{x+4} \\
x(x+4) & =12 \\
x^{2}+4 x-12 & =0 \\
(x+6)(x-2) & =0 \\
x & =-6,2 \tag{2-6}
\end{align*}
$$

Since $\log (-6)$ is not defined, -6 is not a solution. Therefore, the solution is $x=2$.
75. $\ln (2 x-2)-\ln (x-1)=\ln x$

$$
\begin{aligned}
\ln \left(\frac{2 x-2}{x-1}\right) & =\ln x \\
\ln \left[\frac{2(x-1)}{x-1}\right] & =\ln x \\
\ln 2 & =\ln x \\
x & =2
\end{aligned}
$$

76. $\ln (x+3)-\ln x=2 \ln 2$

$$
\begin{align*}
\ln \left(\frac{x+3}{x}\right) & =\ln \left(2^{2}\right) \\
\frac{x+3}{x} & =4 \\
x+3 & =4 x \\
3 x & =3 \tag{2-6}\\
x & =1 \tag{2-6}
\end{align*}
$$

77. $\quad \log 3 x^{2}=2+\log 9 x$

$$
\begin{align*}
\log 3 x^{2}-\log 9 x & =2 \\
\log \left(\frac{3 x^{2}}{9 x}\right) & =2 \\
\log \left(\frac{x}{3}\right) & =2 \\
\frac{x}{3} & =10^{2}=100 \tag{2-6}\\
x & =300
\end{align*}
$$

78. $\quad \ln y=-5 t+\ln c$ $\ln y-\ln c=-5 t$
$\ln \frac{y}{c}=-5 t$
$\frac{y}{c}=e^{-5 t}$
$y=c e^{-5 t}$
79. Let x be any positive real number and suppose $\log _{1} x=y$. Then $1^{y}=x$.

But, $1^{y}=1$, so $x=1$, i.e., $x=1$ for all positive real numbers x.
This is clearly impossible.
80. The graph of $y=\sqrt[3]{x}$ is vertically expanded by a factor of 2 , reflected in the x axis, shifted 1 unit to the left and 1 unit down.
Equation: $y=-2 \sqrt[3]{x+1}-1$
81. $G(x)=0.3 x^{2}+1.2 x-6.9=0.3\left(x^{2}+4 x+4\right)-8.1$

$$
=0.3(x+2)^{2}-8.1
$$

(A) y intercept: -6.9

$$
x \text { intercepts: } \quad \begin{aligned}
0.3(x+2)^{2}-8.1 & =0 \\
(x+2)^{2} & =27 \\
x & =-2+\sqrt{27} \approx 3.2,-2-\sqrt{27} \approx-7.2
\end{aligned}
$$

(B) Vertex: $(-2,-8.1)$
(C) Minimum: -8.1
(D) Range: $y \geq-8.1$ or $[-8.1, \infty)$
(2-3)
82.

(A) y intercept: -6.9
x intercept: $-7.2,3.2$
(B) Vertex: $(-2,-8.1)$
(C) Minimum: -8.1
(D) Range: $y \geq-8.1$ or $[-8.1, \infty)$
83. (A) $S(x)=3$ if $0 \leq x \leq 20$;

$$
\begin{aligned}
& S(x)=3+0.057(x-20) \\
&=0.057 x+1.86 \text { if } 20<x \leq 200 \\
& S(200)=13.26 \\
& S(x)=13.26+0.0346(x-200) \\
&=0.0346 x+6.34 \text { if } 200<x \leq 1000 \\
& S(1000)=40.94 \\
& S(x)=40.94+0.0217(x-1000) \\
&=0.0217 x+19.24 \text { if } x>1000 \\
& \text { Therefore, } S(x)=\left\{\begin{array}{lll}
3 & \text { if } & 0 \leq x \leq 20 \\
0.057 x+1.86 & \text { if } & 20<x \leq 200 \\
0.0346 x+6.34 & \text { if } & 200<x \leq 1000 \\
0.0217 x+19.24 & \text { if } & x>1000
\end{array}\right.
\end{aligned}
$$

(B)

84. $A=P\left(1+\frac{r}{m}\right)^{m t} ; P=5,000, r=0.0125, m=4, \quad t=5$.
$A=5000\left(1+\frac{0.0125}{4}\right)^{4(5)}=5000\left(1+\frac{0.0125}{4}\right)^{20} \approx 5321.95$
After 5 years, the CD will be worth $\$ 5,321.95$
85. $A=P\left(1+\frac{r}{m}\right)^{m t} ; P=5,000, r=0.0105, m=365, t=5$
$A=5000\left(1+\frac{0.0105}{365}\right)^{365(5)}=5000\left(1+\frac{0.0105}{365}\right)^{1825} \approx 5269.51$
After 5 years, the CD will be worth $\$ 5,269.51$.
86. $A=P\left(1+\frac{r}{m}\right)^{m t}, r=0.0659, m=12$

Solve $P\left(1+\frac{0.0659}{12}\right)^{12 t}=3 P$ or $(1.005492)^{12 t}=3$
for t :

$$
\begin{align*}
12 t \ln (1.005492) & =\ln 3 \\
t & =\frac{\ln 3}{12 \ln (1.005492)} \approx 16.7 \text { year. } \tag{2-5}
\end{align*}
$$

87. $A=P e^{r t}, r=0.0739$. Solve $2 P=P e^{0.0739 t}$ for t.

$$
\begin{align*}
2 P & =P e^{0.0739 t} \\
e^{0.0739 t} & =2 \\
0.0739 t & =\ln 2 \\
t & =\frac{\ln 2}{0.0739} \approx 9.38 \text { years. } \tag{2-5}
\end{align*}
$$

88. $p(x)=50-1.25 x$ Price-demand function

$$
\begin{aligned}
C(x) & =160+10 x \text { Cost function } \\
R(x) & =x p(x) \\
& =x(50-1.25 x) \text { Revenue function }
\end{aligned}
$$

(A) $\quad R(x) C(x) 4$

(B) $R=C$

$$
\begin{aligned}
x(50-1.25 x) & =160+10 x \\
-1.25 x^{2}+50 x & =160+10 x \\
-1.25 x^{2}+40 x & =160 \\
-1.25\left(x^{2}-32 x+256\right) & =160-320 \\
-1.25(x-16)^{2} & =-160 \\
(x-16)^{2} & =128 \\
x & =16+\sqrt{128} \approx 27.314 \\
16-\sqrt{128} & \approx 4.686
\end{aligned}
$$

$$
R=C \text { at } x=4.686 \text { thousand units (4,686 units) and }
$$

$$
x=27.314 \text { thousand units (27,314 units) }
$$

$$
R<C \text { for } 1 \leq x<4.686 \text { or } 27.314<x \leq 40
$$

$$
R>C \text { for } 4.686<x<27.314
$$

(C) Max Rev: $50 x-1.25 x^{2}=R$
$-1.25\left(x^{2}-40 x+400\right)+500=R$

$$
-1.25(x-20)^{2}+500=R
$$

Vertex at $(20,500)$
Max. Rev. $=500$ thousand $(\$ 500,000)$ occurs when output is 20 thousand (20,000 units)
Wholesale price at this output: $p(x)=50-1.25 x$

$$
\begin{equation*}
p(20)=50-1.25(20)=\$ 25 \tag{2-3}
\end{equation*}
$$

89. (A) $P(x)=R(x)-C(x)=x(50-1.25 x)-(160+10 x)$

$$
=-1.25 x^{2}+40 x-160
$$

(B) $\quad P=0$ for $x=4.686$ thousand units (4,686 units) and $x=27.314$ thousand units (27,314 units)
$P<0$ for $1 \leq x<4.686$ or $27.314<x \leq 40$
$P>0$ for $4.686<x<27.314$
(C) Maximum profit is 160 thousand dollars $(\$ 160,000)$, and this occurs at $x=16$ thousand units(16,000 units). The wholesale price at this output is $p(16)=50-1.25(16)=\$ 30$, which is $\$ 5$ greater than the $\$ 25$ found in $88(\mathrm{C})$.
90. (A) The area enclosed by the storage areas is given by

$$
A=(2 y) x
$$

Now, $3 x+4 y=840$
so $\quad y=210-\frac{3}{4} x$
Thus $A(x)=2\left(210-\frac{3}{4} x\right) x$

$$
=420 x-\frac{3}{2} x^{2}
$$

(B) Clearly x and y must be nonnegative; the fact that $y \geq 0$ implies
$210-\frac{3}{4} x \geq 0$
and $\quad 210 \geq \frac{3}{4} x$

$$
\begin{aligned}
& 840 \geq 3 x \\
& 280 \geq x
\end{aligned}
$$

(C) $\quad A(x) \uparrow$ 30,000

Thus, domain A : $0 \leq x \leq 280$
(D) Graph $A(x)=420 x-\frac{3}{2} x^{2}$ and $y=25,000$ together.

There are two values of x that will produce storage areas with a combined area of 25,000 square feet, one near $x=90$ and the other near $x=190$.

0
(E) $x=86, x=194$
(F) $\quad A(x)=420 x-\frac{3}{2} x^{2}=-\frac{3}{2}\left(x^{2}-280 x\right)$

Completing the square, we have
$A(x)=-\frac{3}{2}\left(x^{2}-280 x+19,600-19,600\right)$
$=-\frac{3}{2}\left[(x-140)^{2}-19,600\right]$
$=-\frac{3}{2}(x-140)^{2}+29,400$
The dimensions that will produce the maximum combined area are:
$x=140 \mathrm{ft}, y=105 \mathrm{ft}$. The maximum area is $29,400 \mathrm{sq} . \mathrm{ft}$.
91. (A) Quadratic regression model,

Table 1:

To estimate the demand at price level of $\$ 180$, we solve the equation

$$
a x^{2}+b x+c=180
$$

for x. The result is $x \approx 2,833$ sets.
(B) Linear regression model,

Table 2:

To estimate the supply at a price level of $\$ 180$, we solve the equation

$$
a x+b=180
$$

for x. The result is $x \approx 4,836$ sets.
(C) The condition is not stable; the price is likely to decrease since the supply at the price level of $\$ 180$ exceeds the demand at this level.
(D) Equilibrium price: $\$ 131.59$

Equilibrium quantity: 3,587 cookware set.
92.
(A)
Cubic Regression

$$
y=0.30395 x^{3}-12.993 x^{2}+38.292 x+5,604.8
$$

(B)

$$
y=0.30395(38)^{3}-12.993(38)^{2}+38.292(38)+5,604.8 \approx 4,976
$$

The predicted crime index in 2025 is 4,976 .
93. (A)

$$
\begin{aligned}
N(0) & =1 \\
N\left(\frac{1}{2}\right) & =2 \\
N(1) & =4=2^{2} \\
N\left(\frac{3}{2}\right) & =8=2^{3} \\
N(2) & =16=2^{4} \\
\vdots &
\end{aligned}
$$

(B) We need to solve:

$$
2^{2 t}=10^{9}
$$

$$
\log 2^{2 t}=\log 10^{9}=9
$$

$$
2 t \log 2=9
$$

$$
t=\frac{9}{2 \log 2} \approx 14.95
$$

Thus, the mouse will die in 15 days.

Thus, we conclude that

$$
\begin{equation*}
N(t)=2^{2 t} \text { or } N=4^{t} \tag{2-6}
\end{equation*}
$$

94. Given $I=I_{0} e^{-k d}$. When $d=73.6, I=\frac{1}{2} I_{0}$. Thus, we have:

$$
\begin{aligned}
\frac{1}{2} I_{0} & =I_{0} e^{-k(73.6)} \\
e^{-k(73.6)} & =\frac{1}{2} \\
-k(73.6) & =\ln \frac{1}{2} \\
k & =\frac{\ln (0.5)}{-73.6} \approx 0.00942
\end{aligned}
$$

Thus, $k \approx 0.00942$.
To find the depth at which 1% of the surface light remains, we set $I=0.01 I_{0}$ and solve

$$
\begin{align*}
0.01 I_{0} & =I_{0} e^{-0.00942 d} \text { for } d: \\
0.01 & =e^{-0.00942 d} \\
-0.00942 d & =\ln 0.01 \\
d & =\frac{\ln 0.01}{-0.00942} \approx 488.87 \tag{2-6}
\end{align*}
$$

Thus, 1% of the surface light remains at approximately 489 feet.
95. (A) Logarithmic regression model:

Year 2023 corresponds to $x=83 ; y(83) \approx 6,134,000$ cows.
(B) $\ln (0)$ is not defined.
96. Using the continuous compounding model, we have:

$$
\begin{align*}
2 P_{0} & =P_{0} e^{0.03 t} \\
2 & =e^{0.03 t} \\
0.03 t & =\ln 2 \\
t & =\frac{\ln 2}{0.03} \approx 23.1 \tag{2-5}
\end{align*}
$$

Thus, the model predicts that the population will double in approximately 23.1 years.
97. (A)

The exponential regression model is $\mathrm{y}=47.194(1.0768)^{\mathrm{x}}$.
To estimate for the year 2025, let $\mathrm{x}=45 \Rightarrow \mathrm{y}=47.19368975(1.076818175)^{45} \approx 1,319.140047$. The estimated annual expenditure for Medicare by the U.S. government, rounded to the nearest billion, is approximately $\$ 1,319$ billion. (This is $\$ 1.319$ trillion.)
(B) To find the year, solve $47.194(1.0768)^{x}=2,000$. Note: Use 2,000 because expenditures are in billions of dollars, and 2 trillion is 2,000 billion.
$47.194(1.0768)^{x}=2,000$

$$
1.0768^{x}=\frac{2,000}{47.194}
$$

$$
\ln \left(1.0768^{x}\right)=\ln \left(\frac{2,000}{47.194}\right)
$$

$$
x \ln 1.0768=\ln \left(\frac{2,000}{47.194}\right)
$$

$$
x=\frac{\ln \left(\frac{2,000}{47.194}\right)}{\ln 1.0768} \approx 50.6 \text { years }
$$

$1,980+50.63=2,030.63$ Annual expenditures exceed two trillion dollars in the year 2031.

