INSTRUCTOR'S SOLUTIONS MANUAL

LINEAR ALGEBRA WITH APPLICATIONS TENTH EDITION

Steven J. Leon

University of Massachusetts Dartmouth

Lisette G. de Pillis

Harvey Mudd College

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2020, 2015, 2010 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

<u>Contents</u>

	Preface	v
1	Matrices and Systems of Equations	1
	1 Systems of Linear Equations	1
	2 Row Echelon Form	2
	3 Matrix Arithmetic	3
	4 Matrix Algebra	7
	5 Elementary Matrices	12
	6 Partitioned Matrices	18
	MATLAB Exercises	22
	Chapter Test A	24
	Chapter Test B	27
2	Determinants	30
	1 The Determinant of a Matrix	30
	2 Properties of Determinants	33
	3 Additional Topics and Applications	36
	MATLAB Exercises	38
	Chapter Test A	38
	Chapter Test B	39
3	Vector Spaces	42
	1 Definition and Examples	49
	2 Subspaces	46
	3 Linear Independence	52
	4 Basis and Dimension	55
	5 Change of Basis	57
	6 Row Space and Column Space	57
	MATLAB Exercises	65
	Chapter Test A	66
	Chapter Test B	68
4	Linear Transformations	
	1 Definition and Examples	79
	2 Matrix Representations of Linear Transformations	75
	3 Similarity	73
	MATLAB Exercise	70
		13

		Chapter Test A	80
		Chapter Test B	81
5	Or	thogonality	84
	1	The Scalar product in \mathbb{R}^n	84
	2	Orthogonal Subspaces	86
	3	Least Squares Problems	89
	4	Inner Product Spaces	93
	5	Orthonormal Sets	99
	6	The Gram-Schmidt Process	107
	$\overline{7}$	Orthogonal Polynomials	109
		MATLAB Exercises	112
		Chapter Test A	113
		Chapter Test B	115
6	Eig	genvalues	119
	1	Eigenvalues and Eigenvectors	119
	2	Systems of Linear Differential Equations	124
	3	Diagonalization	125
	4	Hermitian Matrices	133
	5	Singular Value Decomposition	141
	6	Quadratic Forms	143
	$\overline{7}$	Positive Definite Matrices	146
	8	Nonnegative Matrices	149
		MATLAB Exercises	152
		Chapter Test A	154
		Chapter Test B	156
7	Nu	merical Linear Algebra	160
	1	Floating-Point Numbers	160
	2	Gaussian Elimination	161
	3	Pivoting Strategies	162
	4	Matrix Norms and Condition Numbers	163
	5	Orthogonal Transformations	174
	6	The Eigenvalue Problem	175
	$\overline{7}$	Least Squares Problems	179
	8	Iterative Methods	182
		MATLAB Exercises	183
		Chapter Test A	185
		Chapter Test B	186

Preface

This solutions manual is designed to accompany the tenth edition of *Linear Algebra with Applications* by Steven J. Leon and Lisette de Pillis. The manual contains the complete solutions to all of the nonroutine exercises and Chapter test questions in the first seven chapters the book. Each of those chapters also includes a set of MATLAB computer exercises. Most of the MATLAB computations are straightforward. and consequently the computational results are not included in this manual. However, the MATLAB Exercises also include questions related to the computations. The purpose of the questions is to emphasize the significance of the computations. This manual does provide the answers to most of these questions.

Chapter 1

Matrices and Systems of Equations

1 SYSTEMS OF LINEAR EQUATIONS

2. (d)
$$\begin{cases} 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & -2 & 1 \\ 0 & 0 & 4 & 1 & -2 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 2 \end{cases}$$

5. (a) $3x_1 + 2x_2 = 8$
 $x_1 + 5x_2 = 7$
(b) $5x_1 - 2x_2 + x_3 = 3$
 $2x_1 + 3x_2 - 4x_3 = 0$
(c) $2x_1 + x_2 + 4x_3 = -1$
 $4x_1 - 2x_2 + 3x_3 = 4$
 $5x_1 + 2x_2 + 6x_2 = -1$

1

(d) $4x_1 - 3x_2 + x_3 + 2x_4 = 4$ $3x_1 + x_2 - 5x_3 + 6x_4 = 5$ $x_1 + x_2 + 2x_3 + 4x_4 = 8$ $5x_1 + x_2 + 3x_3 - 2x_4 = 7$

9. Given the system

$$-m_1 x_1 + x_2 = b_1 -m_2 x_1 + x_2 = b_2$$

one can eliminate the variable x_2 by subtracting the first row from the second. One then obtains the equivalent system

$$-m_1 x_1 + x_2 = b_1$$

(m_1 - m_2)x_1 = b_2 - b_1

(a) If $m_1 \neq m_2$, then one can solve the second equation for x_1

$$x_1 = \frac{b_2 - b_1}{m_1 - m_2}$$

One can then plug this value of x_1 into the first equation and solve for x_2 . Thus, if $m_1 \neq m_2$, there will be a unique ordered pair (x_1, x_2) that satisfies the two equations.

(b) If $m_1 = m_2$, then the x_1 term drops out in the second equation

$$0 = b_2 - b_1$$

This is possible if and only if $b_1 = b_2$.

- (c) If $m_1 \neq m_2$, then the two equations represent lines in the plane with different slopes. Two nonparallel lines intersect in a point. That point will be the unique solution to the system. If $m_1 = m_2$ and $b_1 = b_2$, then both equations represent the same line and consequently every point on that line will satisfy both equations. If $m_1 = m_2$ and $b_1 \neq b_2$, then the equations represent parallel lines. Since parallel lines do not intersect, there is no point on both lines and hence no solution to the system.
- 10. The system must be consistent since (0,0) is a solution.
- 11. A linear equation in 3 unknowns represents a plane in three space. The solution set to a 3×3 linear system would be the set of all points that lie on all three planes. If the planes are parallel or one plane is parallel to the line of intersection of the other two, then the solution set will be empty. The three equations could represent the same plane or the three planes could all intersect in a line. In either case the solution set will contain infinitely many points. If the three planes intersect in a point, then the solution set will contain only that point.

2 ROW ECHELON FORM

2. (b) The system is consistent with a unique solution (4, -1).

- 4. (b) x_1 and x_3 are lead variables and x_2 is a free variable.
 - (d) x_1 and x_3 are lead variables and x_2 and x_4 are free variables. (f) x_2 and x_3 are lead variables and x_1 is a free variable.
- 5. (1) The solution is (0, -1.5, -3.5).
- **6.** (c) The solution set consists of all ordered triples of the form $(0, -\alpha, \alpha)$.
- 7. A homogeneous linear equation in 3 unknowns corresponds to a plane that passes through the origin in 3-space. Two such equations would correspond to two planes through the origin. If one equation is a multiple of the other, then both represent the same plane through the origin and every point on that plane will be a solution to the system. If one equation is not a multiple of the other, then we have two distinct planes that intersect in a line through the

origin. Every point on the line of intersection will be a solution to the linear system. So in either case the system must have infinitely many solutions.

In the case of a nonhomogeneous 2×3 linear system, the equations correspond to planes that do not both pass through the origin. If one equation is a multiple of the other, then both represent the same plane and there are infinitely many solutions. If the equations represent planes that are parallel, then they do not intersect and hence the system will not have any solutions. If the equations represent distinct planes that are not parallel, then they must intersect in a line and hence there will be infinitely many solutions. So the only possibilities for a nonhomogeneous 2×3 linear system are 0 or infinitely many solutions.

- **9.** (a) Since the system is homogeneous it must be consistent.
- 13. A homogeneous system is always consistent since it has the trivial solution $(0, \ldots, 0)$. If the reduced row echelon form of the coefficient matrix involves free variables, then there will be infinitely many solutions. If there are no free variables, then the trivial solution will be the only solution.
- 14. A nonhomogeneous system could be inconsistent in which case there would be no solutions. If the system is consistent and underdetermined, then there will be free variables and this would imply that we will have infinitely many solutions.
- **16.** At each intersection, the number of vehicles entering must equal the number of vehicles leaving in order for the traffic to flow. This condition leads to the following system of equations

$$x_1 + a_1 = x_2 + b_1$$

$$x_2 + a_2 = x_3 + b_2$$

$$x_3 + a_3 = x_4 + b_3$$

$$x_4 + a_4 = x_1 + b_4$$

If we add all four equations, we get

$$x_1 + x_2 + x_3 + x_4 + a_1 + a_2 + a_3 + a_4 = x_1 + x_2 + x_3 + x_4 + b_1 + b_2 + b_3 + b_4$$

and hence

$$a_1 + a_2 + a_3 + a_4 = b_1 + b_2 + b_3 + b_4$$

17. If (c_1, c_2) is a solution, then

$$a_{11}c_1 + a_{12}c_2 = 0$$

$$a_{21}c_1 + a_{22}c_2 = 0$$

Multiplying both equations through by α , one obtains

a

$$a_{11}(\alpha c_1) + a_{12}(\alpha c_2) = \alpha \cdot 0 = 0$$
$$a_{21}(\alpha c_1) + a_{22}(\alpha c_2) = \alpha \cdot 0 = 0$$

Thus $(\alpha c_1, \alpha c_2)$ is also a solution.

18. (a) If $x_4 = 0$, then x_1, x_2 , and x_3 will all be 0. Thus if no glucose is produced, then there is no reaction. (0, 0, 0, 0) is the trivial solution in the sense that if there are no molecules of carbon dioxide and water, then there will be no reaction.

(b) If we choose another value of x_4 , say $x_4 = 2$, then we end up with solution $x_1 = 12$, $x_2 = 12$, $x_3 = 12$, $x_4 = 2$. Note the ratios are still 6:6:6:1.

3 MATRIX ARITHMETIC

1. (e)
$$\begin{pmatrix} 8 & -15 & 11 \\ 0 & -4 & -3 \\ -1 & -6 & 6 \end{pmatrix}$$

$$(g) \begin{pmatrix} 5 & -10 & 15 \\ 5 & -1 & 4 \\ 8 & -9 & 6 \end{pmatrix}$$
2. (d) $\begin{pmatrix} 36 & 10 & 56 \\ 10 & 3 & 16 \end{pmatrix}$
5. (a) $5A = \begin{pmatrix} 15 & 20 \\ 5 & 5 \\ 10 & 35 \end{pmatrix}$
 $2A + 3A = \begin{pmatrix} 6 & 8 \\ 2 & 2 \\ 4 & 14 \end{pmatrix} + \begin{pmatrix} 9 & 12 \\ 3 & 3 \\ 6 & 21 \end{pmatrix} = \begin{pmatrix} 15 & 20 \\ 5 & 5 \\ 10 & 35 \end{pmatrix}$
(b) $6A = \begin{pmatrix} 18 & 24 \\ 6 & 6 \\ 12 & 42 \end{pmatrix}$
 $3(2A) = 3 \begin{pmatrix} 6 & 8 \\ 2 & 2 \\ 4 & 14 \end{pmatrix} = \begin{pmatrix} 18 & 24 \\ 6 & 6 \\ 12 & 42 \end{pmatrix}$
(c) $A^{T} = \begin{pmatrix} 3 & 1 & 2 \\ 4 & 1 & 7 \end{pmatrix}^{T} = \begin{pmatrix} 3 & 4 \\ 1 & 1 \\ 2 & 7 \end{pmatrix} = A$
(b) $3(A + B) = 3 \begin{pmatrix} 5 & 4 & 6 \\ 0 & 5 & 1 \end{pmatrix} = B + A$
(b) $3(A + B) = 3 \begin{pmatrix} 5 & 4 & 6 \\ 0 & 5 & 1 \end{pmatrix} = B + A$
(c) $(A + B)^{T} = \begin{pmatrix} 12 & 3 & 18 \\ 6 & 9 & 15 \end{pmatrix} + \begin{pmatrix} 3 & 9 & 0 \\ -6 & 6 & -12 \end{pmatrix}$
 $= \begin{pmatrix} 15 & 12 & 18 \\ 0 & 15 & 3 \end{pmatrix}$
(c) $(A + B)^{T} = \begin{pmatrix} 5 & 4 & 6 \\ 0 & 5 & 1 \end{pmatrix}^{T} = \begin{pmatrix} 5 & 0 \\ 4 & 5 \\ 0 & 5 & 1 \end{pmatrix}^{T} = \begin{pmatrix} 5 & 0 \\ 4 & 5 \\ 6 & 1 \end{pmatrix}$

$$A^{T} + B^{T} = \begin{pmatrix} 4 & 2 \\ 1 & 3 \\ 6 & 5 \end{pmatrix} + \begin{pmatrix} 1 & -2 \\ 3 & 2 \\ 0 & -4 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 4 & 5 \\ 6 & 1 \end{pmatrix}$$

7. (a) $3(AB) = 3 \begin{pmatrix} 5 & 14 \\ 15 & 42 \\ 0 & 16 \end{pmatrix} = \begin{pmatrix} 15 & 42 \\ 45 & 126 \\ 0 & 48 \end{pmatrix}$
 $(3A)B = \begin{pmatrix} 6 & 3 \\ 18 & 9 \\ -6 & 12 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 1 & 6 \end{pmatrix} = \begin{pmatrix} 15 & 42 \\ 45 & 126 \\ 0 & 48 \end{pmatrix}$
 $A(3B) = \begin{pmatrix} 2 & 1 \\ 6 & 3 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 6 & 12 \\ 3 & 18 \end{pmatrix} = \begin{pmatrix} 15 & 42 \\ 45 & 126 \\ 0 & 48 \end{pmatrix}$
(b) $(AB)^{T} = \begin{pmatrix} 5 & 14 \\ 15 & 42 \\ 0 & 16 \end{pmatrix}^{T} = \begin{pmatrix} 5 & 15 & 0 \\ 14 & 42 & 16 \end{pmatrix}$
 $B^{T}A^{T} = \begin{pmatrix} 2 & 1 \\ 4 & 6 \end{pmatrix} \begin{pmatrix} 2 & 6 & -2 \\ 1 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 15 & 0 \\ 14 & 42 & 16 \end{pmatrix}$

8. (a)
$$(A+B)+C = \begin{pmatrix} 0 & 5 \\ 1 & 7 \end{pmatrix} + \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 3 & 8 \end{pmatrix}$$

 $A + (B+C) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 3 & 8 \end{pmatrix}$
(b) $(AB)C = \begin{pmatrix} -4 & 18 \\ -2 & 13 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 24 & 14 \\ 20 & 11 \end{pmatrix}$
 $A(BC) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} -4 & -1 \\ 8 & 4 \end{pmatrix} = \begin{pmatrix} 24 & 14 \\ 20 & 11 \end{pmatrix}$
(c) $A(B+C) = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 10 & 24 \\ 7 & 17 \end{pmatrix}$
 $AB + AC = \begin{pmatrix} -4 & 18 \\ -2 & 13 \end{pmatrix} + \begin{pmatrix} 14 & 6 \\ 9 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 24 \\ 7 & 17 \end{pmatrix}$
(d) $(A+B)C = \begin{pmatrix} 0 & 5 \\ 1 & 7 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 5 \\ 17 & 8 \end{pmatrix}$
 $AC + BC = \begin{pmatrix} 14 & 6 \\ 9 & 4 \end{pmatrix} + \begin{pmatrix} -4 & -1 \\ 8 & 4 \end{pmatrix} = \begin{pmatrix} 10 & 5 \\ 17 & 8 \end{pmatrix}$

9. (b) x = (2,1)^T is a solution since b = 2a₁ + a₂. There are no other solutions since the echelon form of A is strictly triangular.
(c) The solution to Ax = c is x = (-⁵/₂, -¹/₄)^T. Therefore c = -⁵/₂a₁ - ¹/₄a₂.

Copyright ©2020 Pearson Education, Inc.

11. The given information implies that

$$\mathbf{x}_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \quad \text{and} \quad \mathbf{x}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

are both solutions to the system. So the system is consistent and since there is more than one solution, the row echelon form of A must involve a free variable. A consistent system with a free variable has infinitely many solutions.

- 12. The system is consistent since $\mathbf{x} = (1, 1, 1, 1)^T$ is a solution. The system can have at most 3 lead variables since A only has 3 rows. Therefore, there must be at least one free variable. A consistent system with a free variable has infinitely many solutions.
- 13. (a) It follows from the reduced row echelon form that the free variables are x_2 , x_4 , x_5 . If we set $x_2 = a$, $x_4 = b$, $x_5 = c$, then

$$x_1 = -2 - 2a - 3b - c$$

$$x_3 = 5 - 2b - 4c$$

and hence the solution consists of all vectors of the form

$$\mathbf{x} = (-2 - 2a - 3b - c, a, 5 - 2b - 4c, b, c)^T$$

(b) If we set the free variables equal to 0, then $\mathbf{x}_0 = (-2, 0, 5, 0, 0)^T$ is a solution to $A\mathbf{x} = \mathbf{b}$ and hence

$$\mathbf{b} = A\mathbf{x}_0 = -2\mathbf{a}_1 + 5\mathbf{a}_3 = (8, -7, -1, 7)^T$$

14. If w_3 is the weight given to professional activities, then the weights for research and teaching should be $w_1 = 3w_3$ and $w_2 = 2w_3$. Note that

$$1.5w_2 = 3w_3 = w_1$$

so the weight given to research is 1.5 times the weight given to teaching. Since the weights must all add up to 1, we have

$$1 = w_1 + w_2 + w_3 = 3w_3 + 2w_3 + w_3 = 6w_3$$

and hence it follows that $w_3 = \frac{1}{6}$, $w_2 = \frac{1}{3}$, $w_1 = \frac{1}{2}$. If C is the matrix in the example problem from the Analytic Hierarchy Process Application, then the rating vector **r** is computed by multiplying C times the weight vector **w**.

$$\mathbf{r} = C\mathbf{w} = \begin{pmatrix} \frac{1}{2} & \frac{1}{5} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{10} & \frac{1}{4} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{6} \end{pmatrix} = \begin{pmatrix} \frac{43}{120} \\ \frac{45}{120} \\ \frac{32}{120} \\ \frac{32}{120} \end{pmatrix}$$

- **15.** A^T is an $n \times m$ matrix. Since A^T has m columns and A has m rows, the multiplication $A^T A$ is possible. The multiplication AA^T is possible since A has n columns and A^T has n rows.
- 16. If A is skew-symmetric, then $A^T = -A$. Since the (j, j) entry of A^T is a_{jj} and the (j, j) entry of -A is $-a_{jj}$, it follows that $a_{jj} = -a_{jj}$ for each j and hence the diagonal entries of A must all be 0.
- 17. The search vector is $\mathbf{x} = (1, 0, 1, 0, 1, 0)^T$. The search result is given by the vector

$$\mathbf{y} = A^T \mathbf{x} = (1, 2, 2, 1, 1, 2, 1)^T$$

7

The *i*th entry of **y** is equal to the number of search words in the title of the *i*th book. **18.** If $\alpha = a_{21}/a_{11}$, then

$$\left(\begin{array}{cc}1&0\\\alpha&1\end{array}\right)\left(\begin{array}{cc}a_{11}&a_{12}\\0&b\end{array}\right)=\left(\begin{array}{cc}a_{11}&a_{12}\\\alpha a_{11}&\alpha a_{12}+b\end{array}\right)=\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&\alpha a_{12}+b\end{array}\right)$$

The product will equal A provided

$$\alpha a_{12} + b = a_{22}$$

Thus we must choose

$$b = a_{22} - \alpha a_{12} = a_{22} - \frac{a_{21}a_{12}}{a_{11}}$$

4 MATRIX ALGEBRA

1. (a) $(A+B)^2 = (A+B)(A+B) = (A+B)A + (A+B)B = A^2 + BA + AB + B^2$ For real numbers, ab + ba = 2ab; however, with matrices AB + BA is generally not equal to 2AB.

(b)

$$(A+B)(A-B) = (A+B)(A-B)$$

= $(A+B)A - (A+B)B$
= $A^2 + BA - AB - B^2$

For real numbers, ab - ba = 0; however, with matrices AB - BA is generally not equal to O.

2. If we replace a by A and b by the identity matrix, I, then both rules will work, since

$$(A+I)^{2} = A^{2} + IA + AI + B^{2} = A^{2} + AI + AI + B^{2} = A^{2} + 2AI + B^{2}$$

and

$$(A + I)(A - I) = A^{2} + IA - AI - I^{2} = A^{2} + A - A - I^{2} = A^{2} - I^{2}$$

3. There are many possible choices for A and B. For example, one could choose

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

More generally if

$$A = \left(\begin{array}{cc} a & b \\ ca & cb \end{array}\right) \qquad B = \left(\begin{array}{cc} db & eb \\ -da & -ea \end{array}\right)$$

then AB = O for any choice of the scalars a, b, c, d, e.

4. To construct nonzero matrices A, B, C with the desired properties, first find nonzero matrices C and D such that DC = O (see Exercise 3). Next, for any nonzero matrix A, set B = A + D. It follows that

$$BC = (A + D)C = AC + DC = AC + O = AC$$

5. A 2×2 symmetric matrix is one of the form

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array} \right)$$

Thus

$$A^{2} = \begin{pmatrix} a^{2} + b^{2} & ab + bc \\ ab + bc & b^{2} + c^{2} \end{pmatrix}$$

If $A^2 = O$, then its diagonal entries must be 0.

$$a^2 + b^2 = 0$$
 and $b^2 + c^2 = 0$

Thus a = b = c = 0 and hence A = O.

6. Let

$$D = (AB)C = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$$

It follows that

$$d_{11} = (a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}$$

$$= a_{11}b_{11}c_{11} + a_{12}b_{21}c_{11} + a_{11}b_{12}c_{21} + a_{12}b_{22}c_{21}$$

$$d_{12} = (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22}$$

$$= a_{11}b_{11}c_{12} + a_{12}b_{21}c_{12} + a_{11}b_{12}c_{22} + a_{12}b_{22}c_{22}$$

$$d_{21} = (a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}$$

$$= a_{21}b_{11}c_{11} + a_{22}b_{21}c_{11} + a_{21}b_{12}c_{21} + a_{22}b_{22}c_{21}$$

$$d_{22} = (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22}$$

$$= a_{21}b_{11}c_{12} + a_{22}b_{21}c_{12} + a_{21}b_{12}c_{22} + a_{22}b_{22}c_{22}$$

If we set

$$E = A(BC) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\ b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22} \end{pmatrix}$$

then it follows that

$$e_{11} = a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})$$

$$= a_{11}b_{11}c_{11} + a_{11}b_{12}c_{21} + a_{12}b_{21}c_{11} + a_{12}b_{22}c_{21}$$

$$e_{12} = a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22})$$

$$= a_{11}b_{11}c_{12} + a_{11}b_{12}c_{22} + a_{12}b_{21}c_{12} + a_{12}b_{22}c_{22}$$

$$e_{21} = a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})$$

$$= a_{21}b_{11}c_{11} + a_{21}b_{12}c_{21} + a_{22}b_{21}c_{11} + a_{22}b_{22}c_{21}$$

$$e_{22} = a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22})$$

$$= a_{21}b_{11}c_{12} + a_{21}b_{12}c_{22} + a_{22}b_{21}c_{12} + a_{22}b_{22}c_{22}$$

Thus

$$d_{11} = e_{11}$$
 $d_{12} = e_{12}$ $d_{21} = e_{21}$ $d_{22} = e_{22}$

and hence

$$(AB)C = D = E = A(BC)$$

9.

and $A^4 = O$. If n > 4, then

$$A^{n} = A^{n-4}A^{4} = A^{n-4}O = O$$

9

10. (a) The matrix C is symmetric since

$$C^{T} = (A + B)^{T} = A^{T} + B^{T} = A + B = C$$

(b) The matrix D is symmetric since

$$D^T = (AA)^T = A^T A^T = A^2 = D$$

(c) The matrix E = AB is not symmetric since

$$E^T = (AB)^T = B^T A^T = BA$$

and in general, $AB \neq BA$.

(d) The matrix F is symmetric since

$$F^T = (ABA)^T = A^T B^T A^T = ABA = F$$

(e) The matrix G is symmetric since

$$G^{T} = (AB + BA)^{T} = (AB)^{T} + (BA)^{T} = B^{T}A^{T} + A^{T}B^{T} = BA + AB = G$$

(f) The matrix H is not symmetric since

$$H^{T} = (AB - BA)^{T} = (AB)^{T} - (BA)^{T} = B^{T}A^{T} - A^{T}B^{T} = BA - AB = -H$$

11. (a) The matrix A is symmetric since

$$A^{T} = (C + C^{T})^{T} = C^{T} + (C^{T})^{T} = C^{T} + C = A$$

(b) The matrix B is not symmetric since

$$B^{T} = (C - C^{T})^{T} = C^{T} - (C^{T})^{T} = C^{T} - C = -B$$

(c) The matrix D is symmetric since

$$A^T = (C^T C)^T = C^T (C^T)^T = C^T C = D$$

(d) The matrix E is symmetric since

$$E^{T} = (C^{T}C - CC^{T})^{T} = (C^{T}C)^{T} - (CC^{T})^{T}$$

= $C^{T}(C^{T})^{T} - (C^{T})^{T}C^{T} = C^{T}C - CC^{T} = E$

(e) The matrix F is symmetric since

$$F^{T} = ((I+C)(I+C^{T}))^{T} = (I+C^{T})^{T}(I+C)^{T} = (I+C)(I+C^{T}) = F$$

(e) The matrix G is not symmetric.

$$F = (I+C)(I-C^{T}) = I + C - C^{T} - CC^{T}$$

$$F^{T} = ((I+C)(I-C^{T}))^{T} = (I-C^{T})^{T}(I+C)^{T}$$

$$= (I-C)(I+C^{T}) = I - C + C^{T} - CC^{T}$$

F and F^T are not the same. The two middle terms $C - C^T$ and $-C + C^T$ do not agree. 12. If $d = a_{11}a_{22} - a_{21}a_{12} \neq 0$, then

$$\frac{1}{d} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} \frac{a_{11}a_{22} - a_{12}a_{21}}{d} & 0 \\ 0 & \frac{a_{11}a_{22} - a_{12}a_{21}}{d} \end{pmatrix} = I$$
$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{bmatrix} \frac{1}{d} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} \frac{a_{11}a_{22} - a_{12}a_{21}}{d} & 0 \\ 0 & \frac{a_{11}a_{22} - a_{12}a_{21}}{d} \end{pmatrix} = I$$

Therefore

$$\frac{1}{d} \left(\begin{array}{cc} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{array} \right) = A^{-1}$$

13. (b)
$$\begin{pmatrix} -3 & 5 \\ 2 & -3 \end{pmatrix}$$

14. If A were nonsingular and AB = A, then it would follow that $A^{-1}AB = A^{-1}A$ and hence that B = I. So if $B \neq I$, then A must be singular.

15. Since

$$A^{-1}A = AA^{-1} = I$$

it follows from the definition that A^{-1} is nonsingular and its inverse is A. **16.** Since

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I$$
$$(A^{-1})^{T}A^{T} = (AA^{-1})^{T} = I$$

it follows that

$$(A^{-1})^T = (A^T)^{-1}$$

17. If $A\mathbf{x} = A\mathbf{y}$ and $\mathbf{x} \neq \mathbf{y}$, then A must be singular, for if A were nonsingular, then we could multiply by A^{-1} and get

$$A^{-1}A\mathbf{x} = A^{-1}A\mathbf{y}$$
$$\mathbf{x} = \mathbf{y}$$

18. For m = 1,

 $(A^1)^{-1} = A^{-1} = (A^{-1})^1$

Assume the result holds in the case m = k, that is,

$$(A^k)^{-1} = (A^{-1})^k$$

It follows that

$$(A^{-1})^{k+1}A^{k+1} = A^{-1}(A^{-1})^k A^k A = A^{-1}A =$$

Ι

and

$$A^{k+1}(A^{-1})^{k+1} = AA^k(A^{-1})^k A^{-1} = AA^{-1} = I$$

Therefore

$$(A^{-1})^{k+1} = (A^{k+1})^{-1}$$

and the result follows by mathematical induction.

19. If $A^2 = O$, then

$$(I + A)(I - A) = I + A - A + A^{2} = I$$

and

$$(I - A)(I + A) = I - A + A + A^{2} = I$$

Therefore I - A is nonsingular and $(I - A)^{-1} = I + A$.

20. If $A^{k+1} = O$, then

$$(I + A + \dots + A^k)(I - A) = (I + A + \dots + A^k) - (A + A^2 + \dots + A^{k+1})$$

= $I - A^{k+1} = I$

and

$$(I - A)(I + A + \dots + A^k) = (I + A + \dots + A^k) - (A + A^2 + \dots + A^{k+1})$$

= $I - A^{k+1} = I$

10