Chapter 2
 Frequency Distributions: Tabulating and Displaying Data

2.1. A major purpose of constructing a frequency distribution with sample data is to:
a. Estimate a population parameter
b. Test a research hypothesis
*c. Get an organized view of an entire set of scores
d. Get experience with statistical software
2.2. In a frequency distribution, the two key informational components are:
*a. Score values (X), frequencies (f)
b. A horizontal (X) axis, a vertical (Y) axis
c. Frequencies (f), percentages (\%)
d. Participant ID number (id), score values (X)
2.3. In a frequency distribution, which of the following is true?
a. $\Sigma N=\%$
b. $\Sigma N=f$
c. $\Sigma f=\%$
*d. $\Sigma f=N$
2.4. In the equation $\Sigma \%=100.0$, the symbol Σ signifies:
a. A percentage
*b. The sum of
c. A data value
d. A frequency
2.5. In a frequency distribution, percentages are sometimes called:
a. Proportions
b. Relative proportions
*c. Relative frequencies
d. Cumulative proportions
2.6. Data for which of the following variables is most likely to be presented in a grouped frequency distribution?
a. Nursing specialty area
*b. Daily cholesterol intake
c. Number of abortions
d. Number of pets owned
2.7. The level of measurement for data appropriately presented in a bar graph is:
a. Interval or ratio
b. Nominal only
c. Interval only
*d. Nominal or ordinal
2.8. In a frequency distribution graph, frequencies are typically presented on the \qquad and data values are presented on the \qquad . (Fill in the blanks.)
*a. Y axis, X axis
b. X axis, Y axis
c. f axis, N axis
d. N axis, f axis
2.9. Which of the following sets of data is not unimodal?
*a. 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5
b. $0,0,0,0,0,0,0,0,1,1,1,2,2,2,2,3,3,3,4,4,4,4$
c. $0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,4,5$
d. $1,1,2,2,3,3,4,4,5,5,5,5,5,6,6,7,7,8,8,9,9$
2.10. Which of the following variables is most likely to be negatively skewed in a general population?
a. Number of times arrested
*b. Age at retirement
c. Number of times married
d. Age at birth
2.11. A normal distribution is not:
a. Skewed
b. Leptokurtic
c. Platykurtic
*d. All of the above
2.12. A wild code is:
*a. A value that is impossible given the coding scheme
b. An outlier or high value
c. A code for which there is a very low frequency
d. A code for which there is a very high frequency

The next eight questions pertain to the following table (Table 2):
Table 2

Number of Pregnancies of Study Participants	Frequency	Percentage	Cumulative Percentage
0	24	11.1	11.1
1	29	13.5	24.6
2	78	36.3	60.9
3	46	21.4	82.3
4	22	10.2	92.5
5	11	5.1	97.6
6	4	1.9	99.5
7	1	0.4	100.0
Total	215	100.0	

2.13 In Table 2, the variable is \qquad and the measurement level is \qquad . (Fill in the blanks.)
a. Discrete, interval
*b. Discrete, ratio
c. Continuous, interval
d. Continuous, ratio
2.14. Table 2 is an example of a:
*a. Frequency distribution
b. Grouped frequency distribution
c. Class interval
d. Data matrix
2.15. In Table 2, the value of N is:
a. 24
b. 100.0
*.c. 215
d. 7
2.16. In Table 2, the cumulative relative frequency for five or fewer pregnancies is:
a. 210
b. 199
c. 92.5
*d. 97.6
2.17. The best way to graph information in Table 2 would be to construct:
*a. A histogram
b. A pie chart
c. A bar graph
d. Either a pie chart or a bar graph
2.18. In Table 2, the distribution of data would be described as:
a. Symmetric
*b. Positively skewed
c. Negatively skewed
d. It cannot be determined.
2.19. In Table 2, the distribution of data would be described as:
*a. Unimodal
b. Bimodal
c. Multimodal
d. It cannot be determined.
2.20. In Table 2, the most likely number to be an outlier is:
a. 0
b. 1
*c. 7
d. 24

