

8

Chapter Two

DATA MANIPULATION

Chapter Summary

This chapter introduces the role of a computer's CPU. It describes the machine cycle and the various operations
(or, and, exclusive or, add, shift, etc.) performed by a typical arithmetic/logic unit. The concept of a machine
language is presented in terms of the simple yet representative machine, which we call The Vole, described in
Appendix C of the text. The chapter also introduces some alternatives to the von Neumann architecture such as
multiprocessor machines.

The optional sections in this chapter present a more thorough discussion of the instructions found in a typical
machine language (logical and numerical operations, shifts, jumps, and I/O communication), a short explanation
of how a computer communicates with peripheral devices, and alternative machine designs.

The machine language in Appendix C involves only direct and immediate addressing. However, indirect
addressing is introduced in the last section of Chapter 7 (Pointers in Machine Language) after the pointer concept
has been presented in the context of data structures.

Comments

1. When describing Computer Architecture in Section 2.1, remind students that this
architecture applies, in general, to every computer whether it be a supercomputer, desktop,
tablet, laptop, or phone.

2. Students will often be confused with the idea and implementation of machine language, so
go very slowly when first teaching this. In the "Questions and Exercises" at the end of Section
2.2, problem #7 starts with commands in English and asks students to translate them into Vole.
Using this approach first will help students better see what the Vole language is trying to
accomplish.

3. The concepts of Program Counter and Instruction Register in Section 2.3 will make more
sense to students if the instructor does an interactive example in which these values are
changing as the program is hand-simulated. Because a single command requires 4 Hex digits,
but each memory cell holds 2 Hex digits, the program counter in the Vole language must
increase by 2 after each instruction. This is demonstrated in Figure 2.11. Students may need
some help seeing why this is required, and may also need reminders of this fact throughout
the chapter.

4. While it could be possible to write an interpreter for the Vole language, students will benefit

in the long run by hand-simulating these programs rather than entering them into a simulator.

9

The ability to understand that a program is executed one command at a time, and that
unintended commands still execute, lay the groundwork for debugging programs, no matter
the language.

5. It may be helpful to hand out to your students a summary of the Vole language, from
Appendix C, on a single sheet of paper.

10

Answers to Chapter Review Problems

1. a. General purpose registers and main memory cells are small data storage cells in a computer.

b. General purpose registers are inside the CPU; main memory cells are outside the CPU.

(The purpose of this question is to emphasize the distinction between registers and memory cells—a distinction
that seems to elude some students, causing confusion when following machine language programs.)

2. a. 0010001100000100

 b. 1011

 c. 001010100101

3. Eleven cells with addresses 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, and 0xA2.

4. 0xCD

5. Program Instruction Memory cell
 counter register at 0x02
 0x02 0x2211 0x32

 0x04 0x3202 0x32

 0x06 0xC000 0x11

6. To compute x + y + z, each of the values must be retrieved from memory and placed in a register, the sum of x
and y must be computed and saved in another register, z must be added to that sum, and the final
answer must be stored in memory.

A similar process is required to compute (2x) + y. The point of this example is that the
multiplication by 2 is accomplished by adding x to x.

7. a. OR the contents of register 0x2 with the contents of register 0x3 and place the result in register 0x1.

b. Move the contents of register 0xE to register 0x1.

c. Rotate the contents of register 0x3 four bits to the right.

d. Compare the contents of registers 0x1 and 0x0. If the patterns are equal, jump to the instruction at address 0x00.
Otherwise, continue with the next sequential instruction.

e. Load register 0xB with the value (hexadecimal) 0xCD.

8. 16 with 4 bits, 64 with 6 bits

9. a. 0x2677 b. 0x1677 c. 0xBA24 d. 0xA403 e. 0x81E2

10. The only change that is needed is that the third instruction should be 0x6056 rather than 0x5056.

11. a. Changes the contents of memory cell 0x3C.

b. Is independent of memory cell 0x3C.

c. Retrieves from memory cell 0x3C.

d. Changes the contents of memory cell 0x3C.

e. Is independent of memory cell 0x3C.

12. a. Place the value 0x55 in register 0x6. b. 0x55

11

13. a. 0x1221 b. 0x2134

14. a. Load register 0x2 with the contents of memory cell 0x02.
 Store the contents of register 0x2 in memory cell 0x42.

Halt.

 b. 0x32

c. 0x06

15. a. 0x06 b. 0x0A

16. a. 0x00, 0x01, 0x02, 0x03, 0x04, 0x05 b. 0x06, 0x07

17. a. 0x04 b. 0x04 c. 0x0E

18. 0x04. The program is a loop that is terminated when the value in register 0x0 (initiated at 0x00) is finally
incremented by twos to the value in register 0x3 (initiated at 0x04).

19. 11 microseconds, because 11 instructions were executed.

20. The point to this problem is that a bit pattern stored in memory is subject to interpretation—it may represent
part of the operand of one instruction and the op-code field of another.

a. Registers 0x0, 0x1, and 0x2 will contain 0x32, 0x24, and 0x12, respectively.

b. 0x12

c. 0x32

21. The machine will alternate between executing the jump instruction at address 0xAF and the jump instruction
at address 0xB0.

22. It would never halt. The first 2 instructions alter the third instruction to read 0xB000 before it is ever executed.
Thus, by the time the machine reaches this instruction, it has been changed to read "Jump to address
0x00." Consequently, the machine will be trapped in a loop forever (or until it is turned off).

23. As the question states, assume the program is loaded into memory starting at address 0x00

a. b. c.

0x14D8 0x14D8 0x2000

0x34B3 0x15B3 0x1144

0xC000 0x35D8 0xB10A

 0x34B4 0x22FF

 0xC000 0xB00C

 0x2201

 0x3246

 0xC000

12

24. a. The single instruction 0xB000 stored in locations 0x00 and 0x01.

 b. Address Contents
0x00 0x2100 Initialize

0x02 0x2270 counters.

0x04 0x3109 Set origin

0x06 0x320B and destination.

0x08 0x1000 Now move

0x0A 0x3000 one cell.

0x0C 0x2001 Increment

0x0E 0x5101 addresses.

0x10 0x5202

0x12 0x2333 Do it again

0x14 0x4010 if all cells

0x16 0xB31A have not

0x18 0xB004 been moved.

0x1A 0x2070 Adjust values

0x1C 0x3071 that are

0x1E 0x2079 location

0x20 0x3075 dependent.

0x22 0x207B

0x24 0x3077

0x26 0x208A

0x28 0x3087

0x2A 0x2074

0x2C 0x3089

0x2E 0x20C0

0x30 0x30A4

0x32 0x2000

0x34 0x20A5

0x36 0xB070 Make the big jump!

c. Address Contents
0x00 0x2000 Initialize counter.

0x02 0x2100 Initialize origin.

0x04 0x2270 Initialize destination.

0x06 0x2430 Initialize references

0x08 0x1530 to table.

0x0A 0x310D Get origin

0x0C 0x1600 value.

0x0E 0xB522 Jump if value must be adjusted.

0x10 0x3213 Place value

0x12 0x3600 in new location.

0x14 0x2301 Increment

0x16 0x5003 R0,

0x18 0x5113 R1, and

0x1A 0x5223 R2.

0x1C 0x233C Are we done?

0x1E 0xB370 If so, jump to relocated program.

0x20 0xB00A Else, go back.

0x22 0x2370 Add 70 to

0x24 0x5663 value being

0x26 0x2301 transferred and

0x28 0x5443 update R4 and

0x2A 0x342D R5 for next

0x2C 0x1500 location.

0x2E 0xB010 Return (from subroutine).

0x30 0x0305 Table of

0x32 0x0709 locations that

0x34 0x0B0F must be

0x36 0x111F updated for

13

0x38 0x212B new location.

0x3A 0x2FFF

25.
 0x20A0

 0x21A1

 0x6001

 0x21A2

 0x6001

 0x21A3

 0x6001

 0x30A4

 0xC000

26.The machine would place a halt instruction (C000) at memory location 04 and 05 and then halt when this
instruction is executed. At this point its program counter will contain the value 06.

27. The machine would continue to repeat the instruction at address 08 indefinitely.

28. It copies the data from the memory cells at addresses 00, 01, and 02 into the memory cells at addresses 10, 11,
and 12.

29. Let R represent the first hexadecimal digit in the operand field;
 Let XY represent the second and third digits in the operand field;
 If the pattern in register R is the same as that in register 0,
 then change the value of the program counter to XY.

30. Let the hexadecimal digits in the operand field be represented by R, S, and T;
 Activate the two's complement addition circuitry with registers S and T as inputs;
 Store the result in register R.

31. Same as Problem 24 except that the floating-point circuitry is activated.

32. a. 0x02 b. 0xAC c. 0xFA d. 0x08 e. 0xF2

33. a. b. c. d.

 0x1044 0x1034 0x10A5 0x10A5

 0x30AA 0x21F0 0x210F 0x210F

 0x8001 0x8001 0x8001

 0x3034 0x12A6 0x4001

 0x21F0 0xA104

 0x8212 0x7001

 0x7002 0x30A5

 0x30A6

34. a. 101001 b. 000000 c. 000100 d. 110011 e. 111001 f. 111110

 g. 010101 h. 111111 i. 010000 j. 101101 k. 000101 l. 001010

35. a. OR the byte with 11110000.

 b. XOR the byte with.10000000.

 c. XOR the byte with 11111111.

 d. AND the byte with 11111110.

 e. OR the byte with 01111111.

14

 f. AND the 24-bit RGB bitmap pixel with 111111110000000011111111.

 g. XOR the 24-bit RGB bitmap pixel with 111111111111111111111111.

 h. OR the 24-bit RGB bitmap pixel with 111111111111111111111111.

36. a. print(bin(byteVariable | 0b11110000))

b. print(bin(byteVariable ^ 0b10000000))

c. print(bin(byteVariable ^ 0b11111111))

d. print(bin(byteVariable & 0b11111110))

e. print(bin(byteVariable | 0b01111111))

f. print(bin(pixel & 0b111111110000000011111111))

g. print(bin(pixel ^ 0b 111111111111111111111111))

 h. print(bin(pixel | 0b 111111111111111111111111))

37. XOR the input string with 10000001.

38. print(bin(inputString ^ 0b10000001))

39. First AND the input byte with 10000001, then XOR the result with 10000001.

40. tempString = inputString & 0b10000001

 print(bin(inputString ^ 0b10000001))

41. a. 11010 b. 00001111 c. 010 d. 001010 e. 10000

42. a. 0xCF b. 0x43 c. 0xFF d. 0xDD

43. a. 0xAB05 b. 0xAB06 (2 bits to the left is equivalent to 6 bits to the right)

44.

Address Contents
0x00 0x2008 Initialize registers.

0x02 0x2101

0x04 0x2200

0x06 0x2300

0x08 0x148C Get the bit pattern;

0x0A 0x8541 Extract the least significant bit;

0x0C 0x7335 Insert it into the result.

0x0E 0x6212

0x10 0xB218 Are we done?

0x12 0xA401 If not, rotate registers

0x14 0xA307

0x16 0xB00A and go back;

0x18 0x338C If yes, store the result

0x1A 0xC000 and halt.

45. The idea is to complement the value at address A1 and then add. Here is one solution:

 0x21FF

 0x12A1

 0x7221

 0x13A2

 0x5423

 0x34A0

15

46. An uncompressed video stream of the specified format would require a speed of about 1.5 Gbps. Thus, both USB 1.1 and

USB 2.0 would be incapable of sending a video stream of this format. A USB 3.0 serial port would be required. It is

interesting to note that with compression, a video stream of 1920 X 1080 resolution, 30 fps and 24 bit color space could be

sent over a USB 2.0 port.

47. The typist would be typing 40 x 5 = 200 characters per minute, or 1 character every 0.3 seconds (= 300,000
microseconds). During this period the machine could execute 150,000,000 instructions.

48. The typist would be producing characters at the rate of 4 characters per second, which translates to 32 bps
(assuming each character consists of 8 bits).

49.

Address Contents
0x00 0x2000

0x02 0x2101

0x04 0x12FE Get printer status

0x06 0x8212 and check the ready flag.

0x08 0xB004 Wait if not ready.

0x0A 0x35FF Send the data.

50.

Address Contents
0x00 0x20C1 Initialize registers.

0x02 0x2100

0x04 0x2201

0x06 0x130B

0x08 0xB312 If done, go to halt.

0x0A 0x31A0 Store 00 at destination.

0x0C 0x5332 Change destination

0x0E 0x330B address,

0x10 0xB008 and go back.

0x12 0xC000

51. 15 Mbps is equivalent to 1.875 MBs / sec (or 6.75 GBs / hour). Therefore, it would take 29.63 hours to fill the
200 GB drive.

52. 1.74 megabits

53. Group the 64 values into 32 pairs. Compute the sum of each pair in parallel. Group these sums into 16 pairs
and compute the sums of these pairs in parallel. etc.

54. CISC involves numerous elaborate machine instructions that can be time consuming. RISC involves fewer and
simpler instructions, each of which is efficiently implemented.

55. How about pipelining and parallel processing? Increasing clock speed is another answer.

56. In a multiprocessor machine several partial sums can be computed simultaneously.

57.

 radius = float(input('Please enter a radius '))

 circumference = 2 * 3.14 * radius

 radius = 3.14 * radius * radius

 print('Circumference ' is ' + str(circumference))

 print('Area is ' + str(area))

58.

 message = input('Please enter message ')

 ntimes = int(input('Please enter no. times to repeat the message '))

 print(message * ntimes)

59.

16

 import math

 side1 = float(input('Please enter first side of a right triangle '))

 side2 = float(input('Please enter second side of a right triangle '))

 hypotenuse = math.sqrt(side1 * side1 + side2 * side 2)

 perimeter = side1 + side2 + hypotenuse

 are = side1 * side2 / 2

 print('Hypontenuse ' is ' + str(hypotenuse))

 print('Perimeter is ' + str(perimeter))

 print('Area is ' + str(area))

