Chapter R
 Prealgebra Review

R. 1 Fractions

Classroom Examples, Now Try Exercises

1. 90 is composite and can be written as

Writing 90 as the product of primes gives us $90=2 \cdot 3 \cdot 3 \cdot 5$.

N1. 60 is composite and can be written as

Writing 60 as the product of primes gives us $60=2 \cdot 2 \cdot 3 \cdot 5$.
2. (a) $\frac{12}{20}=\frac{3 \cdot 4}{5 \cdot 4}=\frac{3}{5} \cdot \frac{4}{4}=\frac{3}{5} \cdot 1=\frac{3}{5}$
(b) $\frac{8}{48}=\frac{8}{6 \cdot 8}=\frac{1}{6 \cdot 1}=\frac{1}{6}$
(c) $\frac{90}{162}=\frac{5 \cdot 18}{9 \cdot 18}=\frac{5}{9} \cdot 1=\frac{5}{9}$

N2. (a) $\frac{30}{42}=\frac{5 \cdot 6}{7 \cdot 6}=\frac{5}{7} \cdot \frac{6}{6}=\frac{5}{7} \cdot 1=\frac{5}{7}$
(b) $\frac{10}{70}=\frac{10}{7 \cdot 10}=\frac{1}{7 \cdot 1} \cdot=\frac{1}{7}$
(c) $\frac{72}{120}=\frac{3 \cdot 24}{5 \cdot 24}=\frac{3}{5} \cdot 1=\frac{3}{5}$
3. The fraction bar represents division. Divide the numerator of the improper fraction by the denominator.
$1 0 \longdiv { 3 7 }$
30
7
Thus, $\frac{37}{10}=3 \frac{7}{10}$.

N3. The fraction bar represents division. Divide the numerator of the improper fraction by the denominator.
$5 \longdiv { 1 8 }$
5
42
$\underline{40}$

$$
2
$$

Thus, $\frac{92}{5}=18 \frac{2}{5}$.
4. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $5 \cdot 3=15$ and $15+4=19$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $3 \frac{4}{5}=\frac{19}{5}$.
N4. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $3 \cdot 11=33$ and $33+2=35$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $11 \frac{2}{3}=\frac{35}{3}$.
5. (a) To multiply two fractions, multiply their numerators and then multiply their denominators. Then simplify and write the answer in lowest terms.

$$
\begin{aligned}
\frac{5}{9} \cdot \frac{18}{25} & =\frac{5 \cdot 18}{9 \cdot 25} \\
& =\frac{90}{225} \\
& =\frac{2 \cdot 45}{5 \cdot 45} \\
& =\frac{2}{5}
\end{aligned}
$$

(b) To multiply two mixed numbers, first write them as improper fractions. Multiply their numerators and then multiply their denominators. Then simplify and write the answer as a mixed number in lowest terms.

$$
\begin{aligned}
3 \frac{1}{3} \cdot 1 \frac{3}{4} & =\frac{10}{3} \cdot \frac{7}{4} \\
& =\frac{10 \cdot 7}{3 \cdot 4} \\
& =\frac{2 \cdot 5 \cdot 7}{3 \cdot 2 \cdot 2} \\
& =\frac{35}{6}, \text { or } 5 \frac{5}{6}
\end{aligned}
$$

N5. (a) To multiply two fractions, multiply their numerators and then multiply their denominators. Then simplify and write the answer in lowest terms.

$$
\begin{aligned}
\frac{4}{7} \cdot \frac{5}{8} & =\frac{4 \cdot 5}{7 \cdot 8} \\
& =\frac{20}{56} \\
& =\frac{5 \cdot 4}{14 \cdot 4} \\
& =\frac{5}{14}
\end{aligned}
$$

(b) To multiply two mixed numbers, first write them as improper fractions. Multiply their numerators and then multiply their denominators. Then simplify and write the answer as a mixed number in lowest terms.

$$
\begin{aligned}
3 \frac{2}{5} \cdot 6 \frac{2}{3} & =\frac{17}{5} \cdot \frac{20}{3} \\
& =\frac{17 \cdot 20}{5 \cdot 3} \\
& =\frac{17 \cdot 5 \cdot 4}{5 \cdot 3} \\
& =\frac{68}{3}, \text { or } 22 \frac{2}{3}
\end{aligned}
$$

6. (a) To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{9}{10} \div \frac{3}{5} & =\frac{9}{10} \cdot \frac{5}{3} \\
& =\frac{3 \cdot 3 \cdot 5}{2 \cdot 5 \cdot 3} \\
& =\frac{3}{2}, \text { or } 1 \frac{1}{2}
\end{aligned}
$$

(b) Change both mixed numbers to improper fractions. Then multiply by the reciprocal of the second fraction.

$$
\begin{aligned}
2 \frac{3}{4} \div 3 \frac{1}{3} & =\frac{11}{4} \div \frac{10}{3} \\
& =\frac{11}{4} \cdot \frac{3}{10} \\
& =\frac{33}{40}
\end{aligned}
$$

N6. (a) To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{2}{7} \div \frac{8}{9} & =\frac{2}{7} \cdot \frac{9}{8} \\
& =\frac{2 \cdot 3 \cdot 3}{7 \cdot 2 \cdot 4} \\
& =\frac{9}{28}
\end{aligned}
$$

(b) To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
3 \frac{3}{4} \div 4 \frac{2}{7} & =\frac{15}{4} \div \frac{30}{7} \\
& =\frac{15}{4} \cdot \frac{7}{30} \\
& =\frac{15 \cdot 7}{4 \cdot 2 \cdot 15} \\
& =\frac{7}{8}
\end{aligned}
$$

7. To find the sum of two fractions having the same denominator, add the numerators and keep the same denominator.

$$
\begin{aligned}
\frac{1}{9}+\frac{5}{9} & =\frac{1+5}{9} \\
& =\frac{6}{9} \\
& =\frac{2 \cdot 3}{3 \cdot 3} \\
& =\frac{2}{3}
\end{aligned}
$$

N7. To find the sum of two fractions having the same denominator, add the numerators and keep the same denominator.

$$
\begin{aligned}
\frac{1}{8}+\frac{3}{8} & =\frac{1+3}{8} \\
& =\frac{4}{8} \\
& =\frac{1 \cdot 4}{2 \cdot 4} \\
& =\frac{1}{2}
\end{aligned}
$$

8. (a) Since $30=2 \cdot 3 \cdot 5$ and $45=3 \cdot 3 \cdot 5$, the least common denominator must have one factor of 2 (from 30), two factors of 3 (from 45), and one factor of 5 (from either 30 or 45), so it is $2 \cdot 3 \cdot 3 \cdot 5=90$.
Write each fraction with a denominator of 90 .
$\frac{7}{30}=\frac{7}{30} \cdot \frac{3}{3}=\frac{21}{90}$ and $\frac{2}{45}=\frac{2}{45} \cdot \frac{2}{2}=\frac{4}{90}$
Now add.
$\frac{7}{30}+\frac{2}{45}=\frac{21}{90}+\frac{4}{90}=\frac{21+4}{90}=\frac{25}{90}$
Write $\frac{25}{90}$ in lowest terms.

$$
\frac{25}{90}=\frac{5 \cdot 5}{18 \cdot 5}=\frac{5}{18}
$$

(b) Write each mixed number as an improper fraction.
$4 \frac{5}{6}+2 \frac{1}{3}=\frac{29}{6}+\frac{7}{3}$
The least common denominator is 6 , so write each fraction with a denominator of 6 .
$\frac{29}{6}$ and $\frac{7}{3}=\frac{7}{3} \cdot \frac{2}{2}=\frac{14}{6}$
Now add.

$$
\begin{aligned}
\frac{29}{6}+\frac{7}{3} & =\frac{29}{6}+\frac{14}{6}=\frac{29+14}{6} \\
& =\frac{43}{6}, \text { or } 7 \frac{1}{6}
\end{aligned}
$$

N8. (a) Since $12=2 \cdot 2 \cdot 3$ and $8=2 \cdot 2 \cdot 2$, the least common denominator must have three factors of 2 (from 8) and one factor of 3 (from 12), so it is $2 \cdot 2 \cdot 2 \cdot 3=24$.
Write each fraction with a denominator of 24 .
$\frac{5}{12}=\frac{5}{12} \cdot \frac{2}{2}=\frac{10}{24}$ and $\frac{3}{8}=\frac{3}{8} \cdot \frac{3}{3}=\frac{9}{24}$

Now add.
$\frac{5}{12}+\frac{3}{8}=\frac{10}{24}+\frac{9}{24}=\frac{10+9}{24}=\frac{19}{24}$
(b) Write each mixed number as an improper fraction.
$3 \frac{1}{4}+5 \frac{5}{8}=\frac{13}{4}+\frac{45}{8}$
The least common denominator is 8 , so write each fraction with a denominator of 8 .
$\frac{45}{8}$ and $\frac{13}{4}=\frac{13}{4} \cdot \frac{2}{2}=\frac{26}{8}$
Now add.

$$
\begin{aligned}
\frac{13}{4}+\frac{45}{8} & =\frac{26}{8}+\frac{45}{8}=\frac{26+45}{8} \\
& =\frac{71}{8}, \text { or } 8 \frac{7}{8}
\end{aligned}
$$

9. (a) Since $10=2 \cdot 5$ and $4=2 \cdot 2$, the least common denominator is $2 \cdot 2 \cdot 5=20$. Write each fraction with a denominator of 20 .
$\frac{3}{10}=\frac{3}{10} \cdot \frac{2}{2}=\frac{6}{20}$ and $\frac{1}{4}=\frac{1}{4} \cdot \frac{5}{5}=\frac{5}{20}$
Now subtract.
$\frac{3}{10}-\frac{1}{4}=\frac{6}{20}-\frac{5}{20}=\frac{1}{20}$
(b) Write each mixed number as an improper fraction.
$3 \frac{3}{8}-1 \frac{1}{2}=\frac{27}{8}-\frac{3}{2}$
The least common denominator is 8 . Write each fraction with a denominator of 8. $\frac{27}{8}$ remains unchanged, and $\frac{3}{2}=\frac{3}{2} \cdot \frac{4}{4}=\frac{12}{8}$.
Now subtract.
$\frac{27}{8}-\frac{3}{2}=\frac{27}{8}-\frac{12}{8}=\frac{27-12}{8}=\frac{15}{8}$, or $1 \frac{7}{8}$
N9. (a) Since $11=11$ and $9=3 \cdot 3$, the least common denominator is $3 \cdot 3 \cdot 11=99$. Write each fraction with a denominator of 99 .
$\frac{5}{11}=\frac{5}{11} \cdot \frac{9}{9}=\frac{45}{99}$ and $\frac{2}{9}=\frac{2}{9} \cdot \frac{11}{11}=\frac{22}{99}$
Now subtract.
$\frac{5}{11}-\frac{2}{9}=\frac{45}{99}-\frac{22}{99}=\frac{23}{99}$
(b) Write each mixed number as an improper fraction.
$4 \frac{1}{3}-2 \frac{5}{6}=\frac{13}{3}-\frac{17}{6}$
The least common denominator is 6 . Write each fraction with a denominator of $6 \cdot \frac{17}{6}$ remains unchanged, and $\frac{13}{3}=\frac{13}{3} \cdot \frac{2}{2}=\frac{26}{6}$.
Now subtract.
$\frac{13}{3}-\frac{17}{6}=\frac{26}{6}-\frac{17}{6}=\frac{26-17}{6}=\frac{9}{6}$
Now reduce. $\frac{9}{6}=\frac{3 \cdot 3}{2 \cdot 3}=\frac{3}{2}$, or $1 \frac{1}{2}$
10. To find out how many yards of fabric Jen should buy, add the lengths needed for each piece to obtain the total length. The common denominator is 12 .
$1 \frac{1}{4}+1 \frac{2}{3}+2 \frac{1}{2}=1 \frac{3}{12}+1 \frac{8}{12}+2 \frac{6}{12}=4 \frac{17}{12}$
Because $\frac{17}{12}=1 \frac{5}{12}$, we have
$4 \frac{17}{12}=4+1 \frac{5}{12}=5 \frac{5}{12}$. Jen should buy $5 \frac{5}{12}$ yd of fabric.

N10. To find out how long each piece must be, divide the total length by the number of pieces.

$$
10 \frac{1}{2} \div 4=\frac{21}{2} \div \frac{4}{1}=\frac{21}{2} \cdot \frac{1}{4}=\frac{21}{8}, \text { or } 2 \frac{5}{8}
$$

Each piece should be $2 \frac{5}{8}$ feet long.
11. (a) In the circle graph, the sector for Other is the second largest, so Other had the second largest share of Internet users, $\frac{23}{100}$.
(b) The total number of Internet users, 3900 million, can be rounded to 4000 million (or 4 billion). Multiply $\frac{1}{10}$ by 4000 .

$$
\frac{1}{10} \cdot 4000=400 \text { million }
$$

(c) Multiply the fraction from the graph for Africa by the actual number of users.
$\frac{1}{10} \cdot 3900=390$ million

N11. (a) In the circle graph, the sector for Africa is the smallest, so Africa had the least number of Internet users.
(b) The total number of Internet users, 3900 million, can be rounded to 4000 million (or 4 billion). Multiply $\frac{1}{2}$ by 4000 .
$\frac{1}{2} \cdot 4000=2000$ million, or 2 billion
(c) Multiply the fraction from the graph for Asia by the actual number of users.
$\frac{1}{2} \cdot 3900=1950$ million, or 1.95 billion

Exercises

1. True; the number above the fraction bar is called the numerator and the number below the fraction bar is called the denominator.
2. True; 5 divides the 31 six times with a remainder of one, so $\frac{31}{5}=6 \frac{1}{5}$.
3. False; this is an improper fraction. Its value is 1 .
4. False; the number 1 is neither prime nor composite.
5. False; the fraction $\frac{13}{39}$ can be written in lowest terms as $\frac{1}{3}$ since $\frac{13}{39}=\frac{13 \cdot 1}{13 \cdot 3}=\frac{1}{3}$.
6. False; the reciprocal of $\frac{6}{2}=3$ is $\frac{2}{6}=\frac{1}{3}$.
7. False; product refers to multiplication, so the product of 10 and 2 is 20 . The sum of 10 and 2 is 12 .
8. False; difference refers to subtraction, so the difference between 10 and 2 is 8 . The quotient of 10 and 2 is 5 .
9. $\frac{16}{24}=\frac{2 \cdot 8}{3 \cdot 8}=\frac{2}{3}$

Therefore, C is correct.
10. Simplify each fraction to find which are equal
to $\frac{5}{9}$.
$\frac{15}{27}=\frac{3 \cdot 5}{3 \cdot 9}=\frac{5}{9}$
$\frac{30}{54}=\frac{6 \cdot 5}{6 \cdot 9}=\frac{5}{9}$
$\frac{40}{74}=\frac{2 \cdot 20}{2 \cdot 37}=\frac{20}{37}$
$\frac{55}{99}=\frac{11 \cdot 5}{11 \cdot 9}=\frac{5}{9}$
Therefore, C is correct.
11. A common denominator for $\frac{p}{q}$ and $\frac{r}{s}$ must be a multiple of both denominators, q and s. Such a number is $q \cdot s$. Therefore, A is correct.
12. We need to multiply 8 by 3 to get 24 in the denominator, so we must multiply 5 by 3 as well. $\frac{5}{8}=\frac{5 \cdot 3}{8 \cdot 3}=\frac{15}{24}$
Therefore, B is correct.
13. Since 19 has only itself and 1 as factors, it is a prime number.
14. Since 31 has only itself and 1 as factors, it is a prime number.
15. $30=2 \cdot 15$

$$
=2 \cdot 3 \cdot 5
$$

Since 30 has factors other than itself and 1 , it is a composite number.
16. $50=2 \cdot 25$
$=2 \cdot 5 \cdot 5$,
so 50 is a composite number.
17. $64=2 \cdot 32$

$$
\begin{aligned}
& =2 \cdot 2 \cdot 16 \\
& =2 \cdot 2 \cdot 2 \cdot 8 \\
& =2 \cdot 2 \cdot 2 \cdot 2 \cdot 4 \\
& =2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2
\end{aligned}
$$

Since 64 has factors other than itself and 1 , it is a composite number.
18. $81=3 \cdot 27$

$$
=3 \cdot 3 \cdot 9
$$

$$
=3 \cdot 3 \cdot 3 \cdot 3
$$

Since 81 has factors other than itself and 1 , it is a composite number.
19. As stated in the text, the number 1 is neither prime nor composite, by agreement.
20. The number 0 is not a natural number, so it is neither prime nor composite.
21. $57=3 \cdot 19$, so 57 is a composite number.
22. $51=3 \cdot 17$, so 51 is a composite number.
23. Since 79 has only itself and 1 as factors, it is a prime number.
24. Since 83 has only itself and 1 as factors, it is a prime number.
25. $124=2 \cdot 62$
$=2 \cdot 2 \cdot 31$,
so 124 is a composite number.
26. $138=2 \cdot 69$

$$
=2 \cdot 3 \cdot 23
$$

so 138 is a composite number.
27. $500=2 \cdot 250$

$$
\begin{aligned}
& =2 \cdot 2 \cdot 125 \\
& =2 \cdot 2 \cdot 5 \cdot 25 \\
& =2 \cdot 2 \cdot 5 \cdot 5 \cdot 5
\end{aligned}
$$

so 500 is a composite number.
28. $700=2 \cdot 350$

$$
\begin{aligned}
& =2 \cdot 2 \cdot 175 \\
& =2 \cdot 2 \cdot 5 \cdot 35 \\
& =2 \cdot 2 \cdot 5 \cdot 5 \cdot 7
\end{aligned}
$$

so 700 is a composite number.
29. $3458=2 \cdot 1729$

$$
\begin{aligned}
& =2 \cdot 7 \cdot 247 \\
& =2 \cdot 7 \cdot 13 \cdot 19
\end{aligned}
$$

Since 3458 has factors other than itself and 1 , it is a composite number.
30. $1025=5 \cdot 205$

$$
=5 \cdot 5 \cdot 41
$$

Since 1025 has factors other than itself and 1 , it is a composite number.
31. $\frac{8}{16}=\frac{1 \cdot 8}{2 \cdot 8}=\frac{1}{2} \cdot \frac{8}{8}=\frac{1}{2} \cdot 1=\frac{1}{2}$
32. $\frac{4}{12}=\frac{1 \cdot 4}{3 \cdot 4}=\frac{1}{3} \cdot \frac{4}{4}=\frac{1}{3} \cdot 1=\frac{1}{3}$
33. $\frac{15}{18}=\frac{3 \cdot 5}{3 \cdot 6}=\frac{3}{3} \cdot \frac{5}{6}=1 \cdot \frac{5}{6}=\frac{5}{6}$
34. $\frac{16}{20}=\frac{4 \cdot 4}{5 \cdot 4}=\frac{4}{5} \cdot \frac{4}{4}=\frac{4}{5} \cdot 1=\frac{4}{5}$
35. $\frac{90}{150}=\frac{3 \cdot 30}{5 \cdot 30}=\frac{3}{5} \cdot \frac{30}{30}=\frac{3}{5} \cdot 1=\frac{3}{5}$
36. $\frac{100}{140}=\frac{5 \cdot 20}{7 \cdot 20}=\frac{5}{7} \cdot \frac{20}{20}=\frac{5}{7} \cdot 1=\frac{5}{7}$
37. $\frac{18}{90}=\frac{1 \cdot 18}{5 \cdot 18}=\frac{1}{5} \cdot \frac{18}{18}=\frac{1}{5} \cdot 1=\frac{1}{5}$
38. $\frac{16}{64}=\frac{1 \cdot 16}{4 \cdot 16}=\frac{1}{4} \cdot \frac{16}{16}=\frac{1}{4} \cdot 1=\frac{1}{4}$
39. $\frac{144}{120}=\frac{6 \cdot 24}{5 \cdot 24}=\frac{6}{5} \cdot \frac{24}{24}=\frac{6}{5} \cdot 1=\frac{6}{5}$
40. $\frac{132}{77}=\frac{12 \cdot 11}{7 \cdot 11}=\frac{12}{7} \cdot \frac{11}{11}=\frac{12}{7} \cdot 1=\frac{12}{7}$
41. $7 \longdiv { 1 2 }$

7
5
Therefore, $\frac{12}{7}=1 \frac{5}{7}$.
42. $9 \longdiv { 1 6 }$
$\underline{9}$
7
Therefore, $\frac{16}{9}=1 \frac{7}{9}$.
43. $1 2 \longdiv { 7 7 }$
$\underline{72}$

5
Therefore, $\frac{77}{12}=6 \frac{5}{12}$.
44. $1 5 \longdiv { 1 0 1 }$
$\underline{90}$
11
Therefore, $\frac{101}{15}=6 \frac{11}{15}$.
45. $1 1 \longdiv { 8 3 }$

6
Therefore, $\frac{83}{11}=7 \frac{6}{11}$.
46. $1 3 \longdiv { 6 7 }$

65
2
Therefore, $\frac{67}{13}=5 \frac{2}{13}$.
47. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $5 \cdot 2=10$ and $10+3=13$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $2 \frac{3}{5}=\frac{13}{5}$.
48. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $7 \cdot 5=35$ and $35+6=41$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $5 \frac{6}{7}=\frac{41}{7}$.
49. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $8 \cdot 10=80$ and $80+3=83$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $10 \frac{3}{8}=\frac{83}{8}$.
50. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $3 \cdot 12=36$ and $36+2=38$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $12 \frac{2}{3}=\frac{38}{3}$.
51. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $5 \cdot 10=50$ and $50+1=51$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $10 \frac{1}{5}=\frac{51}{5}$.
52. Multiply the denominator of the fraction by the natural number and then add the numerator to obtain the numerator of the improper fraction. $6 \cdot 18=108$ and $108+1=109$
The denominator of the improper fraction is the same as the denominator in the mixed number.
Thus, $18 \frac{1}{6}=\frac{109}{6}$.
53. $\frac{4}{5} \cdot \frac{6}{7}=\frac{4 \cdot 6}{5 \cdot 7}=\frac{24}{35}$
54. $\frac{5}{9} \cdot \frac{2}{7}=\frac{5 \cdot 2}{9 \cdot 7}=\frac{10}{63}$
55. $\frac{2}{15} \cdot \frac{3}{8}=\frac{2 \cdot 3}{15 \cdot 8}=\frac{6}{120}=\frac{1 \cdot 6}{20 \cdot 6}=\frac{1}{20}$
56. $\frac{3}{20} \cdot \frac{5}{21}=\frac{3 \cdot 5}{20 \cdot 21}=\frac{15}{420}=\frac{1 \cdot 15}{28 \cdot 15}=\frac{1}{28}$
57. $\frac{1}{10} \cdot \frac{12}{5}=\frac{1 \cdot 12}{10 \cdot 5}=\frac{1 \cdot 2 \cdot 6}{2 \cdot 5 \cdot 5}=\frac{6}{25}$
58. $\frac{1}{8} \cdot \frac{10}{7}=\frac{1 \cdot 10}{8 \cdot 7}=\frac{1 \cdot 2 \cdot 5}{2 \cdot 4 \cdot 7}=\frac{5}{28}$
59. $\frac{15}{4} \cdot \frac{8}{25}=\frac{15 \cdot 8}{4 \cdot 25}$

$$
\begin{aligned}
& =\frac{3 \cdot 5 \cdot 4 \cdot 2}{4 \cdot 5 \cdot 5} \\
& =\frac{3 \cdot 2}{5} \\
& =\frac{6}{5}, \text { or } 1 \frac{1}{5}
\end{aligned}
$$

60. $\frac{21}{8} \cdot \frac{4}{7}=\frac{21 \cdot 4}{8 \cdot 7}$

$$
=\frac{3 \cdot 7 \cdot 4}{4 \cdot 2 \cdot 7}
$$

$$
=\frac{3}{2}, \text { or } 1 \frac{1}{2}
$$

61. $21 \cdot \frac{3}{7}=\frac{21}{1} \cdot \frac{3}{7}$

$$
\begin{aligned}
& =\frac{21 \cdot 3}{1 \cdot 7} \\
& =\frac{3 \cdot 7 \cdot 3}{1 \cdot 7} \\
& =\frac{3 \cdot 3}{1}=9
\end{aligned}
$$

62. $36 \cdot \frac{4}{9}=\frac{36}{1} \cdot \frac{4}{9}$

$$
\begin{aligned}
& =\frac{36 \cdot 4}{1 \cdot 9} \\
& =\frac{4 \cdot 9 \cdot 4}{1 \cdot 9} \\
& =\frac{4 \cdot 4}{1}=16
\end{aligned}
$$

63. Change both mixed numbers to improper fractions.

$$
\begin{aligned}
3 \frac{1}{4} \cdot 1 \frac{2}{3} & =\frac{13}{4} \cdot \frac{5}{3} \\
& =\frac{13 \cdot 5}{4 \cdot 3} \\
& =\frac{65}{12}, \text { or } 5 \frac{5}{12}
\end{aligned}
$$

64. Change both mixed numbers to improper fractions.

$$
\begin{aligned}
2 \frac{2}{3} \cdot 1 \frac{3}{5} & =\frac{8}{3} \cdot \frac{8}{5} \\
& =\frac{8 \cdot 8}{3 \cdot 5} \\
& =\frac{64}{15}, \text { or } 4 \frac{4}{15}
\end{aligned}
$$

65. Change both mixed numbers to improper fractions.

$$
\begin{aligned}
2 \frac{3}{8} \cdot 3 \frac{1}{5} & =\frac{19}{8} \cdot \frac{16}{5} \\
& =\frac{19 \cdot 16}{8 \cdot 5} \\
& =\frac{19 \cdot 2 \cdot 8}{8 \cdot 5} \\
& =\frac{38}{5}, \text { or } 7 \frac{3}{5}
\end{aligned}
$$

66. Change both mixed numbers to improper fractions.

$$
\begin{aligned}
3 \frac{3}{5} \cdot 7 \frac{1}{6} & =\frac{18}{5} \cdot \frac{43}{6} \\
& =\frac{18 \cdot 43}{5 \cdot 6} \\
& =\frac{3 \cdot 6 \cdot 43}{5 \cdot 6} \\
& =\frac{3 \cdot 43}{5} \\
& =\frac{129}{5}, \text { or } 25 \frac{4}{5}
\end{aligned}
$$

67. Change both numbers to improper fractions.

$$
\begin{aligned}
5 \cdot 2 \frac{1}{10} & =\frac{5}{1} \cdot \frac{21}{10} \\
& =\frac{5 \cdot 21}{1 \cdot 10} \\
& =\frac{5 \cdot 21}{1 \cdot 2 \cdot 5} \\
& =\frac{21}{1 \cdot 2} \\
& =\frac{21}{2}, \text { or } 10 \frac{1}{2}
\end{aligned}
$$

68. Change both numbers to improper fractions.

$$
\begin{aligned}
3 \cdot 4 \frac{2}{9} & =\frac{3}{1} \cdot \frac{38}{9} \\
& =\frac{3 \cdot 38}{1 \cdot 9} \\
& =\frac{3 \cdot 38}{1 \cdot 3 \cdot 3} \\
& =\frac{38}{1 \cdot 3} \\
& =\frac{38}{3}, \text { or } 12 \frac{2}{3}
\end{aligned}
$$

69. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{7}{9} \div \frac{3}{2} & =\frac{7}{9} \cdot \frac{2}{3} \\
& =\frac{7 \cdot 2}{9 \cdot 3} \\
& =\frac{14}{27}
\end{aligned}
$$

70. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{6}{11} \div \frac{5}{4} & =\frac{6}{11} \cdot \frac{4}{5} \\
& =\frac{6 \cdot 4}{11 \cdot 5} \\
& =\frac{24}{55}
\end{aligned}
$$

71. To divide fractions, multiply by the reciprocal of the divisor.
$\frac{5}{4} \div \frac{3}{8}=\frac{5}{4} \cdot \frac{8}{3}$

$$
=\frac{5 \cdot 8}{4 \cdot 3}
$$

$$
=\frac{5 \cdot 4 \cdot 2}{4 \cdot 3}
$$

$$
=\frac{5 \cdot 2}{3}
$$

$$
=\frac{10}{3}, \text { or } 3 \frac{1}{3}
$$

72. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{7}{5} \div \frac{3}{10} & =\frac{7}{5} \cdot \frac{10}{3} \\
& =\frac{7 \cdot 10}{5 \cdot 3} \\
& =\frac{7 \cdot 2 \cdot 5}{5 \cdot 3} \\
& =\frac{14}{3}, \text { or } 4 \frac{2}{3}
\end{aligned}
$$

73. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{32}{5} \div \frac{8}{15} & =\frac{32}{5} \cdot \frac{15}{8} \\
& =\frac{32 \cdot 15}{5 \cdot 8} \\
& =\frac{8 \cdot 4 \cdot 3 \cdot 5}{1 \cdot 5 \cdot 8} \\
& =\frac{4 \cdot 3}{1}=12
\end{aligned}
$$

74. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{24}{7} \div \frac{6}{21} & =\frac{24}{7} \cdot \frac{21}{6} \\
& =\frac{24 \cdot 21}{7 \cdot 6} \\
& =\frac{4 \cdot 6 \cdot 3 \cdot 7}{1 \cdot 7 \cdot 6} \\
& =\frac{4 \cdot 3}{1}=12
\end{aligned}
$$

75. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{3}{4} \div 12 & =\frac{3}{4} \cdot \frac{1}{12} \\
& =\frac{3 \cdot 1}{4 \cdot 12} \\
& =\frac{3 \cdot 1}{4 \cdot 3 \cdot 4} \\
& =\frac{1}{4 \cdot 4}=\frac{1}{16}
\end{aligned}
$$

76. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
\frac{2}{5} \div 30 & =\frac{2}{5} \cdot \frac{1}{30} \\
& =\frac{2 \cdot 1}{5 \cdot 30} \\
& =\frac{2 \cdot 1}{5 \cdot 2 \cdot 15} \\
& =\frac{1}{5 \cdot 15}=\frac{1}{75}
\end{aligned}
$$

77. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
6 \div \frac{3}{5} & =\frac{6}{1} \cdot \frac{5}{3} \\
& =\frac{6 \cdot 5}{1 \cdot 3} \\
& =\frac{2 \cdot 3 \cdot 5}{1 \cdot 3} \\
& =\frac{2 \cdot 5}{1}=10
\end{aligned}
$$

78. To divide fractions, multiply by the reciprocal of the divisor.

$$
\begin{aligned}
8 \div \frac{4}{9} & =\frac{8}{1} \cdot \frac{9}{4} \\
& =\frac{8 \cdot 9}{1 \cdot 4} \\
& =\frac{2 \cdot 4 \cdot 9}{1 \cdot 4} \\
& =\frac{2 \cdot 9}{1}=18
\end{aligned}
$$

79. Change the first number to an improper fraction, and then multiply by the reciprocal of the divisor.

$$
\begin{aligned}
6 \frac{3}{4} \div \frac{3}{8} & =\frac{27}{4} \div \frac{3}{8} \\
& =\frac{27}{4} \cdot \frac{8}{3} \\
& =\frac{27 \cdot 8}{4 \cdot 3} \\
& =\frac{3 \cdot 9 \cdot 2 \cdot 4}{4 \cdot 3} \\
& =\frac{9 \cdot 2}{1}=18
\end{aligned}
$$

80. Change the first number to an improper fraction, and then multiply by the reciprocal of the divisor.

$$
\begin{aligned}
5 \frac{3}{5} \div \frac{7}{10} & =\frac{28}{5} \div \frac{7}{10} \\
& =\frac{28}{5} \cdot \frac{10}{7} \\
& =\frac{28 \cdot 10}{5 \cdot 7} \\
& =\frac{4 \cdot 7 \cdot 2 \cdot 5}{5 \cdot 7} \\
& =\frac{4 \cdot 2}{1}=8
\end{aligned}
$$

81. Change both mixed numbers to improper fractions, and then multiply by the reciprocal of the divisor.

$$
\begin{aligned}
2 \frac{1}{2} \div 1 \frac{5}{7} & =\frac{5}{2} \div \frac{12}{7} \\
& =\frac{5}{2} \cdot \frac{7}{12} \\
& =\frac{5 \cdot 7}{2 \cdot 12} \\
& =\frac{35}{24}, \text { or } 1 \frac{11}{24}
\end{aligned}
$$

10 Chapter R Prealgebra Review

82. Change both mixed numbers to improper fractions, and then multiply by the reciprocal of the divisor.

$$
\begin{aligned}
2 \frac{2}{9} \div 1 \frac{2}{5} & =\frac{20}{9} \div \frac{7}{5} \\
& =\frac{20}{9} \cdot \frac{5}{7} \\
& =\frac{20 \cdot 5}{9 \cdot 7} \\
& =\frac{100}{63}, \text { or } 1 \frac{37}{63}
\end{aligned}
$$

83. Change both mixed numbers to improper fractions, and then multiply by the reciprocal of the divisor.

$$
\begin{aligned}
2 \frac{5}{8} \div 1 \frac{15}{32} & =\frac{21}{8} \div \frac{47}{32} \\
& =\frac{21}{8} \cdot \frac{32}{47} \\
& =\frac{21 \cdot 32}{8 \cdot 47} \\
& =\frac{21 \cdot 8 \cdot 4}{8 \cdot 47} \\
& =\frac{21 \cdot 4}{47} \\
& =\frac{84}{47}, \text { or } 1 \frac{37}{47}
\end{aligned}
$$

84. Change both mixed numbers to improper fractions, and then multiply by the reciprocal of the divisor.

$$
\begin{aligned}
2 \frac{3}{10} \div 1 \frac{4}{5} & =\frac{23}{10} \div \frac{9}{5} \\
& =\frac{23}{10} \cdot \frac{5}{9} \\
& =\frac{23 \cdot 5}{2 \cdot 5 \cdot 9} \\
& =\frac{23}{18}, \text { or } 1 \frac{5}{8}
\end{aligned}
$$

85. $\frac{7}{15}+\frac{4}{15}=\frac{7+4}{15}=\frac{11}{15}$
86. $\frac{2}{9}+\frac{5}{9}=\frac{2+5}{9}=\frac{7}{9}$
87. $\frac{7}{12}+\frac{1}{12}=\frac{7+1}{12}$
$=\frac{8}{12}$
$=\frac{2 \cdot 4}{3 \cdot 4}$
$=\frac{2}{3}$
88. $\frac{3}{16}+\frac{5}{16}=\frac{3+5}{16}=\frac{8}{16}=\frac{1}{2}$
89. Since $9=3 \cdot 3$, and 3 is prime, the LCD (least common denominator) is $3 \cdot 3=9$.
$\frac{1}{3}=\frac{1}{3} \cdot \frac{3}{3}=\frac{3}{9}$
Now add the two fractions with the same denominator.
$\frac{5}{9}+\frac{1}{3}=\frac{5}{9}+\frac{3}{9}=\frac{8}{9}$
90. To add $\frac{4}{15}$ and $\frac{1}{5}$, first find the LCD. Since $15=3 \cdot 5$ and 5 is prime, the LCD is 15 .

$$
\begin{aligned}
\frac{4}{15}+\frac{1}{5} & =\frac{4}{15}+\frac{1}{5} \cdot \frac{3}{3} \\
& =\frac{4}{15}+\frac{3}{15} \\
& =\frac{4+3}{15} \\
& =\frac{7}{15}
\end{aligned}
$$

91. Since $8=2 \cdot 2 \cdot 2$ and $6=2 \cdot 3$, the LCD is
$2 \cdot 2 \cdot 2 \cdot 3=24$.
$\frac{3}{8}=\frac{3}{8} \cdot \frac{3}{3}=\frac{9}{24}$ and $\frac{5}{6}=\frac{5}{6} \cdot \frac{4}{4}=\frac{20}{24}$
Now add fractions with the same denominator.
$\frac{3}{8}+\frac{5}{6}=\frac{9}{24}+\frac{20}{24}=\frac{29}{24}$, or $1 \frac{5}{24}$
92. Since $6=2 \cdot 3$ and $9=3 \cdot 3$, the LCD is
$2 \cdot 3 \cdot 3=18$.
$\frac{5}{6}=\frac{5}{6} \cdot \frac{3}{3}=\frac{15}{18}$ and $\frac{2}{9}=\frac{2}{9} \cdot \frac{2}{2}=\frac{4}{18}$
Now add fractions with the same denominator.
$\frac{5}{6}+\frac{2}{9}=\frac{15}{18}+\frac{4}{18}=\frac{19}{18}$, or $1 \frac{1}{18}$
93. Since $9=3 \cdot 3$ and $16=4 \cdot 4$, the LCD is
$3 \cdot 3 \cdot 4 \cdot 4=144$.
$\frac{5}{9}=\frac{5}{9} \cdot \frac{16}{16}=\frac{80}{144}$ and $\frac{3}{16}=\frac{3}{16} \cdot \frac{9}{9}=\frac{27}{144}$
Now add fractions with the same denominator.
$\frac{5}{9}+\frac{3}{16}=\frac{80}{144}+\frac{27}{144}=\frac{107}{144}$
94. Since $4=2 \cdot 2$ and $25=5 \cdot 5$, the LCD is
$2 \cdot 2 \cdot 5 \cdot 5=100$.
$\frac{3}{4}=\frac{3}{4} \cdot \frac{25}{25}=\frac{75}{100}$ and $\frac{6}{25}=\frac{6}{25} \cdot \frac{4}{4}=\frac{24}{100}$
Now add fractions with the same denominator.
$\frac{3}{4}+\frac{6}{25}=\frac{75}{100}+\frac{24}{100}=\frac{99}{100}$
95. $3 \frac{1}{8}=3+\frac{1}{8}=\frac{24}{8}+\frac{1}{8}=\frac{25}{8}$

$$
2 \frac{1}{4}=2+\frac{1}{4}=\frac{8}{4}+\frac{1}{4}=\frac{9}{4}
$$

$3 \frac{1}{8}+2 \frac{1}{4}=\frac{25}{8}+\frac{9}{4}$
Since $8=2 \cdot 2 \cdot 2$ and $4=2 \cdot 2$, the LCD is

$$
2 \cdot 2 \cdot 2 \text { or } 8
$$

$$
\begin{aligned}
3 \frac{1}{8}+2 \frac{1}{4} & =\frac{25}{8}+\frac{9}{4} \cdot \frac{2}{2} \\
& =\frac{25}{8}+\frac{18}{8} \\
& =\frac{43}{8}, \text { or } 5 \frac{3}{8}
\end{aligned}
$$

96. $4 \frac{2}{3}=4+\frac{2}{3}=\frac{12}{3}+\frac{2}{3}=\frac{14}{3}$
$2 \frac{1}{6}=2+\frac{1}{6}=\frac{12}{6}+\frac{1}{6}=\frac{13}{6}$
Since $6=2 \cdot 3$, the LCD is 6 .
$4 \frac{2}{3}+2 \frac{1}{6}=\frac{14}{3} \cdot \frac{2}{2}+\frac{13}{6}$
$=\frac{28}{6}+\frac{13}{6}$

$$
=\frac{41}{6} \text {, or } 6 \frac{5}{6}
$$

97. $3 \frac{1}{4}=3+\frac{1}{4}=\frac{12}{4}+\frac{1}{4}=\frac{13}{4}$
$1 \frac{4}{5}=1+\frac{4}{5}=\frac{5}{5}+\frac{4}{5}=\frac{9}{5}$

Since $4=2 \cdot 2$, and 5 is prime, the LCD is $2 \cdot 2 \cdot 5=20$.
$3 \frac{1}{4}+1 \frac{4}{5}=\frac{13}{4} \cdot \frac{5}{5}+\frac{9}{5} \cdot \frac{4}{4}$

$$
\begin{aligned}
& =\frac{65}{20}+\frac{36}{20} \\
& =\frac{101}{20}, \text { or } 5 \frac{1}{20}
\end{aligned}
$$

98. To add $5 \frac{3}{4}$ and $1 \frac{1}{3}$, first change to improper fractions then find the LCD, which is 12 .

$$
\begin{aligned}
5 \frac{3}{4}+1 \frac{1}{3} & =\frac{23}{4}+\frac{4}{3} \\
& =\frac{23}{4} \cdot \frac{3}{3}+\frac{4}{3} \cdot \frac{4}{4} \\
& =\frac{69}{12}+\frac{16}{12} \\
& =\frac{85}{12}, \text { or } 7 \frac{1}{12}
\end{aligned}
$$

99. $\frac{7}{9}-\frac{2}{9}=\frac{7-2}{9}=\frac{5}{9}$
100. $\frac{8}{11}-\frac{3}{11}=\frac{8-3}{11}=\frac{5}{11}$
101. $\frac{13}{15}-\frac{3}{15}=\frac{13-3}{15}$

$$
\begin{aligned}
& =\frac{10}{15} \\
& =\frac{2 \cdot 5}{3 \cdot 5}=\frac{2}{3}
\end{aligned}
$$

102. $\frac{11}{12}-\frac{3}{12}=\frac{11-3}{12}$

$$
\begin{aligned}
& =\frac{8}{12} \\
& =\frac{2 \cdot 4}{3 \cdot 4}=\frac{2}{3}
\end{aligned}
$$

103. Since $12=4 \cdot 3$ (12 is a multiple of 3), the LCD is 12 .
$\frac{1}{3} \cdot \frac{4}{4}=\frac{4}{12}$
Now subtract fractions with the same denominator.
$\frac{7}{12}-\frac{1}{3}=\frac{7}{12}-\frac{4}{12}=\frac{3}{12}=\frac{1 \cdot 3}{4 \cdot 3}=\frac{1}{4}$
104. Since $6=3 \cdot 2$ (6 is a multiple of 2), the LCD is 6 .
$\frac{1}{2} \cdot \frac{3}{3}=\frac{3}{6}$
Now subtract fractions with the same denominator.
$\frac{5}{6}-\frac{1}{2}=\frac{5}{6}-\frac{3}{6}=\frac{2}{6}=\frac{1 \cdot 2}{3 \cdot 2}=\frac{1}{3}$
105. Since $12=2 \cdot 2 \cdot 3$ and $9=3 \cdot 3$, the LCD is $2 \cdot 2 \cdot 3 \cdot 3=36$.
$\frac{7}{12}=\frac{7}{12} \cdot \frac{3}{3}=\frac{21}{36}$ and $\frac{1}{9} \cdot \frac{4}{4}=\frac{4}{36}$
Now subtract fractions with the same denominator.

$$
\frac{7}{12}-\frac{1}{9}=\frac{21}{36}-\frac{4}{36}=\frac{17}{36}
$$

106. $\frac{11}{16}-\frac{1}{12}=\frac{11}{16} \cdot \frac{3}{3}-\frac{1}{12} \cdot \frac{4}{4} \quad \begin{aligned} & \text { The LCD of } 12 \\ & \text { and } 16 \text { is } 48 .\end{aligned}$

$$
\begin{aligned}
& =\frac{33}{48}-\frac{4}{48} \\
& =\frac{29}{48}
\end{aligned}
$$

107. $4 \frac{3}{4}=4+\frac{3}{4}=\frac{16}{4}+\frac{3}{4}=\frac{19}{4}$
$1 \frac{2}{5}=1+\frac{2}{5}=\frac{5}{5}+\frac{2}{5}=\frac{7}{5}$
Since $4=2 \cdot 2$, and 5 is prime, the LCD is $2 \cdot 2 \cdot 5=20$.

$$
\begin{aligned}
4 \frac{3}{4}-1 \frac{2}{5} & =\frac{19}{4} \cdot \frac{5}{5}-\frac{7}{5} \cdot \frac{4}{4} \\
& =\frac{95}{20}-\frac{28}{20} \\
& =\frac{67}{20}, \text { or } 3 \frac{7}{20}
\end{aligned}
$$

108. Change both numbers to improper fractions then add, using 45 as the common denominator.

$$
\begin{aligned}
3 \frac{4}{5}-1 \frac{4}{9} & =\frac{19}{5}-\frac{13}{9} \\
& =\frac{19}{5} \cdot \frac{9}{9}-\frac{13}{9} \cdot \frac{5}{5} \\
& =\frac{171}{45}-\frac{65}{45} \\
& =\frac{106}{45}, \text { or } 2 \frac{16}{45}
\end{aligned}
$$

109. $6 \frac{1}{4}=6+\frac{1}{4}=\frac{24}{4}+\frac{1}{4}=\frac{25}{4}$
$5 \frac{1}{3}=5+\frac{1}{3}=\frac{15}{3}+\frac{1}{3}=\frac{16}{3}$
Since $4=2 \cdot 2$, and 3 is prime, the LCD is $2 \cdot 2 \cdot 3=12$.

$$
\begin{aligned}
6 \frac{1}{4}-5 \frac{1}{3} & =\frac{25}{4}-\frac{16}{3} \\
& =\frac{25}{4} \cdot \frac{3}{3}-\frac{16}{3} \cdot \frac{4}{4} \\
& =\frac{75}{12}-\frac{64}{12} \\
& =\frac{11}{12}
\end{aligned}
$$

110. $5 \frac{1}{3}=5+\frac{1}{3}=\frac{15}{3}+\frac{1}{3}=\frac{16}{3}$
$4 \frac{1}{2}=4+\frac{1}{2}=\frac{8}{2}+\frac{1}{2}=\frac{9}{2}$
2 and 3 are prime, so the LCD is $2 \cdot 3=6$.

$$
\begin{aligned}
5 \frac{1}{3}-4 \frac{1}{2} & =\frac{16}{3} \cdot \frac{2}{2}-\frac{9}{2} \cdot \frac{3}{3} \\
& =\frac{32}{6}-\frac{27}{6} \\
& =\frac{5}{6}
\end{aligned}
$$

111. $8 \frac{2}{9}=8+\frac{2}{9}=\frac{72}{9}+\frac{2}{9}=\frac{74}{9}$
$4 \frac{2}{3}=4+\frac{2}{3}=\frac{12}{3}+\frac{2}{3}=\frac{14}{3}$
Since $9=3 \cdot 3$, and 3 is prime, the LCD is $3 \cdot 3=9$.

$$
\begin{aligned}
8 \frac{2}{9}-4 \frac{2}{3} & =\frac{74}{9}-\frac{14}{3} \cdot \frac{3}{3} \\
& =\frac{74}{9}-\frac{42}{9} \\
& =\frac{32}{9}, \text { or } 3 \frac{5}{9}
\end{aligned}
$$

112. $7 \frac{5}{12}=7+\frac{5}{12}=\frac{84}{12}+\frac{5}{12}=\frac{89}{12}$

$$
4 \frac{5}{6}=4+\frac{5}{6}=\frac{24}{6}+\frac{5}{6}=\frac{29}{6}
$$

Since $12=2 \cdot 2 \cdot 3$ and $6=2 \cdot 3$, the LCD is
$2 \cdot 2 \cdot 3=12$.
$7 \frac{5}{12}-4 \frac{5}{6}=\frac{89}{12}-\frac{29}{6} \cdot \frac{2}{2}$
$=\frac{89}{12}-\frac{58}{12}$
$=\frac{31}{12}$, or $2 \frac{7}{12}$
113. Observe that there are 24 dots in the entire figure, 6 dots in the triangle, 12 dots in the rectangle, and 2 dots in the overlapping region.
(a) $\frac{12}{24}=\frac{1}{2}$ of all the dots are in the rectangle.
(b) $\frac{6}{24}=\frac{1}{4}$ of all the dots are in the triangle.
(c) $\frac{2}{6}=\frac{1}{3}$ of the dots in the triangle are in the overlapping region.
(d) $\frac{2}{12}=\frac{1}{6}$ of the dots in the rectangle are in the overlapping region.
114. (a) 12 is $\frac{1}{3}$ of 36 , so Maureen got a hit in exactly $\frac{1}{3}$ of her at-bats.
(b) 5 is a little less than $\frac{1}{2}$ of 11 , so Chase got a hit in just less than $\frac{1}{2}$ of his at-bats.
(c) 1 is a little less than $\frac{1}{10}$ of 11 , so Chase got a home run in just less than $\frac{1}{10}$ of his atbats.
(d) 9 is a little less than $\frac{1}{4}$ of 40 , so Christine got a hit in just less than $\frac{1}{4}$ of her at-bats.
(e) 8 is $\frac{1}{2}$ of 16 , and 10 is $\frac{1}{2}$ of 20 , so Joe and Greg each got hits $\frac{1}{2}$ of the time they were at bat.
115. Multiply the number of cups of water per serving by the number of servings.

$$
\begin{aligned}
\frac{3}{4} \cdot 8 & =\frac{3}{4} \cdot \frac{8}{1} \\
& =\frac{3 \cdot 8}{4 \cdot 1} \\
& =\frac{24}{4} \\
& =6 \text { cups }
\end{aligned}
$$

For 8 microwave servings, 6 cups of water will be needed.
116. Four stove-top servings require $\frac{1}{4}$ tsp, or $\frac{2}{8}$ tsp, of salt. Six stove-top servings require $\frac{1}{2}$ tsp, or $\frac{4}{8}$ tsp, of salt. Five is halfway between 4 and 6 , and $\frac{3}{8}$ is halfway between $\frac{2}{8}$ and $\frac{4}{8}$. Therefore, 5 stove-top servings would require $\frac{3}{8}$ tsp of salt.
117. The difference in length is found by subtracting.

$$
\begin{aligned}
3 \frac{1}{4}-2 \frac{1}{8} & =\frac{13}{4}-\frac{17}{8} \\
& =\frac{13}{4} \cdot \frac{2}{2}-\frac{17}{8} \quad \text { LCD }=8 \\
& =\frac{26}{8}-\frac{17}{8} \\
& =\frac{9}{8}, \text { or } 1 \frac{1}{8}
\end{aligned}
$$

The difference is $1 \frac{1}{8}$ inches.
118. The difference in length is found by subtracting.

$$
\begin{aligned}
4-2 \frac{1}{8} & =\frac{4}{1}-\frac{17}{8} \\
& =\frac{4}{1} \cdot \frac{8}{8}-\frac{17}{8} \quad \mathrm{LCD}=8 \\
& =\frac{32}{8}-\frac{17}{8} \\
& =\frac{15}{8}, \text { or } 1 \frac{7}{8}
\end{aligned}
$$

The difference is $1 \frac{7}{8}$ inches.
119. The difference between the two measures is found by subtracting, using 16 as the LCD.

$$
\begin{aligned}
\frac{3}{4}-\frac{3}{16} & =\frac{3}{4} \cdot \frac{4}{4}-\frac{3}{16} \\
& =\frac{12}{16}-\frac{3}{16} \\
& =\frac{12-3}{16} \\
& =\frac{9}{16}
\end{aligned}
$$

The difference is $\frac{9}{16}$ inch.
120. The difference between the two measures is found by subtracting, using 16 as a common denominator.

$$
\begin{aligned}
\frac{9}{16}-\frac{3}{8} & =\frac{9}{16}-\frac{3}{8} \cdot \frac{2}{2} \\
& =\frac{9}{16}-\frac{6}{16} \\
& =\frac{9-6}{16} \\
& =\frac{3}{16}
\end{aligned}
$$

The difference is $\frac{3}{16}$ inch.
121. The perimeter is the sum of the measures of the 5 sides.
$196+98 \frac{3}{4}+146 \frac{1}{2}+100 \frac{7}{8}+76 \frac{5}{8}$
$=196+98 \frac{6}{8}+146 \frac{4}{8}+100 \frac{7}{8}+76 \frac{5}{8}$
$=196+98+146+100+76+\frac{6+4+7+5}{8}$
$=616+\frac{22}{8} \quad\left(\frac{22}{8}=2 \frac{6}{8}=2 \frac{3}{4}\right)$
$=618 \frac{3}{4}$ feet
The perimeter is $618 \frac{3}{4}$ feet.
122. To find the perimeter of a triangle, add the lengths of the three sides.

$$
\begin{aligned}
5 \frac{1}{4}+7 \frac{1}{2}+10 \frac{1}{8} & =5 \frac{2}{8}+7 \frac{4}{8}+10 \frac{1}{8} \\
& =22 \frac{7}{8}
\end{aligned}
$$

The perimeter of the triangle is $22 \frac{7}{8}$ feet.
123. Divide the total board length by 3 .

$$
\begin{aligned}
15 \frac{5}{8} \div 3 & =\frac{125}{8} \div \frac{3}{1} \\
& =\frac{125}{8} \cdot \frac{1}{3} \\
& =\frac{125 \cdot 1}{8 \cdot 3} \\
& =\frac{125}{24}, \text { or } 5 \frac{5}{24}
\end{aligned}
$$

The length of each of the three pieces must be $5 \frac{5}{24}$ inches.
124. Divide the total amount of tomato sauce by the number of servings.
$2 \frac{1}{3} \div 7=\frac{7}{3} \div \frac{7}{1}=\frac{7}{3} \cdot \frac{1}{7}=\frac{7 \cdot 1}{3 \cdot 7}=\frac{1}{3}$
For 1 serving of barbecue sauce, $\frac{1}{3}$ cup of tomato sauce is needed.
125. To find the number of cakes the caterer can make, divide $15 \frac{1}{2}$ by $1 \frac{3}{4}$.

$$
\begin{aligned}
15 \frac{1}{2} \div 1 \frac{3}{4} & =\frac{31}{2} \div \frac{7}{4} \\
& =\frac{31}{2} \cdot \frac{4}{7} \\
& =\frac{31 \cdot 2 \cdot 2}{2 \cdot 7} \\
& =\frac{62}{7}, \text { or } 8 \frac{6}{7}
\end{aligned}
$$

There is not quite enough sugar for 9 cakes. The caterer can make 8 cakes with some sugar left over.
126. Divide the total amount of fabric by the amount of fabric needed to cover one chair.

$$
\begin{aligned}
23 \frac{2}{3} \div 2 \frac{1}{4} & =\frac{71}{3} \div \frac{9}{4} \\
& =\frac{71}{3} \cdot \frac{4}{9} \\
& =\frac{71 \cdot 4}{3 \cdot 9} \\
& =\frac{284}{27}, \text { or } 10 \frac{14}{27}
\end{aligned}
$$

Kyla can cover 10 chairs. There will be some fabric left over.
127. Multiply the amount of fabric it takes to make one costume by the number of costumes.

$$
\begin{aligned}
2 \frac{3}{8} \cdot 7 & =\frac{19}{8} \cdot \frac{7}{1} \\
& =\frac{19 \cdot 7}{8 \cdot 1} \\
& =\frac{133}{8}, \text { or } 16 \frac{5}{8} \mathrm{yd}
\end{aligned}
$$

For 7 costumes, $16 \frac{5}{8}$ yards of fabric would be needed.
128. Multiply the amount of sugar for one batch times the number of batches.

$$
\begin{aligned}
2 \frac{2}{3} \cdot 4 & =\frac{8}{3} \cdot \frac{4}{1} \\
& =\frac{8 \cdot 4}{3 \cdot 1} \\
& =\frac{32}{3}, \text { or } 10 \frac{2}{3}
\end{aligned}
$$

$10 \frac{2}{3}$ cups of sugar are required to make four batches of cookies.
129. Subtract the heights to find the difference.

$$
\begin{aligned}
10 \frac{1}{2}-7 \frac{1}{8} & =\frac{21}{2}-\frac{57}{8} \\
& =\frac{21}{2} \cdot \frac{4}{4}-\frac{57}{8} \quad \text { LCD }=8 \\
& =\frac{84}{8}-\frac{57}{8} \\
& =\frac{27}{8}, \text { or } 3 \frac{3}{8}
\end{aligned}
$$

The difference in heights is $3 \frac{3}{8}$ inches.
130. Subtract $\frac{3}{8}$ from $\frac{11}{16}$ using 16 as the LCD.

$$
\begin{aligned}
\frac{11}{16}-\frac{3}{8} & =\frac{11}{16}-\frac{3}{8} \cdot \frac{2}{2} \\
& =\frac{11}{16}-\frac{6}{16} \\
& =\frac{5}{16}
\end{aligned}
$$

Thus, $\frac{3}{8}$ inch is $\frac{5}{16}$ inch smaller than $\frac{11}{16}$ inch.
131. A share of $\frac{11}{100}$ can be rounded to $\frac{10}{100}=\frac{1}{10}$.

Multiply by the total number of foreign-born people in the U.S., approximately 40 million.
$\frac{1}{10} \cdot 40=\frac{1}{10} \cdot \frac{40}{1}=\frac{4 \cdot 10}{1 \cdot 10}=\frac{4}{1}=4$,
There were approximately 4 million (or $4,000,000$) foreign-born people in the U.S. who were born in Europe.
For the actual number:
$\frac{11}{100} \cdot 40=\frac{11}{100} \cdot \frac{40}{1}=\frac{11 \cdot 2 \cdot 20}{5 \cdot 20 \cdot 1}=\frac{22}{5}$, or $4 \frac{2}{5}$
The actual number who were born in Europe was $4 \frac{2}{5}$ million (or $4,400,000$) people.
132. Multiply the fraction representing the U.S. foreign-born population from Latin America, $\frac{13}{25}$, by the total number of foreign-born people in the U.S., approximately 40 million.
$\frac{13}{25} \cdot 40=\frac{13}{25} \cdot \frac{40}{1}=\frac{13 \cdot 5 \cdot 8}{5 \cdot 5 \cdot 1}=\frac{104}{5}$, or $20 \frac{4}{5}$
There were approximately $20 \frac{4}{5}$ million (or $20,800,000)$ foreign-born people in the U.S. who were born in Latin America.
133. The sum of the fractions representing the U.S. foreign-born population from Latin America, Asia, or Europe is

$$
\begin{aligned}
\frac{13}{25}+\frac{29}{100}+\frac{11}{100} & =\frac{13}{25} \cdot \frac{4}{4}+\frac{29}{100}+\frac{11}{100} \\
& =\frac{52+29+11}{100} \\
& =\frac{92}{100} \\
& =\frac{23 \cdot 4}{25 \cdot 4} \\
& =\frac{23}{25} .
\end{aligned}
$$

So the fraction representing the U.S. foreignborn population from other regions is

$$
\begin{aligned}
1-\frac{23}{25} & =\frac{25}{25}-\frac{23}{25} \\
& =\frac{2}{25}
\end{aligned}
$$

134. The sum of the fractions representing the U.S. foreign-born population from Latin America or Asia is

$$
\begin{aligned}
\frac{13}{25}+\frac{29}{100} & =\frac{13}{25} \cdot \frac{4}{4}+\frac{29}{100} \\
& =\frac{52+29}{100} \\
& =\frac{81}{100} .
\end{aligned}
$$

135. Estimate each fraction. $\frac{14}{26}$ is about $\frac{1}{2}, \frac{98}{99}$ is about $1, \frac{100}{51}$ is about $2, \frac{90}{31}$ is about 3 , and $\frac{13}{27}$ is about $\frac{1}{2}$.
Therefore, the sum is approximately
$\frac{1}{2}+1+2+3+\frac{1}{2}=7$.
The correct choice is C.
136. Estimate each fraction. $\frac{202}{50}$ is about $4, \frac{99}{100}$ is about $1, \frac{21}{40}$ is about $\frac{1}{2}$, and $\frac{75}{36}$ is about 2 . Therefore, the product is approximately $4 \cdot 1 \cdot \frac{1}{2} \cdot 2=4$
The correct choice is B.

R. 2 Decimals and Percents

Classroom Examples, Now Try Exercises

1. (a) $0.15=\frac{15}{100}$
(b) $0.009=\frac{9}{1000}$
(c) $2.5=2 \frac{5}{10}=\frac{25}{10}$

N1. (a) $0.8=\frac{8}{10}$
(b) $0.431=\frac{431}{1000}$
(c) $2.58=2 \frac{58}{100}=\frac{258}{100}$
2. (a) 42.830
71.000
$\begin{array}{r}+3.074 \\ \hline 116.904\end{array}$
(b) 32.50
-21.72
10.78

N2. (a) 68.900
42.720

$$
\begin{array}{r}
+8.973 \\
\hline 120.593
\end{array}
$$

(b) 351.800
$\begin{array}{r}-\quad 2.706 \\ \hline 349.094\end{array}$
3. (a) $30.2 \quad 1$ decimal place
$\times 0.052$
604

\downarrow decimal places
\downarrow

$\frac{1510}{1.5704}$	$1+3=4$ 4 decimal places

(b) $0.06 \quad 2$ decimal places $\times 0.12$
12 \quad decimal places
$\begin{array}{cr}\frac{6}{0.0072} & 2+2=4 \\ 4 \text { decimal places }\end{array}$

N3. (a) $\begin{array}{rr}9.32 & 2 \text { decimal places } \\ \times 1.4 & 1 \text { decimal place } \\ \frac{\downarrow}{3728} & \downarrow \\ \frac{932}{13.048} & 3 \text { decimal places }\end{array}$
(b) $\quad 0.6 \quad 1$ decimal place
$\times 0.0043$ decimal places

$$
1+3=4
$$

0.00244 decimal places
4. (a) To change the divisor 0.37 into a whole number, move each decimal point two places to the right. Move the decimal point straight up and divide as with whole numbers.

$$
3 7 \longdiv { 5 4 7 . 6 }
$$

$\underline{37}$
177
148
296
$\underline{296}$
0
Therefore, $5.476 \div 0.37=14.8$.
(b) To change the divisor 3.1 into a whole number, move each decimal point one place to the right. Move the decimal point straight up and divide as with whole numbers.
$\left.31 \begin{array}{l}1.21 \\ 37.60 \\ 31 \\ 66 \\ \frac{62}{40} \\ \frac{31}{9}\end{array}\right)$

We carried out the division to 2 decimal places so that we could round to 1 decimal place. Therefore, $3.76 \div 3.1 \approx 1.2$.

N4. (a) To change the divisor 14.9 into a whole number, move each decimal point one place to the right. Move the decimal point straight up and divide as with whole numbers.

$$
1 4 9 \longdiv { 4 5 1 4 . 7 }
$$

$$
\begin{equation*}
\underline{447} \tag{447}
\end{equation*}
$$

447

0

Therefore, $451.47 \div 14.9=30.3$.
(b) To change the divisor 1.3 into a whole number, move each decimal point one place to the right. Move the decimal point straight up and divide as with whole numbers.
$1 3 \longdiv { 7 3 . 6 4 1 0 }$
$\underline{65}$
83
78
54
52
20
$\underline{13}$
7
We carried out the division to 3 decimal places so that we could round to 2 decimal places. Therefore, $7.334 \div 1.3 \approx 5.64$.
5. (a) Move the decimal point three places to the right.
$19.5 \times 1000=19,500$
(b) Move the decimal point one place to the left. $960.1 \div 10=96.01$

N5. (a) Move the decimal point one place to the right. $294.72 \times 10=2947.2$
(b) Move the decimal point two places to the left. Insert a 0 in front of the 4 to do this. $4.793 \div 100=0.04793$
6. (a) Divide 3 by 50. Add a decimal point and as many 0 s as necessary.
0.06
$5 0 \longdiv { 3 . 0 0 }$

300
0
Therefore, $\frac{3}{50}=0.06$.
(b) Divide 11 by 1. Add a decimal point and as many 0 s as necessary.

$$
\begin{aligned}
& 0.090909 \ldots \\
& 11 \begin{array}{l}
1.000000 \ldots \ldots \\
-99 \\
\frac{99}{100} \\
\frac{99}{1}
\end{array}
\end{aligned}
$$

Note that the pattern repeats. Therefore,
$\frac{1}{11}=0 . \overline{09}$, or about 0.091 .
N6. (a) Divide 20 by 17. Add a decimal point and as many 0 s as necessary.
0.85
$20 \lcm{17.00}$
$\underline{160}$
100
100
0
Therefore, $\frac{17}{20}=0.85$.
(b) Divide 2 by 9. Add a decimal point and as many 0 s as necessary.
$0.222 \ldots$
$9 \longdiv { 2 . 0 0 0 \ldots }$
$\underline{18}$
20
$\underline{18}$
20
$\underline{18}$
2
Note that the pattern repeats. Therefore, $\frac{2}{9}=0 . \overline{2}$, or 0.222 .
7. (a) $5 \frac{1}{4} \%=5.25 \%$

$$
\begin{aligned}
& =\frac{5.25}{100} \\
& =0.0525
\end{aligned}
$$

(b) $200 \%=\frac{200}{100}=2.00$, or 2

N7. (a) $23 \%=\frac{23}{100}=0.23$
(b) $350 \%=\frac{350}{100}=3.50$, or 3.5
8. (a) $0.06=0.06 \cdot 100 \%=6 \%$
(b) $1.75=1.75 \cdot 100 \%=175 \%$

N8. (a) $0.31=0.31 \cdot 100 \%=31 \%$
(b) $1.32=1.32 \cdot 100 \%=132 \%$
9. (a) $85 \%=0.85$
(b) $110 \%=1.10$, or 1.1
(c) $0.30=30 \%$
(d) $0.165=16.5 \%$

N9. (a) $52 \%=0.52$
(b) $2 \%=02 \%=0.02$
(c) $0.45=45 \%$
(d) $3.5=3.50=350 \%$
10. (a) $65 \%=\frac{65}{100}$

In lowest terms,

$$
\frac{65}{100}=\frac{13 \cdot 5}{20 \cdot 5}=\frac{13}{20}
$$

(b) $1.5 \%=\frac{1.5}{100}=\frac{1.5}{100} \cdot \frac{10}{10}=\frac{15}{1000}=\frac{3}{200}$

N10. (a) $20 \%=\frac{20}{100}$
In lowest terms,

$$
\frac{20}{100}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{1}{5}
$$

(b) $160 \%=\frac{160}{100}$

In lowest terms,

$$
\frac{160}{100}=\frac{8 \cdot 20}{5 \cdot 20}=\frac{8}{5}, \text { or } 1 \frac{3}{5}
$$

11. (a) $\frac{3}{50}=\frac{3}{50} \cdot 100 \%$

$$
\begin{aligned}
& =\frac{3}{50} \cdot \frac{100}{1} \% \\
& =\frac{3 \cdot 50 \cdot 2}{50} \% \\
& =6 \%
\end{aligned}
$$

(b) $\frac{1}{3}=\frac{1}{3} \cdot 100 \%$

$$
\begin{aligned}
& =\frac{1}{3} \cdot \frac{100}{1} \% \\
& =\frac{100}{3} \% \\
& =33 \frac{1}{3} \% \text {, or } 33 . \overline{3} \%
\end{aligned}
$$

N11. (a) $\frac{6}{25}=\frac{6}{25} \cdot 100 \%$

$$
\begin{aligned}
& =\frac{6}{25} \cdot \frac{100}{1} \% \\
& =\frac{6 \cdot 25 \cdot 4}{25} \% \\
& =24 \%
\end{aligned}
$$

(b) $\frac{7}{9}=\frac{7}{9} \cdot 100 \%$

$$
\begin{aligned}
& =\frac{7}{9} \cdot \frac{100}{1} \% \\
& =\frac{700}{9} \% \\
& =77 \frac{7}{9} \% \text {, or } 77 . \overline{7} \%
\end{aligned}
$$

12. The discount is 30% of $\$ 69$. The word of here means multiply.
30% of 69
$\downarrow \quad \downarrow \quad \downarrow$
0.30 • $69=20.7$

The discount is $\$ 20.70$. The sale price is found by subtracting.
$\$ 69.00-\$ 20.70=\$ 48.30$
N12. The discount is 60% of $\$ 120$. The word of here means multiply.

$$
\begin{array}{ccc}
60 \% & \text { of } & 120 \\
\downarrow & \downarrow & \downarrow \\
0.60 & \cdot & 120=72
\end{array}
$$

The discount is $\$ 72$. The sale price is found by subtracting.
$\$ 120.00-\$ 72=\$ 48$

Exercises

1. 367.9412
(a) Tens: 6
(b) Tenths: 9
(c) Thousandths: 1
(d) Ones: 7
(e) Hundredths: 4
2. Answers will vary. One example is 5243.0164 .
3. 46.249
(a) 46.25
(b) 46.2
(c) 46
(d) 50
4. (a) 0.889
(b) 0.444
(c) 0.976
(d) 0.865
5. $0.4=\frac{4}{10}$
6. $0.6=\frac{6}{10}$
7. $0.64=\frac{64}{100}$
8. $0.82=\frac{82}{100}$
9. $0.138=\frac{138}{1000}$
10. $0.104=\frac{104}{1000}$
11. $0.043=\frac{43}{1000}$
12. $0.087=\frac{87}{1000}$
13. $3.805=3 \frac{805}{1000}=\frac{3805}{1000}$
14. $5.166=5 \frac{166}{1000}=\frac{5166}{1000}$

> 15. 25.320
> 109.200
> $\begin{array}{r}+\quad 8.574 \\ \hline 143.094\end{array}$
> 16. 90.527
> 32.430
> +589.800
> 712.757
17. 28.73

$$
\begin{array}{r}
-3.12 \\
\hline 25.61
\end{array}
$$

18. 46.88
$\begin{array}{r}-13.45 \\ \hline 33.43\end{array}$
19. 43.50
$\frac{-28.17}{15.33}$
20. $\quad 345.10$
$\begin{array}{r}-56.31 \\ \hline 288.79\end{array}$
21. 3.87
15.00
$\begin{array}{r}+\quad 2.90 \\ \hline 21.77\end{array}$
22. 8.20
1.09
$+12.00$
21.29
23. 32.560
47.356
$\begin{array}{r}+1.800 \\ \hline 81.716\end{array}$
24. $\quad 75.200$
123.960
$\begin{array}{r}+\quad 3.897 \\ \hline 203.057\end{array}$
25. 29.000
$\begin{array}{r}-8.582 \\ \hline 20.418\end{array}$
26. $12.8 \quad 1$ decimal place

$\times 9.1$
128
1 decimal place
\downarrow

$1152 \quad 1+1=2$
116.482 decimal places
28. $\quad 34.04 \quad 2$ decimal places
$\times 0.56$
20424
\downarrow
$17020 \quad 2+2=4$
19.06244 decimal places
29. $22.41 \quad 2$ decimal places
$\times 330$ decimal places
$6723 \downarrow$
$6723 \quad 2+0=2$
739.532 decimal places
30. $55.76 \quad 2$ decimal places
$\times 720$ decimal places
$11152 \quad \downarrow$
$39032 \quad 2+0=2$
$4014.72 \quad 2$ decimal places
31. $0.2 \quad 1$ decimal place
$\times 0.032$ decimal places
$\begin{array}{rr}\frac{6}{0.006} & \begin{array}{r}1+2=3 \\ 3 \text { decimal places }\end{array}\end{array}$
32. $0.07 \quad 2$ decimal places
$\times 0.0043$ decimal places
$\begin{array}{rr}\frac{28}{0.00028} & 2+3=5 \\ 5 \text { decimal places }\end{array}$
33. $1 1 \longdiv { 7 . 1 5 } \begin{array} { r } { 7 8 . 6 5 } \end{array}$
$\underline{77}$
16
11
55
55
$\begin{array}{r}-2.789 \\ \hline 15.211\end{array}$
34. $1 4 \longdiv { 7 3 . 2 4 }$

70
33
$\underline{28}$
56
56
0
35. To change the divisor 11.6 into a whole number, move each decimal point one place to the right. Move the decimal point straight up and divide as with whole numbers.
$1 1 6 \longdiv { 3 2 4 . 8 }$
$\underline{232}$
928
$\frac{928}{0}$
Therefore, $32.48 \div 11.6=2.8$.
36. To change the divisor 17.4 into a whole number, move each decimal point one place to the right. Move the decimal point straight up and divide as with whole numbers.
$1 7 4 \longdiv { 8 5 2 . 6 }$
$\underline{696}$
1566
$\underline{1566}$

Therefore, $85.26 \div 17.4=4.9$.
37. To change the divisor 9.74 into a whole number, move each decimal point two places to the right. Move the decimal point straight up and divide as with whole numbers.

$$
\begin{gathered}
9 7 4 \longdiv { 1 9 9 6 . 7 0 } \\
\underline{1948} \\
4870 \\
\underline{4870}
\end{gathered}
$$

Therefore, $19.967 \div 9.74=2.05$.
38. To change the divisor 5.27 into a whole number, move each decimal point two places to the right. Move the decimal point straight up and divide as with whole numbers.

$$
\begin{aligned}
& \frac{8.44}{527} \begin{array}{l}
\frac{4247.88}{2318} \\
\frac{2108}{2108} \\
\frac{2108}{0}
\end{array} \\
& \text { Therefore, } 44.4788 \div 5.27=8.44 \text {. }
\end{aligned}
$$

39. Move the decimal point one place to the right. $123.26 \times 10=1232.6$
40. Move the decimal point one place to the right. $785.91 \times 10=7859.1$
41. Move the decimal point two places to the right. $57.116 \times 100=5711.6$
42. Move the decimal point two places to the right. $82.053 \times 100=8205.3$
43. Move the decimal point three places to the right.

$$
0.094 \times 1000=94
$$

44. Move the decimal point three places to the right.
$0.025 \times 1000=25$
45. Move the decimal point one place to the left.
$1.62 \div 10=0.162$
46. Move the decimal point one place to the left. $8.04 \div 10=0.804$
47. Move the decimal point two places to the left. $124.03 \div 100=1.2403$
48. Move the decimal point two places to the left. $490.35 \div 100=4.9035$
49. Move the decimal point three places to the left.
$23.29 \div 1000=023.29 \div 1000=0.02329$
50. Move the decimal point three places to the left. $59.8 \div 1000=059.8 \div 1000=0.0598$
51. Convert from a decimal to a percent.
$0.01=0.01 \cdot 100 \%=1 \%$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{100}$	0.01	1%

52. Convert from a percent to a decimal.
$2 \%=\frac{2}{100}=0.02$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{50}$	0.02	2%

53. Convert from a percent to a fraction.
$5 \%=\frac{5}{100}$
In lowest terms,
$\frac{5}{100}=\frac{1 \cdot 5}{20 \cdot 5}=\frac{1}{20}$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{20}$	0.05	5%

54. Convert to a decimal first. Divide 1 by 10.

Move the decimal point one place to the left. $1 \div 10=0.1$
Convert the decimal to a percent.
$0.1=0.1 \cdot 100 \%=10 \%$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{10}$	0.1	10%

55. Convert the decimal to a percent.
$0.125=0.125 \cdot 100 \%=12.5 \%$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{8}$	0.125	12.5%

56. Convert the percent to a decimal first.
$20 \%=0.20$, or 0.2
Convert from a percent to a fraction.
$20 \%=\frac{20}{100}$
In lowest terms,

$$
\frac{20}{100}=\frac{1 \cdot 20}{5 \cdot 20}=\frac{1}{5}
$$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{5}$	0.2	20%

57. Convert to a decimal first. Divide 1 by 4 . Add a decimal point and as many 0 s as necessary.
0.25
$4 \longdiv { 1 . 0 0 }$

$\underline{20}$
0
Convert the decimal to a percent.
$0.25=0.25 \cdot 100 \%=25 \%$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{4}$	0.25	25%

58. Convert to a decimal first. Divide 1 by 3 . Add a decimal point and as many 0 s as necessary.
$3 \longdiv { 0 . 3 3 \ldots } + 1 . 0 0 \ldots$
9
10
-9
1

Note that the pattern repeats. Therefore,
$\frac{1}{3}=0 . \overline{3}$.
Convert the decimal to a percent.
$0.33 \overline{3}=0.33 \overline{3} \cdot 100 \%=33 . \overline{3} \%$, or $33 \frac{1}{3} \%$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{3}$	$0 . \overline{3}$	$33 . \overline{3} \%$ or $33 \frac{1}{3} \%$

59. Convert the percent to a decimal first.
$50 \%=0.50$, or 0.5
Convert from a percentl to a fraction.
$50 \%=\frac{50}{100}$
In lowest terms,
$\frac{50}{100}=\frac{1 \cdot 50}{2 \cdot 50}=\frac{1}{2}$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{1}{2}$	0.5	50%

60. Divide 2 by 3 . Add a decimal point and as many 0s as necessary.
$3 \longdiv { 0 . 6 6 \ldots }$
$\underline{18}$
20
$\underline{18}$
2
Note that the pattern repeats. Therefore, $\frac{2}{3}=0 . \overline{6}$.

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{2}{3}$	$0 . \overline{6}$	$66 . \overline{6} \%$
or		
		$66 \frac{2}{3} \%$

61. Convert the decimal to a percent first.
$0.75=0.75 \cdot 100 \%=75 \%$
Convert from a percent to a fraction.
$75 \%=\frac{75}{100}$
In lowest terms,

$$
\frac{75}{100}=\frac{3 \cdot 25}{4 \cdot 25}=\frac{3}{4}
$$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
$\frac{3}{4}$	0.75	75%

62. Convert the decimal to a percent.

$$
1.0=1.0 \cdot 100 \%=100 \%
$$

Fraction in Lowest Terms (or Whole Number)	Decimal	Percent
1	1.0	100%

63. Divide 21 by 5. Add a decimal point and as many 0 s as necessary.
$5 \longdiv { 2 1 . 0 }$
$\underline{20}$
10
$\underline{10}$
0
64. Divide 9 by 5 . Add a decimal point and as many 0s as necessary.
5 $\begin{array}{r}1.8 \\ 9.0\end{array}$
5
40
$\underline{40}$
65. Divide 9 by 4. Add a decimal point and as many 0 s as necessary.
2.25
$4 \longdiv { 9 . 0 0 }$
$\underline{8}$

10
8
20
$\underline{20}$
0
66. Divide 15 by 4 . Add a decimal point and as many 0 s as necessary.
3.75
$4 \longdiv { 1 5 . 0 0 }$
$\underline{12}$
30
$\underline{28}$
20
$\underline{20}$

0
67. Divide 3 by 8 . Add a decimal point and as many 0 s as necessary.
0.375
$8 \longdiv { 3 . 0 0 0 }$
$\underline{24}$
60
56
40
$\underline{40}$
0
68. Divide 7 by 8 . Add a decimal point and as many 0 s as necessary.
0.875
$8 \longdiv { 7 . 0 0 0 }$

64
60
56
40
40
0
69. Divide 5 by 9 . Add a decimal point and as many 0s as necessary.
$0.555 \ldots$
$9 \longdiv { 5 . 0 0 0 \ldots }$
$\underline{45}$
50
$\underline{45}$
50
$\underline{45}$
5

Note that the pattern repeats. Therefore, $\frac{5}{9}=0 . \overline{5}$, or about 0.556 .
70. Divide 8 by 9 . Add a decimal point and as many 0 s as necessary.
$0.888 \ldots$
$9 \longdiv { 8 . 0 0 0 \ldots }$
$\underline{72}$
80
$\underline{72}$
80
72
8
Note that the pattern repeats. Therefore, $\frac{8}{9}=0 . \overline{8}$, or about 0.889 .
71. Divide 1 by 6 . Add a decimal point and as many 0 s as necessary.
$6 \longdiv { 0 . 1 6 6 \ldots }$
$-1.000 \ldots$
6
40
36
40
$\underline{36}$
4

Note that the pattern repeats. Therefore, $\frac{1}{6}=0.1 \overline{6}$, or about 0.167 .
72. Divide 5 by 6. Add a decimal point and as many 0s as necessary.

$$
\begin{array}{r}
0.833 \ldots \\
5.000 \ldots
\end{array}
$$

48
20
$\underline{18}$
20
$\underline{18}$
2
Note that the pattern repeats. Therefore, $\frac{5}{6}=0.8 \overline{3}$, or about 0.833 .
73. $54 \%=0.54$
74. $39 \%=0.39$
75. $7 \%=07 \%=0.07$
76. $4 \%=04 \%=0.04$
77. $117 \%=1.17$
78. $189 \%=1.89$
79. $2.4 \%=02.4 \%=0.024$
80. $3.1 \%=03.1 \%=0.031$
81. $6 \frac{1}{4} \%=6.25 \%=06.25 \%=0.0625$
82. $5 \frac{1}{2} \%=5.5 \%=05.5 \%=0.055$
83. $0.8 \%=00.8 \%=0.008$
84. $0.9 \%=00.9 \%=0.009$
85. $0.79=79 \%$
86. $0.83=83 \%$
87. $0.02=2 \%$
88. $0.08=8 \%$
89. $0.004=0.4 \%$
90. $0.005=0.5 \%$
91. $1.28=128 \%$
92. $2.35=235 \%$
93. $0.40=40 \%$
94. $0.6=0.60=60 \%$
95. $6=6.00=600 \%$
96. $10=10.00=1000 \%$
97. $51 \%=\frac{51}{100}$
98. $47 \%=\frac{47}{100}$
99. $15 \%=\frac{15}{100}$

In lowest terms,
$\frac{15}{100}=\frac{3 \cdot 5}{20 \cdot 5}=\frac{3}{20}$
100. $35 \%=\frac{35}{100}$

In lowest terms,
$\frac{35}{100}=\frac{7 \cdot 5}{20 \cdot 5}=\frac{7}{20}$
101. $2 \%=\frac{2}{100}$

In lowest terms,
$\frac{2}{100}=\frac{1 \cdot 2}{50 \cdot 2}=\frac{1}{50}$
102. $8 \%=\frac{8}{100}$

In lowest terms,
$\frac{8}{100}=\frac{2 \cdot 4}{25 \cdot 4}=\frac{2}{25}$
103. $140 \%=\frac{140}{100}$

In lowest terms,
$\frac{140}{100}=\frac{7 \cdot 20}{5 \cdot 20}=\frac{7}{5}$, or $1 \frac{2}{5}$
104. $180 \%=\frac{180}{100}$

In lowest terms,
$\frac{180}{100}=\frac{9 \cdot 20}{5 \cdot 20}=\frac{9}{5}$, or $1 \frac{4}{5}$
105. $7.5 \%=\frac{7.5}{100}=\frac{7.5}{100} \cdot \frac{10}{10}=\frac{75}{1000}$

In lowest terms,
$\frac{75}{1000}=\frac{3 \cdot 25}{40 \cdot 25}=\frac{3}{40}$
106. $2.5 \%=\frac{2.5}{100}=\frac{2.5}{100} \cdot \frac{10}{10}=\frac{25}{1000}$

In lowest terms,

$$
\frac{25}{1000}=\frac{1 \cdot 25}{40 \cdot 25}=\frac{1}{40}
$$

107. $\frac{4}{5}=\frac{4}{5} \cdot 100 \%=\frac{4}{5} \cdot \frac{100}{1} \%=\frac{4 \cdot 5 \cdot 20}{5} \%=80 \%$
108. $\frac{3}{25}=\frac{3}{25} \cdot 100 \%$

$$
\begin{aligned}
& =\frac{3}{25} \cdot \frac{100}{1} \% \\
& =\frac{3 \cdot 4 \cdot 25}{25} \% \\
& =12 \%
\end{aligned}
$$

109. $\frac{7}{50}=\frac{7}{50} \cdot 100 \%$

$$
=\frac{7}{50} \cdot \frac{100}{1} \%
$$

$$
=\frac{7 \cdot 2 \cdot 50}{50} \%
$$

$$
=14 \%
$$

110. $\frac{9}{20}=\frac{9}{20} \cdot 100 \%$
$=\frac{9}{20} \cdot \frac{100}{1} \%$
$=\frac{9 \cdot 5 \cdot 20}{20} \%$
$=45 \%$
111. $\frac{2}{11}=\frac{2}{11} \cdot 100 \%$
$=\frac{2}{11} \cdot \frac{100}{1} \%$
$=\frac{200}{11} \%$
$=18 . \overline{18} \%$
112. $\frac{4}{9}=\frac{4}{9} \cdot 100 \%=\frac{4}{9} \cdot \frac{100}{1} \%=\frac{400}{9} \%=44 . \overline{4} \%$
113. $\frac{9}{4}=\frac{9}{4} \cdot 100 \%=\frac{9}{4} \cdot \frac{100}{1} \%=\frac{9 \cdot 4 \cdot 25}{4} \%=225 \%$
114. $\frac{8}{5}=\frac{8}{5} \cdot 100 \%=\frac{8}{5} \cdot \frac{100}{1} \%=\frac{8 \cdot 5 \cdot 20}{5} \%=160 \%$
115. $\frac{13}{6}=\frac{13}{6} \cdot 100 \%$

$$
=\frac{13}{6} \cdot \frac{100}{1} \%
$$

$$
=\frac{13 \cdot 2 \cdot 50}{2 \cdot 3} \%
$$

$$
=216 . \overline{6} \%
$$

116. $\frac{31}{9}=\frac{31}{9} \cdot 100 \%$

$$
\begin{aligned}
& =\frac{31}{9} \cdot \frac{100}{1} \% \\
& =\frac{3100}{9} \% \\
& =344 . \overline{4} \%
\end{aligned}
$$

117. The word of here means multiply.
50% of 320
$\downarrow \downarrow \downarrow$
0.50 • $320=160$
118. The word of here means multiply.
25% of 120
$\downarrow \downarrow \downarrow$
0.25 - $120=30$
119. The word of here means multiply.

6%	of	80
\downarrow	\downarrow	\downarrow
0.06	\cdot	$80=4.8$

120. The word of here means multiply.

5%	of	70
\downarrow	\downarrow	\downarrow
0.05	\cdot	$70=3.5$

121. The word of here means multiply.

14%	of	780
\downarrow	\downarrow	\downarrow
0.14	\cdot	$780=109.2$

122. The word of here means multiply.

26%	of	480
\downarrow	\downarrow	\downarrow
0.26	\cdot	$480=124.8$

123. The tip is 20% of $\$ 89$. The word of here means multiply.

20%	of	$\$ 89$
\downarrow	\downarrow	\downarrow
0.20	\cdot	$\$ 89=\$ 17.80$

The tip is $\$ 17.80$. The total bill is found by adding.
$\$ 89+\$ 17.80=\$ 106.80$
124. The raise is 7% of $\$ 15$. The word of here means multiply.

7%	of	$\$ 15$
\downarrow	\downarrow	\downarrow
0.07	\cdot	$\$ 15=\$ 1.05$

The amount of the raise is $\$ 1.05$ per hour. The new hourly rate is found by adding.
$\$ 15+\$ 1.05=\$ 16.05$
125. The discount is 15% of $\$ 795$. The word of here means multiply.

The amount of the discount is $\$ 119.25$. The sale price is found by subtracting.

$$
\$ 795-\$ 119.25=\$ 675.75
$$

126. The discount is 20% of $\$ 597$. The word of here means multiply.

20%	of	$\$ 597$
\downarrow	\downarrow	\downarrow
0.20	\cdot	$\$ 597=\$ 119.40$

The amount of the discount is $\$ 119.40$. The sale price is found by subtracting.
$\$ 597-\$ 119.40=\$ 477.60$
127. The portion of the circle graph showing the number of travelers from Canada is 26% of the circle. Find 26% of 76 million.
26% of 76 million $\downarrow \downarrow \downarrow$
0.26 . 76 million $=19.76$ million, or approximately $19,760,000$ travelers.
128. The portion of the circle graph showing the number of travelers from Mexico is 25% of the circle. Find 25% of 76 million.
25% of 76 million
$\downarrow \quad \downarrow \quad \downarrow$
0.25 . 76 million $=19$ million,
or approximately $19,000,000$ travelers.
129. First, find the portion of the circle graph that represents "Other."
$100 \%-(26 \%+25 \%+19 \%+15 \%)=15 \%$
The portion of the circle graph showing the number of travelers from "Other" countries is 15% of the circle.
130. The portion of the circle graph showing the number of travelers from "Other" countries is 15% of the circle. Find 15% of 76 million. 15% of 76 million
$\downarrow \quad \downarrow \quad \downarrow$
$0.15 \cdot 76$ million $=11.4$ million, or approximately $11,400,000$ travelers.

Chapter 1
 The Real Number System

1.1 Exponents, Order of Operations, and Inequality

Classroom Examples, Now Try Exercises

1. (a) $9^{2}=9 \cdot 9=81$
(b) $\left(\frac{1}{2}\right)^{4}=\underbrace{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}=\frac{1}{16}$
$\frac{1}{2}$ is used as a factor 4 times.
(c) $(0.5)^{2}=0.5 \cdot 0.5=0.25$

N1. (a) $6^{2}=6 \cdot 6=36$
(b) $\left(\frac{4}{5}\right)^{3}=\underbrace{\frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5}}=\frac{64}{125}$
$\frac{4}{5}$ is used as a factor 3 times.
(c) $(0.7)^{2}=0.7 \cdot 0.7=0.49$
2.
(a) $10-6 \div 2$
$=10-3$ Divide.
$=7 \quad$ Subtract.
(b) $18+2(6-3)$

$$
\begin{array}{ll}
=18+2(3) & \\
\text { Subtract inside parentheses. } \\
=18+6 & \\
\text { Multiply. } \\
=24 & \\
\text { Add. }
\end{array}
$$

(c) $7 \cdot 6-3(8+1)$
$=7 \cdot 6-3(9)$ Add inside parentheses.
$=42-27$ Multiply.
$=15$ Subtract.
(d) $2+3^{2}-5 \cdot 2$
$=2+9-5 \cdot 2$ Apply exponents.
$=2+9-10$ Multiply.
$=11-10 \quad$ Add.
$=1 \quad$ Subtract.

N2. (a) $15-2 \cdot 6$

$$
\begin{array}{ll}
=15-12 & \text { Multiply. } \\
=3 & \text { Subtract. }
\end{array}
$$

(b) $8+2(5-1)$

$$
\begin{array}{ll}
=8+2(4) & \\
\text { Subtract inside parentheses. } \\
=8+8 & \\
=16 & \\
\text { Multiply. } \\
\text { Add. }
\end{array}
$$

(c) $6(2+4)-7 \cdot 5$

$$
\begin{array}{ll}
=6(6)-7 \cdot 5 & \text { Add inside parentheses. } \\
=36-35 & \text { Multiply. } \\
=1 &
\end{array}
$$

(d) $8 \cdot 10 \div 4-2^{3}+3 \cdot 4^{2}$

$$
\begin{array}{ll}
=8 \cdot 10 \div 4-8+3 \cdot 16 & \\
\text { Apply exponents. } \\
=80 \div 4-8+3 \cdot 16 & \\
\text { Multiply. } \\
=20-8+48 & \\
=12+48 & \\
=60 & \\
\text { Sivide/multiply. } \\
=6 \text { Add. }
\end{array}
$$

3. (a) $9[36-2(4+8)]$

$$
\begin{array}{ll}
=9[36-2(12)] & \text { Add inside parentheses. } \\
=9[36-24] & \\
\text { Multiply inside brackets. } \\
=9[12] &
\end{array}
$$

(b) $\frac{2(7+8)+2}{3 \cdot 5+1}$
$=\frac{2(15)+2}{3 \cdot 5+1}$ Add inside parentheses.
$=\frac{30+2}{15+1} \quad$ Multiply.
$=\frac{32}{16} \quad$ Add.
$=2 \quad$ Divide
N3. (a) $7[3(3-1)+4]$

$$
\begin{array}{ll}
=7[3(2)+4] & \\
\text { Subtract inside parentheses. } \\
=7[6+4] & \text { Multiply inside brackets. } \\
=7[10] & \text { Add inside brackets. } \\
=70 & \text { Multiply. }
\end{array}
$$

(b) $\frac{9(14-4)-2}{4+3 \cdot 6}$
$=\frac{9(10)-2}{4+3 \cdot 6}$ Subtract inside parentheses.
$=\frac{90-2}{4+18} \quad$ Multiply.
$=\frac{88}{22} \quad$ Subtract and add.
$=4 \quad$ Divide.
4. (a) The statement $12>6$ is true because 12 is greater than 6 . Note that the inequality symbol points to the lesser number.
(b) The statement $28 \neq 4 \cdot 7$ is false because 28 is equal to $4 \cdot 7$.
(c) The statement $\frac{1}{10} \leq 0.1$ is true because $\frac{1}{10}=0.1$
(d) Write the fractions with a common
denominator. The statement $\frac{1}{3}<\frac{1}{4}$ is equivalent to the statement $\frac{4}{12}<\frac{3}{12}$.
Because 4 is greater than 3, the original statement is false.
N4. (a) The statement $12 \neq 10-2$ is true because 12 is not equal to 8 .
(b) The statement $5>4 \cdot 2$ is false because 5 is less than 8.
(c) The statement $\frac{1}{4} \leq 0.25$ is true because $\frac{1}{4}=0.25$
(d) Write the fractions with a common denominator. The statement $\frac{5}{9}>\frac{7}{11}$ is equivalent to the statement $\frac{55}{99}>\frac{63}{99}$. Because 55 is less than 63, the original statement is false.
5. (a) "Nine is equal to eleven minus two" is written as $9=11-2$.
(b) "Fourteen is greater than twelve" is written as $14>12$.
(c) "Two is greater than or equal to two" is written as $2 \geq 2$.

N5. (a) "Ten is not equal to eight minus two" is written as $10 \neq 8-2$.
(b) "Fifty is greater than fifteen" is written as $50>15$.
(c) "Eleven is less than or equal to twenty" is written as $11 \leq 20$.
6. $9 \leq 15$ is equivalent to $15 \geq 9$.

N6. $8<9$ is equivalent to $9>8$.

Exercises

1. False; $3^{2}=3 \cdot 3=9$.
2. False; 1 raised to any power is 1 .

Here, $1^{3}=1 \cdot 1 \cdot 1=1$.
3. False; a number raised to the first power is that number, so $3^{1}=3$.
4. False; 6^{2} means that 6 is used as a factor 2 times, so $6^{2}=6 \cdot 6=36$.
5. False; the common error leading to 42 is adding 4 to 3 and then multiplying by 6 . One must follow the rules for order of operations.

$$
\begin{aligned}
4 & +3(8-2) \\
= & 4+3(6) \\
= & 4+18 \\
= & 22
\end{aligned}
$$

6. False; multiplications and divisions are performed in order from left to right.

$$
\begin{aligned}
12 & \div 2 \cdot 3 \\
& =6 \cdot 3 \\
& =18
\end{aligned}
$$

7. Additions and subtractions are performed in order from left to right.
$18 \underset{1}{\square} 2+3$
8. Multiplications and divisions are performed in order from left to right, and then additions and subtractions are performed in order from left to right.
$28 \underset{2}{-6} \underset{1}{4} 2$
9. Multiplications and divisions are performed in order from left to right, and then additions and subtractions are performed in order from left to right.

$$
\underbrace{2 \cdot 8}_{1} \underbrace{-6}_{3} \underset{2}{ } \dot{\Psi}
$$

10. Multiplications and divisions are performed in order from left to right, and then additions and subtractions are performed in order from left to right. If grouping symbols are present, work within them first, starting with the innermost.

$$
40 \underbrace{+}_{3} \underset{2}{6}(3-1)
$$

11. Multiplications and divisions are performed in order from left to right, and then additions and subtractions are performed in order from left to right. If grouping symbols are present, work within them first, starting with the innermost. $\underbrace{3 \cdot 5}_{2} \underbrace{2}_{\underbrace{}_{3}} \underbrace{4}_{1} 4+2)$
12. Apply all exponents. Then, multiplications and divisions are performed in order from left to right, and additions and subtractions are performed in order from left to right.
$9 \underbrace{-}_{3} \underbrace{2}_{1} \underbrace{3}_{4}+\underbrace{3}_{2} \cdot 4$
13. $7^{2}=7 \cdot 7=49$
14. $8^{2}=8 \cdot 8=64$
15. $12^{2}=12 \cdot 12=144$
16. $14^{2}=14 \cdot 14=196$
17. $4^{3}=4 \cdot 4 \cdot 4=64$
18. $5^{3}=5 \cdot 5 \cdot 5=125$
19. $10^{3}=10 \cdot 10 \cdot 10=1000$
20. $11^{3}=11 \cdot 11 \cdot 11=1331$
21. $3^{4}=3 \cdot 3 \cdot 3 \cdot 3=81$
22. $6^{4}=6 \cdot 6 \cdot 6 \cdot 6=1296$
23. $4^{5}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=1024$
24. $3^{5}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=243$
25. $\left(\frac{1}{6}\right)^{2}=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}$
26. $\left(\frac{1}{3}\right)^{2}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}$
27. $\left(\frac{2}{3}\right)^{4}=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\frac{16}{81}$
28. $\left(\frac{3}{4}\right)^{3}=\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}=\frac{27}{64}$
29. $(0.6)^{2}=0.6 \cdot 0.6=0.36$
30. $(0.9)^{2}=0.9 \cdot 0.9=0.81$
31. $(0.4)^{3}=0.4 \cdot 0.4 \cdot 0.4=0.064$
32. $(0.5)^{4}=0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5=0.0625$
33. The multiplication should be performed before the addition.

$$
\begin{aligned}
8+2 \cdot 3 & =8+6 & & \text { Multiply. } \\
& =14 & & \text { Add. }
\end{aligned}
$$

The correct value of the expression is 14 .
34. When cubing 2 , the correct value is $2 \cdot 2 \cdot 2=8$, not $2 \cdot 3=6$.
$16-2^{3}+5=16-8+5 \quad$ Apply exponents.

$$
\begin{array}{ll}
=8+5 & \\
=13 & \\
=13 & \text { Add } .
\end{array}
$$

The correct value of the expression is 13 .
35. $64 \div 4 \cdot 2=16 \cdot 2$ Divide.

$$
=32 \quad \text { Multiply }
$$

36. $250 \div 5 \cdot 2=50 \cdot 2$ Divide.

$$
=100 \quad \text { Multiply }
$$

37. $13+9 \cdot 5=13+45$ Multiply.
$=58 \quad$ Add
38. $11+7 \cdot 6=11+42$ Multiply.
$=53 \quad$ Add.
39. $25.2-12.6 \div 4.2=25.2-3$ Divide.

$$
=22.2 \quad \text { Subtract }
$$

40. $12.4-9.3 \div 3.1=12.4-3$ Divide.
$=9.4$ Subtract.
41. $9 \cdot 4-8 \cdot 3=36-24$ Multiply.
$=12$ Subtract.
42. $11 \cdot 4+10 \cdot 3=44+30$ Multiply.

$$
=74 \quad \text { Add }
$$

43. $\frac{1}{4} \cdot \frac{2}{3}+\frac{2}{5} \cdot \frac{11}{3}=\frac{1}{6}+\frac{22}{15} \quad$ Multiply.

$$
\begin{array}{ll}
=\frac{5}{30}+\frac{44}{30} & \text { LCD }=30 \\
=\frac{49}{30}, \text { or } 1 \frac{19}{30} & \text { Add. }
\end{array}
$$

44. $\frac{9}{4} \cdot \frac{2}{3}+\frac{4}{5} \cdot \frac{5}{3}=\frac{3}{2}+\frac{4}{3} \quad$ Multiply.

$$
\begin{array}{ll}
=\frac{9}{6}+\frac{8}{6} & \text { LCD }=6 \\
=\frac{17}{6}, \text { or } 2 \frac{5}{6} & \text { Add. }
\end{array}
$$

45. $20-4 \cdot 3+5=20-12+5$ Multiply.

$$
\begin{array}{ll}
=8+5 & \\
=13 & \\
\text { Subtract. } \\
\text { Add }
\end{array}
$$

46. $18-7 \cdot 2+6=18-14+6$ Multiply.

$$
\begin{array}{ll}
=4+6 & \\
=10 & \\
\text { Subtract. } \\
\text { Add }
\end{array}
$$

47. $10+40 \div 5 \cdot 2=10+8 \cdot 2$ Divide.

$$
\begin{array}{ll}
=10+16 & \\
\text { Multiply. } \\
=26 & \text { Add }
\end{array}
$$

48. $12+64 \div 8-4=12+8-4$ Divide.

$=20-4$	
$=16$	
Add.	
	Subtract.

49. $18-2(3+4)$

$$
\begin{array}{ll}
=18-2(7) & \\
\text { Add inside parentheses. } \\
=18-14 & \\
=4 & \text { Multiply. } \\
=4 & \text { Subtract. }
\end{array}
$$

50. $30-3(4+2)$

$$
\begin{array}{ll}
=30-3(6) & \\
\text { Add inside parentheses. } \\
=30-18 & \text { Multiply. } \\
=12 & \\
\text { Subtract. }
\end{array}
$$

51. $3(4+2)+8 \cdot 3=3 \cdot 6+8 \cdot 3$ Add.

$$
\begin{array}{ll}
=18+24 & \\
=42 & \\
\text { Multiply. } \\
\text { Add } .
\end{array}
$$

52. $9(1+7)+2 \cdot 5=9 \cdot 8+2 \cdot 5$ Add.

$$
\begin{array}{ll}
=72+10 & \\
=82 & \text { Multiply } \\
\text { Add }
\end{array}
$$

53. $18-4^{2}+3=18-16+3$ Apply exponents.

$$
\begin{array}{ll}
=2+3 & \\
=5 & \\
=5 \text { Add }
\end{array}
$$

54. $22-2^{3}+9=22-8+9$ Apply exponents.

$$
\begin{array}{ll}
=14+9 & \\
\text { Subtract. } \\
=23 & \\
\text { Add. }
\end{array}
$$

55. $2+3[5+4(2)]=2+3[5+8]$ Multiply.

$$
\begin{array}{ll}
=2+3[13] & \\
\text { Add. } \\
=2+39 & \\
=41 & \\
\text { Multiply. } \\
\text { Add. }
\end{array}
$$

56. $5+4[1+7(3)]=5+4[1+21]$ Multiply.

$$
=5+4[22] \quad \text { Add }
$$

$$
=5+88 \quad \text { Multiply. }
$$

$$
=93 \quad \text { Add }
$$

57. $5\left[3+4\left(2^{2}\right)\right]=5[3+4(4)] \quad$ Apply exponents.

$$
\begin{array}{ll}
=5(3+16) & \\
\text { Multiply. } \\
=5(19) & \text { Add } \\
=95 & \\
\text { Multiply. }
\end{array}
$$

58. $6\left[2+8\left(3^{3}\right)\right]$
$=6[2+8 \cdot 27]$ Apply exponents.
$=6(2+216)$ Multiply.
$=6 \cdot 218 \quad$ Add .
$=1308$ Multiply.
59. $3^{2}[(11+3)-4]$

$$
\begin{array}{ll}
=3^{2}[14-4] & \\
\text { Add inside parentheses. } \\
=3^{2}[10] & \\
\text { Subtract. } \\
=9[10] & \\
=90 & \text { Apply exponents. } \\
\text { Multiply. }
\end{array}
$$

60. $4^{2}[(13+4)-8]$
$=4^{2}[17-8]$ Add inside parentheses.
$=4^{2}[9] \quad$ Subtract.
=16[9] Apply exponents.
$=144 \quad$ Multiply.
61. Simplify the numerator and denominator separately, and then divide.

$$
\begin{aligned}
\frac{6\left(3^{2}-1\right)+8}{8-2^{2}} & =\frac{6(9-1)+8}{8-4} \\
& =\frac{6(8)+8}{4} \\
& =\frac{48+8}{4} \\
& =\frac{56}{4}=14
\end{aligned}
$$

62. Simplify the numerator and denominator separately, and then divide.

$$
\begin{aligned}
\frac{2\left(8^{2}-4\right)+8}{29-3^{3}} & =\frac{2(64-4)+8}{29-27} \\
& =\frac{2(60)+8}{2} \\
& =\frac{120+8}{2} \\
& =\frac{128}{2}=64
\end{aligned}
$$

63. Simplify the numerator and denominator separately, and then divide.

$$
\begin{aligned}
\frac{4(6+2)+8(8-3)}{6(4-2)-2^{2}} & =\frac{4(8)+8(5)}{6(2)-2^{2}} \\
& =\frac{4(8)+8(5)}{6(2)-4} \\
& =\frac{32+40}{12-4} \\
& =\frac{72}{8}=9
\end{aligned}
$$

64. Simplify the numerator and denominator separately, and then divide.

$$
\begin{aligned}
\frac{6(5+1)-9(1+1)}{5(8-6)-2^{3}} & =\frac{6(6)-9(2)}{5(2)-2^{3}} \\
& =\frac{36-18}{10-8} \\
& =\frac{18}{2}=9
\end{aligned}
$$

65. $3 \cdot 6+4 \cdot 2=60$

Listed below are some possibilities. Use trial and error until you get the desired result.
$(3 \cdot 6)+4 \cdot 2=18+8=26 \neq 60$
$(3 \cdot 6+4) \cdot 2=22 \cdot 2=44 \neq 60$
$3 \cdot(6+4 \cdot 2)=3 \cdot 14=42 \neq 60$
$3 \cdot(6+4) \cdot 2=3 \cdot 10 \cdot 2=30 \cdot 2=60$
66. $2 \cdot 8-1 \cdot 3=42$
$2 \cdot(8-1) \cdot 3=2 \cdot 7 \cdot 3=14 \cdot 3=42$
67. $10-7-3=6$
$10-(7-3)=10-4=6$
68. $8+2^{2}=100$
$(8+2)^{2}=10^{2}=10 \cdot 10=100$
69. $9 \cdot 3-11 \leq 16$
$27-11 \leq 16$

$$
16 \leq 16
$$

The statement is true since $16=16$.
70. $6 \cdot 5-12 \leq 18$
$30-12 \leq 18$

$$
18 \leq 18
$$

The statement is true since $18=18$.
71. $5 \cdot 11+2 \cdot 3 \leq 60$

$$
\begin{aligned}
55+6 & \leq 60 \\
61 & \leq 60
\end{aligned}
$$

The statement is false since 61 is greater than 60.
72. $9 \cdot 3+4 \cdot 5 \geq 48$

$$
\begin{aligned}
27+20 & \geq 48 \\
47 & \geq 48
\end{aligned}
$$

The statement is false since 47 is less than 48.
73. $0 \geq 12 \cdot 3-6 \cdot 6$
$0 \geq 36-36$
$0 \geq 0$
The statement is true since $0=0$.
74. $10 \leq 13 \cdot 2-15 \cdot 1$
$10 \leq 26-15$
$10 \leq 11$
The statement is true since $10<11$.
75. $45 \geq 2[2+3(2+5)]$
$45 \geq 2[2+3(7)]$
$45 \geq 2[2+21]$
$45 \geq 2$ [23]
$45 \geq 46$
The statement is false since 45 is less than 46.
76. $55 \geq 3[4+3(4+1)]$
$55 \geq 3[4+3(5)]$
$55 \geq 3[4+15]$
$55 \geq 3$ [19]
$55 \geq 57$
The statement is false since 55 is less than 57.
77. $[3 \cdot 4+5(2)] \cdot 3>72$
$[12+10] \cdot 3>72$
[22]. $3>72$
$66>72$
The statement is false since 66 is less than 72.
78. $2 \cdot[7 \cdot 5-3(2)] \leq 58$

$$
\begin{array}{r}
2 \cdot[35-6] \leq 58 \\
2[29] \leq 58
\end{array}
$$

$$
58 \leq 58
$$

The statement is true since $58=58$.
79. $\frac{3+5(4-1)}{2 \cdot 4+1} \geq 3$

$$
\begin{aligned}
\frac{3+5(3)}{8+1} & \geq 3 \\
\frac{3+15}{9} & \geq 3 \\
\frac{18}{9} & \geq 3 \\
2 & \geq 3
\end{aligned}
$$

The statement is false since 2 is less than 3 .
80. $\frac{7(3+1)-2}{3+5 \cdot 2} \leq 2$

$$
\begin{aligned}
\frac{7(4)-2}{3+10} & \leq 2 \\
\frac{28-2}{13} & \leq 2 \\
\frac{26}{13} & \leq 2 \\
2 & \leq 2
\end{aligned}
$$

The statement is true since $2=2$.
81. $3 \geq \frac{2(5+1)-3(1+1)}{5(8-6)-4 \cdot 2}$
$3 \geq \frac{2(6)-3(2)}{5(2)-8}$
$3 \geq \frac{12-6}{10-8}$
$3 \geq \frac{6}{2}$
$3 \geq 3$
The statement is true since $3=3$.
82. $7 \leq \frac{3(8-3)+2(4-1)}{9(6-2)-11(5-2)}$
$7 \leq \frac{3(5)+2(3)}{9(4)-11(3)}$
$7 \leq \frac{15+6}{36-33}$
$7 \leq \frac{21}{3}$
$7 \leq 7$
The statement is true since $7=7$.
83. " $5<17$ " means "five is less than seventeen." The statement is true.
84. " $8<12$ " means "eight is less than twelve." The statement is true.
85. " $5 \neq 8$ " means "five is not equal to eight." The statement is true.
86. " $6 \neq 9$ " means "six is not equal to nine." The statement is true.
87. " $7 \geq 14$ " means "seven is greater than or equal to fourteen." The statement is false.
88. " $6 \geq 12$ " means "six is greater than or equal to twelve." The statement is false.
89. " $15 \leq 15$ " means "fifteen is less than or equal to fifteen." The statement is true.
90. " $21 \leq 21$ " means "twenty-one is less than or equal to twenty-one." The statement is true.
91. " $\frac{1}{3}=\frac{3}{10}$ " means "one-third is equal to threetenths." The statement is false.
92. " $\frac{10}{6}=\frac{3}{2}$ " means "ten-sixths is equal to threehalves." The statement is false.
93. " $2.5>2.50$ " means "two and five-tenths is greater than two and fifty-hundredths." The statement is false.
94. " $1.80>1.8$ " means "one and eighty-hundredths is greater than one and eight-tenths." The statement is false.
95. "Fifteen is equal to five plus ten" is written as $15=5+10$.
96. "Twelve is equal to twenty minus eight" is written as $12=20-8$.
97. "Nine is greater than five minus four" is written as $9>5-4$.
98. "Ten is greater than six plus one" is written as $10>6+1$.
99. "Sixteen is not equal to nineteen" is written as $16 \neq 19$.
100. "Three is not equal to four" is written as $3 \neq 4$.
101. "One-half is less than or equal to two-fourths" is written as $\frac{1}{2} \leq \frac{2}{4}$.
102. "One-third is less than or equal to three-ninths" is written as $\frac{1}{3} \leq \frac{3}{9}$.
103. $5<20$ becomes $20>5$ when the inequality symbol is reversed.
104. $30>9$ becomes $9<30$ when the inequality symbol is reversed.
105. $\frac{4}{5}>\frac{3}{4}$ becomes $\frac{3}{4}<\frac{4}{5}$ when the inequality symbol is reversed.
106. $\frac{5}{4}<\frac{3}{2}$ becomes $\frac{3}{2}>\frac{5}{4}$ when the inequality symbol is reversed.
107. $2.5 \geq 1.3$ becomes $1.3 \leq 2.5$ when the inequality symbol is reversed.
108. $4.1 \leq 5.3$ becomes $5.3 \geq 4.1$ when the inequality symbol is reversed.
109. (a) Substitute " 40 " for "age" in the expression for women. $14.7-40 \cdot 0.13$
(b) $14.7-40 \cdot 0.13=14.7-5.2 \quad$ Multiply.

$$
=9.5 \quad \text { Subtract }
$$

(c) 85% of 9.5 is $0.85(9.5)=8.075$.

Walking at 5 mph is associated with 8.0 METs, which is the table value closest to 8.075 .
(d) Substitute " 55 " for "age" in the expression for men.
$14.7-55 \cdot 0.11$

$$
\begin{aligned}
14.7-55 \cdot 0.11 & =14.7-6.05 & & \text { Multiply. } \\
& =8.65 & & \text { Subtract. }
\end{aligned}
$$

85% of 8.65 is $0.85(8.65)=7.3525$.
Swimming is associated with 7.0 METs, which is the table value closest to 7.3525 .
110. Answers will vary.
111. The states that had a number greater than 12.6 are Alaska (16.4), Texas (15.2), California (22.5), and Idaho (19.7).
112. The states that had a number that was at most 15.2 are Texas (15.2), Virginia (12.6), Maine (12.4), and Missouri (12.1).
113. The states that had a number not less than 12.6 , which is the same as greater than or equal to 12.6, are Alaska (16.4), Texas (15.2), California (22.5), Virginia (12.6), and Idaho (19.7).
114. The states that had a number less than 13.0 are Virginia (12.6), Maine (12.4), and Missouri (12.1).

1.2 Variables, Expressions, and Equations

Classroom Examples, Now Try Exercises

1. (a) $16 p-8=16 \cdot 3-8$

$$
=48-8
$$

$$
=40 \quad \text { Subtract. }
$$

(b) $2 p^{3}=2 \cdot 3^{3} \quad$ Replace p with 3 .

$$
\begin{array}{ll}
=2 \cdot 27 & \text { Cube } 3 . \\
=54 & \text { Multiply. }
\end{array}
$$

N1. (a) $9 x-5=9 \cdot 6-5$ Replace x with 6 .

$$
\begin{array}{ll}
=54-5 & \text { Multiply. } \\
=49 & \text { Subtract. }
\end{array}
$$

(b) $\begin{aligned} 4 x^{2} & =4 \cdot 6^{2} & & \text { Replace } x \text { with } 6 . \\ & =4 \cdot 36 & & \text { Square } 6 . \\ & =144 & & \text { Multiply. }\end{aligned}$
2. (a) $4 x+5 y=4 \cdot 6+5 \cdot 9$

$$
\begin{array}{ll}
=24+45 & \\
\text { Multiply. } \\
=69 & \\
\text { Add. }
\end{array}
$$

(b) $\frac{4 x-2 y}{x+1}=\frac{4 \cdot 6-2 \cdot 9}{6+1}$

$$
\begin{array}{ll}
=\frac{24-18}{6+1} & \text { Multiply. } \\
=\frac{6}{7} & \text { Subtract and add. }
\end{array}
$$

(c) $2 x^{2}+y^{2}=2 \cdot 6^{2}+9^{2}$

$$
\begin{array}{ll}
=2 \cdot 36+81 & \\
\text { Use exponents. } \\
=72+81 & \\
=153 & \\
\text { Multiply. } \\
\text { Add. }
\end{array}
$$

N2. (a) $3 x+4 y=3 \cdot 4+4 \cdot 7$

$$
\begin{array}{ll}
=12+28 & \\
=40 & \text { Multiply. } \\
=4 d d .
\end{array}
$$

(b) $\frac{6 x-2 y}{2 y-9}=\frac{6 \cdot 4-2 \cdot 7}{2 \cdot 7-9}$

$$
\begin{array}{ll}
=\frac{24-14}{14-9} & \text { Multiply. } \\
=\frac{10}{5}=2 & \text { Subtract; reduce }
\end{array}
$$

(c) $4 x^{2}-y^{2}=4 \cdot 4^{2}-7^{2}$

$$
\begin{array}{ll}
=4 \cdot 16-49 & \\
\text { Use exponents. } \\
=64-49 & \\
\text { Multiply. } \\
=15 & \\
\text { Subtract. }
\end{array}
$$

3. (a) "The difference of" indicates subtraction. Using x as the variable to represent the number, "the difference of 48 and a number" translates as 48-x.
(b) "Divided by" indicates division. Using x as the variable to represent the number, " 6 divided by a number" translates as $6 \div x$ or $\frac{6}{x}$.
(c) "The sum of a number and 5" suggests a number plus 5 . Using x as the variable to represent the number, " 9 multiplied by the sum of a number and 5 " translates as $9(x+5)$.

N3. (a) Using x as the variable to represent the number, "the sum of a number and 10 " translates as $x+10$, or $10+x$.
(b) "A number divided by 7 " translates as $x \div 7$, or $\frac{x}{7}$.
(c) "The difference between 9 and a number" translates as $9-x$. Thus, "the product of 3 and the difference between 9 and a number" translates as $3(9-x)$.
4. (a) $8 p-10=5$
$8 \cdot 2-10 \stackrel{?}{=} 5 \quad$ Replace p with 2.

$$
16-10 \stackrel{?}{=} 5 \quad \text { Multiply. }
$$

$$
6=5 \quad \text { False }
$$

The number 2 is not a solution of the equation.
(b) $0.1(x+3)=0.8$
$0.1(5+3) \stackrel{?}{=} 0.8 \quad$ Replace x with 5 .
$0.1(8) \stackrel{?}{=} 0.8 \quad$ Add.
$0.8=0.8 \quad$ True
The number 5 is a solution of the equation.
N4. $8 k+5=61$
$8 \cdot 7+5 \stackrel{?}{=} 61 \quad$ Replace k with 7 .

$$
\begin{aligned}
56+5 & \stackrel{?}{=} 61 & \text { Multiply. } \\
61 & =61 & \text { True }
\end{aligned}
$$

The number 7 is a solution of the equation.
5. Using x as the variable to represent the number, "three times a number is subtracted from 21, giving $15^{\prime \prime}$ translates as $21-3 x=15$. Now try each number from the set $\{0,2,4,6,8,10\}$.

$$
\begin{aligned}
& x=0: \quad 21-3(0) \stackrel{?}{=} 15 \\
& 21=15 \quad \text { False } \\
& x=2: \quad 21-3(2) \stackrel{?}{=} 15 \\
& 15=15 \quad \text { True } \\
& x=4: \quad 21-3(4) \stackrel{?}{=} 15 \\
& 9=15 \quad \text { False }
\end{aligned}
$$

Similarly, $x=6,8$, or 10 result in false statements. Thus, 2 is the only solution.

N5. Using x as the variable to represent the number, "the sum of a number and nine is equal to the difference between 25 and the number" translates as $x+9=25-x$. Now try each number from the set $\{0,2,4,6,8,10\}$.

$$
\begin{array}{rlrl}
x=4: & 4+9 & \stackrel{?}{=} 25-4 & \\
13 & =21 & \text { False } \\
x=6: & 6+9 & \stackrel{?}{=} 25-6 & \\
15 & =19 \quad \text { False } \\
x=8: & 8+9 & \stackrel{?}{=} 25-8 & \\
17 & =17 \quad \text { True }
\end{array}
$$

Similarly, $x=0,2$, or 10 result in false statements. Thus, 8 is the only solution.
6. (a) $\frac{3 x-1}{5}$ has no equality symbol, so this is an expression.
(b) $\frac{3 x}{5}=1$ has an equality symbol, so this is an equation.
N6. (a) $2 x+5=6$ has an equality symbol, so this is an equation.
(b) $2 x+5-6$ has no equality symbol, so this is an expression.

Exercises

1. The expression $8 x^{2}$ means $8 \cdot x \cdot x$. The correct choice is B.
2. If $x=2$ and $y=1$, then the value of $x y$ is $2 \cdot 1=2$. The correct choice is C.
3. The sum of 15 and a number x is represented by the expression $15+x$. The correct choice is A .
4. 7 less than a number x is represented by the expression $x-7$. The correct choice is D .
5. Try each number in the equation $3 x-1=5$.

$$
\begin{aligned}
& x=0: \quad 3 \cdot 0-1 \stackrel{?}{=} 5 \\
& 0-1 \stackrel{?}{=} 5 \\
&-1=5 \quad \text { False } \\
& x=2: \quad 3 \cdot 2-1 \stackrel{?}{=} 5 \\
& 6-1 \stackrel{?}{=} 5 \\
& 5=5 \quad \text { False }
\end{aligned}
$$

6. There is no equality symbol in $6 x+7$ or $6 x-7$, so those are expressions. $6 x=7$ and $6 x-7=0$ have equality symbols, so those are equations.
7. The exponent refers only to the 4 .

$$
\begin{aligned}
5 x^{2} & =5 \cdot 4^{2} \\
& =5 \cdot 16 \\
& =80
\end{aligned}
$$

The correct value is 80 .
8. Addition in the numerator comes before division.

$$
\begin{aligned}
\frac{x+3}{5} & =\frac{10+3}{5} \\
& =\frac{13}{5}
\end{aligned}
$$

The correct value is $\frac{13}{5}$.
9. (a) $x+7=4+7$

$$
=11
$$

(b) $x+7=6+7$

$$
=13
$$

10. (a) $x-3=4-3$

$$
=1
$$

(b) $x-3=6-3$
$=3$
11. (a) $4 x=4 \cdot 4=16$
(b) $4 x=4 \cdot 6=24$
12. (a) $6 x=6 \cdot 4=24$
(b) $6 x=6 \cdot 6=36$
13. (a) $5 x-4=5 \cdot 4-4$

$$
\begin{aligned}
& =20-4 \\
& =16
\end{aligned}
$$

(b) $5 x-4=5 \cdot 6-4$
$=30-4$
$=26$
14. (a) $7 x-9=7 \cdot 4-9$

$$
\begin{aligned}
& =28-9 \\
& =19
\end{aligned}
$$

(b) $7 x-9=7 \cdot 6-9$
$=42-9$
$=33$
15. (a) $4 x^{2}=4 \cdot 4^{2}$

$$
\begin{aligned}
& =4 \cdot 16 \\
& =64
\end{aligned}
$$

(b) $4 x^{2}=4 \cdot 6^{2}$

$$
\begin{aligned}
& =4 \cdot 36 \\
& =144
\end{aligned}
$$

16. (a) $5 x^{2}=5 \cdot 4^{2}$

$$
\begin{aligned}
& =5 \cdot 16 \\
& =80
\end{aligned}
$$

(b) $5 x^{2}=5 \cdot 6^{2}$

$$
\begin{aligned}
& =5 \cdot 36 \\
& =180
\end{aligned}
$$

17. (a) $\frac{x+1}{3}=\frac{4+1}{3}$

$$
=\frac{5}{3}
$$

(b) $\frac{x+1}{3}=\frac{6+1}{3}$

$$
=\frac{7}{3}
$$

18. (a) $\frac{x+2}{5}=\frac{4+2}{5}$

$$
=\frac{6}{5}
$$

(b) $\frac{x+2}{5}=\frac{6+2}{5}$

$$
=\frac{8}{5}
$$

19. (a) $\frac{3 x-5}{2 x}=\frac{3 \cdot 4-5}{2 \cdot 4}$

$$
\begin{aligned}
& =\frac{12-5}{8} \\
& =\frac{7}{8}
\end{aligned}
$$

(b) $\frac{3 x-5}{2 x}=\frac{3 \cdot 6-5}{2 \cdot 6}$

$$
\begin{aligned}
& =\frac{18-5}{12} \\
& =\frac{13}{12}
\end{aligned}
$$

20. (a) $\frac{4 x-1}{3 x}=\frac{4 \cdot 4-1}{3 \cdot 4}$

$$
\begin{aligned}
& =\frac{16-1}{12} \\
& =\frac{15}{12}=\frac{5}{4}
\end{aligned}
$$

(b) $\frac{4 x-1}{3 x}=\frac{4 \cdot 6-1}{3 \cdot 6}$

$$
\begin{aligned}
& =\frac{24-1}{18} \\
& =\frac{23}{18}
\end{aligned}
$$

21. (a) $3 x^{2}+x=3 \cdot 4^{2}+4$

$$
\begin{aligned}
& =3 \cdot 16+4 \\
& =48+4=52
\end{aligned}
$$

(b) $3 x^{2}+x=3 \cdot 6^{2}+6$

$$
\begin{aligned}
& =3 \cdot 36+6 \\
& =108+6=114
\end{aligned}
$$

22. (a) $2 x+x^{2}=2 \cdot 4+4^{2}$

$$
\begin{aligned}
& =8+16 \\
& =24
\end{aligned}
$$

(b) $2 x+x^{2}=2 \cdot 6+6^{2}$

$$
=12+36
$$

$$
=48
$$

23. (a) $6.459 x=6.459 \cdot 4$

$$
=25.836
$$

(b) $6.459 x=6.459 \cdot 6$

$$
=38.754
$$

24. (a) $3.275 x=3.275 \cdot 4$

$$
=13.1
$$

(b) $3.275 x=3.275 \cdot 6$

$$
=19.65
$$

25. (a) $8 x+3 y+5=8 \cdot 2+3 \cdot 1+5$

$$
\begin{aligned}
& =16+3+5 \\
& =19+5 \\
& =24
\end{aligned}
$$

(b) $8 x+3 y+5=8 \cdot 1+3 \cdot 5+5$

$$
\begin{aligned}
& =8+15+5 \\
& =23+5 \\
& =28
\end{aligned}
$$

26. (a) $4 x+2 y+7=4(2)+2(1)+7$

$$
\begin{aligned}
& =8+2+7 \\
& =17
\end{aligned}
$$

(b) $4 x+2 y+7=4(1)+2(5)+7$

$$
\begin{aligned}
& =4+10+7 \\
& =21
\end{aligned}
$$

27. (a) $3(x+2 y)=3(2+2 \cdot 1)$

$$
\begin{aligned}
& =3(2+2) \\
& =3(4) \\
& =12
\end{aligned}
$$

(b) $3(x+2 y)=3(1+2 \cdot 5)$

$$
\begin{aligned}
& =3(1+10) \\
& =3(11) \\
& =33
\end{aligned}
$$

28. (a) $2(2 x+y)=2[2(2)+1]$

$$
\begin{aligned}
& =2(4+1) \\
& =2(5) \\
& =10
\end{aligned}
$$

(b) $2(2 x+y)=2[2(1)+5]$

$$
\begin{aligned}
& =2(2+5) \\
& =2(7) \\
& =14
\end{aligned}
$$

29. (a) $x+\frac{4}{y}=2+\frac{4}{1}$

$$
\begin{aligned}
& =2+4 \\
& =6
\end{aligned}
$$

(b) $x+\frac{4}{y}=1+\frac{4}{5}$

$$
\begin{aligned}
& =\frac{5}{5}+\frac{4}{5} \\
& =\frac{9}{5}
\end{aligned}
$$

30. (a) $y+\frac{8}{x}=1+\frac{8}{2}$

$$
\begin{aligned}
& =1+4 \\
& =5
\end{aligned}
$$

(b) $y+\frac{8}{x}=5+\frac{8}{1}$

$$
\begin{aligned}
& =5+8 \\
& =13
\end{aligned}
$$

31. (a) $\frac{x}{2}+\frac{y}{3}=\frac{2}{2}+\frac{1}{3}$

$$
=\frac{6}{6}+\frac{2}{6}
$$

$$
=\frac{8}{6}=\frac{4}{3}
$$

(b) $\frac{x}{2}+\frac{y}{3}=\frac{1}{2}+\frac{5}{3}$

$$
\begin{aligned}
& =\frac{3}{6}+\frac{10}{6} \\
& =\frac{13}{6}
\end{aligned}
$$

32. (a) $\frac{x}{5}+\frac{y}{4}=\frac{2}{5}+\frac{1}{4}$

$$
\begin{aligned}
& =\frac{8}{20}+\frac{5}{20} \\
& =\frac{13}{20}
\end{aligned}
$$

(b) $\frac{x}{5}+\frac{y}{4}=\frac{1}{5}+\frac{5}{4}$
$=\frac{4}{20}+\frac{25}{20}$
$=\frac{29}{20}$
33. (a) $\frac{2 x+4 y}{5 x+2 y}=\frac{2 \cdot 2+4 \cdot 1}{5 \cdot 2+2 \cdot 1}$

$$
=\frac{4+4}{10+2}
$$

$$
=\frac{8}{12}
$$

$$
=\frac{2}{3}
$$

(b) $\frac{2 x+4 y}{5 x+2 y}=\frac{2 \cdot 1+4 \cdot 5}{5 \cdot 1+2 \cdot 5}$

$$
=\frac{2+20}{5+10}
$$

$$
=\frac{22}{15}
$$

34. (a) $\frac{7 x+5 y}{8 x+y}=\frac{7(2)+5(1)}{8(2)+1}$

$$
\begin{aligned}
& =\frac{14+5}{16+1} \\
& =\frac{19}{17}
\end{aligned}
$$

(b) $\frac{7 x+5 y}{8 x+y}=\frac{7(1)+5(5)}{8(1)+5}$

$$
\begin{aligned}
& =\frac{7+25}{8+5} \\
& =\frac{32}{13}
\end{aligned}
$$

35. (a) $3 x^{2}+y^{2}=3 \cdot 2^{2}+1^{2}$

$$
\begin{aligned}
& =3 \cdot 4+1 \\
& =12+1 \\
& =13
\end{aligned}
$$

(b) $3 x^{2}+y^{2}=3 \cdot 1^{2}+5^{2}$

$$
\begin{aligned}
& =3 \cdot 1+25 \\
& =3+25 \\
& =28
\end{aligned}
$$

36. (a) $4 x^{2}+2 y^{2}=4 \cdot 2^{2}+2 \cdot 1^{2}$

$$
\begin{aligned}
& =4 \cdot 4+2 \cdot 1 \\
& =16+2 \\
& =18
\end{aligned}
$$

(b) $4 x^{2}+2 y^{2}=4 \cdot 1^{2}+2 \cdot 5^{2}$

$$
\begin{aligned}
& =4 \cdot 1+2 \cdot 25 \\
& =4+50 \\
& =54
\end{aligned}
$$

37. (a) $\frac{3 x+y^{2}}{2 x+3 y}=\frac{3 \cdot 2+1^{2}}{2 \cdot 2+3 \cdot 1}$

$$
\begin{aligned}
& =\frac{3 \cdot 2+1}{4+3} \\
& =\frac{6+1}{7} \\
& =\frac{7}{7} \\
& =1
\end{aligned}
$$

(b) $\frac{3 x+y^{2}}{2 x+3 y}=\frac{3 \cdot 1+5^{2}}{2 \cdot 1+3 \cdot 5}$
$=\frac{3 \cdot 1+25}{2+15}$

$$
=\frac{3+25}{17}
$$

$$
=\frac{28}{17}
$$

38. (a) $\frac{x^{2}+1}{4 x+5 y}=\frac{2^{2}+1}{4(2)+5(1)}$

$$
=\frac{4+1}{8+5}
$$

$$
=\frac{5}{13}
$$

(b) $\frac{x^{2}+1}{4 x+5 y}=\frac{1^{2}+1}{4(1)+5(5)}$

$$
\begin{aligned}
& =\frac{1+1}{4+25} \\
& =\frac{2}{29}
\end{aligned}
$$

39. (a) $0.841 x^{2}+0.32 y^{2}$

$$
\begin{aligned}
& =0.841 \cdot 2^{2}+0.32 \cdot 1^{2} \\
& =0.841 \cdot 4+0.32 \cdot 1 \\
& =3.364+0.32 \\
& =3.684
\end{aligned}
$$

(b) $0.841 x^{2}+0.32 y^{2}$

$$
\begin{aligned}
& =0.841 \cdot 1^{2}+0.32 \cdot 5^{2} \\
& =0.841 \cdot 1+0.32 \cdot 25 \\
& =0.841+8 \\
& =8.841
\end{aligned}
$$

40. (a) $0.941 x^{2}+0.25 y^{2}$

$$
\begin{aligned}
& =0.941(2)^{2}+0.25(1)^{2} \\
& =0.941(4)+0.25(1) \\
& =3.764+0.25 \\
& =4.014
\end{aligned}
$$

(b) $0.941 x^{2}+0.25 y^{2}$

$$
\begin{aligned}
& =0.941(1)^{2}+0.25(5)^{2} \\
& =0.941(1)+0.25(25) \\
& =0.941+6.25 \\
& =7.191
\end{aligned}
$$

41. "Twelve times a number" translates as $12 \cdot x$, or $12 x$.
42. "Fifteen times a number" translates as $15 \cdot x$, or $15 x$.
43. "Added to" indicates addition. "Nine added to a number" translates as $x+9$.
44. "Six added to a number" translates as $x+6$.
45. "Two subtracted from a number" translates as $x-2$.
46. "Seven subtracted from a number" translates as $x-7$.
47. "A number subtracted from seven" translates as $7-x$.
48. "A number subtracted from four" translates as $4-x$.
49. "The difference between a number and 8 " translates as $x-8$.
50. "The difference between 8 and a number" translates as $8-x$.
51. " 18 divided by a number" translates as $\frac{18}{x}$.
52. "A number divided by 18 " translates as $\frac{x}{18}$.
53. "The product of 6 and four less than a number" translates as $6(x-4)$.
54. "The product of 9 and five more than a number" translates as $9(x+5)$.
55. $4 m+2=6 ; 1$
$4 \cdot 1+2 \stackrel{?}{=} 6 \quad$ Let $m=1$.

$$
\begin{aligned}
4+2 & \stackrel{?}{=} 6 \\
6 & =6 \quad \text { True }
\end{aligned}
$$

Because substituting 1 for m results in a true statement, 1 is a solution of the equation.
56. $2 r+6=8 ; 1$

$$
\begin{array}{rll}
2(1)+6 & \stackrel{?}{=} 8 & \text { Let } r=1 . \\
2+6 & \stackrel{?}{=} 8 & \\
8 & =8 & \text { True }
\end{array}
$$

The true result shows that 1 is a solution of the equation.
57. $2 y+3(y-2)=14 ; 3$

$$
\begin{aligned}
2 \cdot 3+3(3-2) & \stackrel{?}{=} 14 \quad \text { Let } y=3 \\
2 \cdot 3+3 \cdot 1 & \stackrel{?}{=} 14 \\
6+3 & \stackrel{?}{=} 14 \\
9 & =14 \quad \text { False }
\end{aligned}
$$

Because substituting 3 for y results in a false statement, 3 is not a solution of the equation.
58. $6 x+2(x+3)=14 ; 2$

$$
\begin{aligned}
6(2)+2(2+3) & \stackrel{?}{=} 14 \quad \text { Let } x=2 . \\
6(2)+2(5) & \stackrel{?}{=} 14 \\
12+10 & \stackrel{?}{=} 14 \\
22 & =14 \quad \text { False }
\end{aligned}
$$

The false result shows that 2 is not a solution of the equation.
59. $6 p+4 p+9=11 ; \frac{1}{5}$
$6 \cdot \frac{1}{5}+4 \cdot \frac{1}{5}+9 \stackrel{?}{=} 11 \quad$ Let $p=\frac{1}{5}$.
$\frac{6}{5}+\frac{4}{5}+9 \stackrel{?}{=} 11$
$\frac{10}{5}+9 \stackrel{?}{=} 11$

$$
\begin{aligned}
2+9 & \stackrel{?}{=} 11 \\
11 & =11 \quad \text { True }
\end{aligned}
$$

The true result shows that $\frac{1}{5}$ is a solution of the equation.
60.

$$
\begin{aligned}
2 x+3 x+8 & =20 ; \frac{12}{5} \\
2\left(\frac{12}{5}\right)+3\left(\frac{12}{5}\right)+8 & \stackrel{?}{=} 20 \quad \text { Let } x=\frac{12}{5} . \\
\frac{24}{5}+\frac{36}{5}+\frac{40}{5} & \stackrel{?}{=} 20 \\
\frac{100}{5} & \stackrel{?}{=} 20 \\
20 & =20 \quad \text { True }
\end{aligned}
$$

The true result shows that $\frac{12}{5}$ is a solution of the equation.

