Chapter 2 Frequency Distributions: Tabulating and Displaying Data

- 2.1. A major purpose of constructing a frequency distribution with sample data is to:
 - a. Estimate a population parameter
 - b. Test a research hypothesis
 - *c. Get an organized view of an entire set of scores
 - d. Get experience with statistical software
- 2.2. In a frequency distribution, the two key informational components are:
 - *a. Score values (X), frequencies (f)
 - b. A horizontal (X) axis, a vertical (Y) axis
 - c. Frequencies (f), percentages (%)
 - d. Participant ID number (*id*), score values (X)
- 2.3. In a frequency distribution, which of the following is true?
 - a. $\Sigma N = \%$ b. $\Sigma N = f$ c. $\Sigma f = \%$ *d. $\Sigma f = N$
 - .
- 2.4. In the equation $\Sigma \% = 100.0$, the symbol Σ signifies:
 - a. A percentage
 - *b. The sum of
 - c. A data value
 - d. A frequency
- 2.5. In a frequency distribution, percentages are sometimes called:
 - a. Proportions
 - b. Relative proportions
 - *c. Relative frequencies
 - d. Cumulative proportions

2.6. Data for which of the following variables is most likely to be presented in a grouped frequency distribution?

- a. Nursing specialty area
- *b. Daily cholesterol intake
- c. Number of abortions
- d. Number of pets owned
- 2.7. The level of measurement for data appropriately presented in a bar graph is:
 - a. Interval or ratio
 - b. Nominal only
 - c. Interval only
 - *d. Nominal or ordinal

2.8. In a frequency distribution graph, frequencies are typically presented on the _____ and data values are presented on the _____. (Fill in the blanks.)

*a. *Y* axis, *X* axis

b. X axis, Y axisc. f axis, N axisd. N axis, f axis

2.9. Which of the following sets of data is not unimodal?

2.10. Which of the following variables is most likely to be negatively skewed in a general population?

a. Number of times arrested

*b. Age at retirement

- c. Number of times married
- d. Age at birth

2.11. A normal distribution is not:

- a. Skewed
- b. Leptokurtic
- c. Platykurtic
- *d. All of the above

2.12. A wild code is:

*a. A value that is impossible given the coding scheme

- b. An outlier or high value
- c. A code for which there is a very low frequency
- d. A code for which there is a very high frequency

The next eight questions pertain to the following table (Table 2):

	Table 2	2	
Number of	Frequency	Percentage	Cumulative
Pregnancies of Study		_	Percentage
Participants			
0	24	11.1	11.1
1	29	13.5	24.6
2	78	36.3	60.9
3	46	21.4	82.3
4	22	10.2	92.5
5	11	5.1	97.6
6	4	1.9	99.5
7	1	0.4	100.0
Total	215	100.0	
11 0 1 111	1.1		

2.13 In Table 2, the variable is ______ and the measurement level is ______. (Fill in the blanks.)

a. Discrete, interval

*b. Discrete, ratio

c. Continuous, interval

d. Continuous, ratio

2.14. Table 2 is an example of a:

- *a. Frequency distribution
- b. Grouped frequency distribution
- c. Class interval
- d. Data matrix

2.15. In Table 2, the value of *N* is:

- a. 24
- b. 100.0
- *c. 215
- d. 7

2.16. In Table 2, the cumulative relative frequency for five or fewer pregnancies is:

- a. 210
- b. 199
- c. 92.5
- *d. 97.6

2.17. The best way to graph information in Table 2 would be to construct:

- *a. A histogram
- b. A pie chart
- c. A bar graph
- d. Either a pie chart or a bar graph

2.18. In Table 2, the distribution of data would be described as:

- a. Symmetric
- *b. Positively skewed
- c. Negatively skewed
- d. It cannot be determined.

2.19. In Table 2, the distribution of data would be described as:

- *a. Unimodal
- b. Bimodal
- c. Multimodal
- d. It cannot be determined.

2.20. In Table 2, the most likely number to be an outlier is:

- a. 0
- b. 1
- *c. 7
- d. 24