
Exercise 2.2.1a 

 

For relation Accounts, the attributes are: 

 

 acctNo, type, balance 

 

For relation Customers, the attributes are: 

 

 firstName, lastName, idNo, account 

 

Exercise 2.2.1b 

 

For relation Accounts, the tuples are: 

 

 (12345, savings, 12000), 

 (23456, checking, 1000), 

 (34567, savings, 25) 

 

For relation Customers, the tuples are: 

 

 (Robbie, Banks, 901-222, 12345), 

 (Lena, Hand, 805-333, 12345), 

 (Lena, Hand, 805-333, 23456) 

 

Exercise 2.2.1c 

 

For relation Accounts and the first tuple, the components are: 

 

 123456 → acctNo 

 savings → type 

 12000 → balance 

 

For relation Customers and the first tuple, the components are: 

 

 Robbie → firstName 

 Banks → lastName 

 901-222 → idNo 

 12345 → account 

 

Exercise 2.2.1d 

 

For relation Accounts, a relation schema is: 

 

 Accounts(acctNo, type, balance) 

 

 



For relation Customers, a relation schema is: 

 

 Customers(firstName, lastName, idNo, account) 

 

Exercise 2.2.1e 

 

An example database schema is: 

 

Accounts ( 

 acctNo, 

 type, 

 balance 

) 

Customers ( 

 firstName, 

 lastName, 

 idNo, 

 account 

) 

 

Exercise 2.2.1f 

 

A suitable domain for each attribute: 

 

 acctNo → Integer 

 type → String 

 balance → Integer 

 firstName → String 

 lastName → String 

 idNo → String (because there is a hyphen we cannot use Integer) 

 account → Integer 

 

Exercise 2.2.1g 

 

Another equivalent way to present the Account relation: 

 

acctNo balance type 

34567 25 savings 

23456 1000 checking 

12345 12000 savings 

 

 

 

 

 

 



Another equivalent way to present the Customers relation: 

 

idNo firstName lastName account 

805-333 Lena Hand 23456 

805-333 Lena Hand 12345 

901-222 Robbie Banks 12345 

 

Exercise 2.2.2 

 

Examples of attributes that are created for primarily serving as keys in a relation: 

 

Universal Product Code (UPC) used widely in United States and Canada to track products in 

stores. 

 

Serial Numbers on a wide variety of products to allow the manufacturer to individually track 

each product. 

 

Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry 

to identify vehicles. 

 

Exercise 2.2.3a 

 

We can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of 

3! = 6 ways. Thus, the number of presentations is 6*6 = 36. 

 

Exercise 2.2.3b 

 

We can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any 

of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880 

 

Exercise 2.2.3c 

 

We can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n! 

ways. Thus, the number of presentations is n!m! 

 

Exercise 2.3.1a 

 

CREATE TABLE Product ( 

 maker CHAR(30), 

 model CHAR(10) PRIMARY KEY, 

 type CHAR(15) 

); 

 

Exercise 2.3.1b 

 

CREATE TABLE PC ( 



 model CHAR(30), 

 speed DECIMAL(4,2), 

 ram INTEGER, 

 hd INTEGER, 

 price DECIMAL(7,2) 

); 

 

Exercise 2.3.1c 

 

CREATE TABLE Laptop ( 

 model CHAR(30), 

 speed DECIMAL(4,2), 

 ram INTEGER, 

 hd INTEGER, 

 screen DECIMAL(3,1), 

 price DECIMAL(7,2) 

); 

 

Exercise 2.3.1d 

 

CREATE TABLE Printer ( 

 model CHAR(30), 

 color BOOLEAN, 

 type CHAR (10), 

 price DECIMAL(7,2) 

); 

 

Exercise 2.3.1e 

 

ALTER TABLE Printer DROP color; 

 

Exercise 2.3.1f 

 

ALTER TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’; 

 

Exercise 2.3.2a 

 

CREATE TABLE Classes ( 

 class CHAR(20), 

 type CHAR(5), 

 country CHAR(20), 

 numGuns INTEGER, 

 bore DECIMAL(3,1), 

 displacement INTEGER 

); 

 



Exercise 2.3.2b 

 

CREATE TABLE Ships ( 

 name CHAR(30), 

 class CHAR(20), 

 launched INTEGER 

); 

 

Exercise 2.3.2c 

 

CREATE TABLE Battles ( 

 name CHAR(30), 

 date DATE 

); 

 

Exercise 2.3.2d 

 

CREATE TABLE Outcomes ( 

 ship CHAR(30), 

 battle CHAR(30), 

 result CHAR(10) 

); 

 

Exercise 2.3.2e 

 

ALTER TABLE Classes DROP bore; 

 

Exercise 2.3.2f 

 

ALTER TABLE Ships ADD yard CHAR(30); 

 

Exercise 2.4.1a 

  

 R1 := σspeed ≥ 3.00 (PC) 

R2 := πmodel(R1) 

 
 

 

 

 

 

Exercise 2.4.1b 

 

 R1 := σhd ≥ 100 (Laptop) 

R2 := Product  (R1) 

R3 := πmaker (R2) 

model 

1005 

1006 

1013 



  

 

 

 

 

 

 

 

Exercise 2.4.1c 

 

 R1 := σmaker=B (Product  PC) 

R2 := σmaker=B (Product  Laptop) 

R3 := σmaker=B (Product  Printer) 

R4 := πmodel,price (R1) 

R5 := πmodel,price (R2) 

R6: = πmodel,price (R3) 

R7 := R4  R5  R6 

 

model price 

1004 649 

1005 630 

1006 1049 

2007 1429 

 

Exercise 2.4.1d 

  

 R1 := σcolor = true AND type = laser (Printer) 

R2 := πmodel (R1) 

  

  

 

 

 

Exercise 2.4.1e 

  

 R1 := σtype=laptop (Product) 

R2 := σtype=PC(Product) 

R3 := πmaker(R1) 

R4 := πmaker(R2) 

R5 := R3 – R4 

  

 
 

 

 

Exercise 2.4.1f 

maker 

E 

A 

B 

F 

G 

model 

3003 

3007 

maker 

F 

G 



 

 R1 := ρPC1(PC) 

 R2 := ρPC2(PC) 

 R3 := R1  (PC1.hd = PC2.hd AND PC1.model <> PC2.model) R2 

 R4 := πhd(R3) 

  

 

 

 

 

 

Exercise 2.4.1g 

 

 R1 := ρPC1(PC) 

 R2 := ρPC2(PC) 

 R3 := R1  (PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model) R2 

 R4 := πPC1.model,PC2.model(R3) 

  

 

 

 

Exercise 2.4.1h 

 

 R1 := πmodel(σspeed ≥ 2.80(PC))  πmodel(σspeed ≥ 2.80(Laptop)) 

 R2 := πmaker,model(R1  Product) 

 R3 := ρR3(maker2,model2)(R2) 

R4 := R2  (maker = maker2 AND model <> model2) R3 

R5 := πmaker(R4) 

 

 

 

 

 

Exercise 2.4.1i  

 

 R1 := πmodel,speed(PC) 

 R2 := πmodel,speed(Laptop) 

 R3 := R1  R2 

 R4 := ρR4(model2,speed2)(R3) 

R5 := πmodel,speed (R3  (speed < speed2 ) R4) 

R6 := R3 – R5 

R7 := πmaker(R6  Product) 

maker 

B 

 

Exercise 2.4.1j 

hd 

250 

80 

160 

PC1.model PC2.model 

1004 1012 

maker 

B 

E 



 

 R1 := πmaker,speed(Product  PC) 

 R2 := ρR2(maker2,speed2)(R1) 

 R3 := ρR3(maker3,speed3)(R1) 

 R4 := R1  (maker = maker2 AND speed <> speed2) R2 

R5 := R4  (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3 

R6 := πmaker(R5) 

 

  

 

 

 

 

Exercise 2.4.1k 

 

 R1 := πmaker,model(Product  PC) 

 R2 := ρR2(maker2,model2)(R1) 

 R3 := ρR3(maker3,model3)(R1) 

 R4 := ρR4(maker4,model4)(R1) 

 R5 := R1  (maker = maker2 AND model <> model2) R2 

 R6 := R3  (maker3 = maker AND model3 <> model2 AND model3 <> model) R5 

 R7 := R4  (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6 

 R8 := πmaker(R7) 

  

  

 

 

 

 

 

Exercise 2.4.2a 

 

πmodel

σspeed≥3.00

PC
 

 

Exercise 2.4.2b 

 

maker 

A 

D 

E 

maker 

A 

B 

D 

E 



Laptop

σhd ≥ 100 Product

πmaker

 
 

Exercise 2.4.2c 

 

σmaker=B 

πmodel,price 

σmaker=B 

πmodel,price 

σmaker=B 

πmodel,price 

Product PCLaptopPrinter ProductProduct
 

 

Exercise 2.4.2d 

Printer

σcolor = true AND type = laser 

 πmodel 

 



Exercise 2.4.2e 

 

σtype=laptopσtype=PC

πmakerπmaker

–

Product Product
 

 

Exercise 2.4.2f 

 

ρPC1ρPC2

 (PC1.hd = PC2.hd AND PC1.model <> PC2.model) 

πhd

PCPC
 

 

Exercise 2.4.2g 

 

ρPC1ρPC2

PCPC

(PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model)

πPC1.model,PC2.model

 



Exercise 2.4.2h 

 

PC Laptop

σspeed ≥ 2.80σspeed ≥ 2.80

πmodel πmodel

Product

πmaker,model

ρR3(maker2,model2)

(maker = maker2 AND model <> model2)

πmaker

 
 

Exercise 2.4.2i 

 



PC Laptop

Product

πmodel,speedπmodel,speed

ρR4(model2,speed2)

πmodel,speed 

(speed < speed2 )

–

πmaker

 
 

Exercise 2.4.2j 

 



Product PC

πmaker,speed

ρR3(maker3,speed3)ρR2(maker2,speed2)

(maker = maker2 AND speed <> speed2)

(maker3 = maker AND speed3 <> speed2 AND speed3 <> speed)

πmaker

 
 

Exercise 2.4.2k 

 



Product PC

πmaker,model

ρR2(maker2,model2) ρR3(maker3,model3) ρR4(maker4,model4)

(maker = maker2 AND model <> model2)

(maker3 = maker AND model3 <> model2 AND model3 <> model)

(maker4 = maker AND (model4=model OR model4=model2 OR model4=model3))

πmaker

 
 

Exercise 2.4.3a 

 

 R1 := σbore ≥ 16 (Classes) 

R2 := πclass,country (R1) 

 

class country 

Iowa USA 

North Carolina USA 

Yamato Japan 

 

Exercise 2.4.3b 

 



 R1 := σlaunched < 1921 (Ships) 

R2 := πname (R1) 

 

name 

Haruna 

Hiei 

Kirishima 

Kongo 

Ramillies 

Renown 

Repulse 

Resolution 

Revenge 

Royal Oak 

Royal Sovereign 

Tennessee 

 

Exercise 2.4.3c 

 

 R1 := σbattle=Denmark Strait AND result=sunk(Outcomes)  

R2 := πship (R1) 

 

ship 

Bismarck 

Hood 

 

Exercise 2.4.3d 

 

 R1 := Classes  Ships 

R2 := σlaunched > 1921 AND displacement > 35000 (R1) 

R3 := πname (R2) 

  

name 

Iowa 

Missouri 

Musashi 

New Jersey 

North Carolina 

Washington 

Wisconsin 

Yamato 

 

Exercise 2.4.3e 

 

 R1 := σbattle=Guadalcanal(Outcomes) 



 R2 := Ships  (ship=name) R1 

 R3 := Classes  R2 

R4 := πname,displacement,numGuns(R3) 

 

name displacement numGuns 

Kirishima 32000 8 

Washington 37000 9 

 

Exercise 2.4.3f 

 

 R1 := πname(Ships) 

 R2 := πship(Outcomes) 

 R3 := ρR3(name)(R2) 

 R4 := R1  R3 

name 

California 

Haruna 

Hiei 

Iowa 

Kirishima 

Kongo 

Missouri 

Musashi 

New Jersey 

North Carolina 

Ramillies 

Renown 

Repulse 

Resolution 

Revenge 

Royal Oak 

Royal Sovereign 

Tennessee 

Washington 

Wisconsin 

Yamato 

Arizona 

Bismarck 

Duke of York 

Fuso 

Hood 

King George V 

Prince of Wales 

Rodney 

Scharnhorst 



 

 

 

 

 

 

Exercise 2.4.3g 

 

 From 2.3.2, assuming that every class has one ship named after the class. 

 

 R1 := πclass(Classes) 

 R2 := πclass(σname <> class(Ships)) 

 R3 := R1 – R2 

 

 

 

Exercise 2.4.3h 

 

 R1 := πcountry(σtype=bb(Classes)) 

 R2 := πcountry(σtype=bc(Classes)) 

 R3 := R1 ∩ R2 

 

  

 

  

 

Exercise 2.4.3i 

 

 R1 := πship,result,date(Battles  (battle=name) Outcomes) 

 R2 := ρR2(ship2,result2,date2)(R1) 

 R3 := R1  (ship=ship2 AND result=damaged AND date < date2) R2 

 R4 := πship(R3) 

 

 No results from sample data. 

 

Exercise 2.4.4a 

 

σbore ≥ 16 

πclass,country 

Classes
 

South Dakota 

West Virginia 

Yamashiro 

class 

Bismarck 

country 

Japan 

Gt. Britain 



 

Exercise 2.4.4b 

 

σlaunched < 1921 

πname

Ships
 

 

Exercise 2.4.4c 

 

Outcomes

πship 

σbattle=Denmark Strait AND result=sunk

 
 

Exercise 2.4.4d 

 

Classes Ships

σlaunched > 1921 AND displacement > 35000

πname

 
 

Exercise 2.4.4e 

 



σbattle=Guadalcanal

Outcomes

Ships

Classes(ship=name)

πname,displacement,numGuns

 
 

Exercise 2.4.4f 

 

Ships

Outcomes

πname

πship

ρR3(name)

 
 

Exercise 2.4.4g 

 

Classes

Ships

πclass

σname <> class

πclass

–

 



 

Exercise 2.4.4h 

 

ClassesClasses

σtype=bb σtype=bc

πcountry πcountry

∩

 
 

Exercise 2.4.4i 

 

Battles Outcomes

(battle=name)

πship,result,date

ρR2(ship2,result2,date2)

(ship=ship2 AND result=damaged AND date < date2)

πship

 
 

Exercise 2.4.5 

 

The result of the natural join has only one attribute from each pair of equated attributes. On the 

other hand, the result of the theta-join has both columns of the attributes and their values are 

identical. 

 

Exercise 2.4.6 

 



Union 

If we add a tuple to the arguments of the union operator, we will get all of the tuples of 

the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then 

the set behavior will eliminate that tuple. Thus the union operator is monotone. 

 

Intersection 

If we add a tuple to the arguments of the intersection operator, we will get all of the 

tuples of the original result and maybe the added tuple. If the added tuple does not exist 

in the relation that it is added but does exist in the other relation, then the result set will 

include the added tuple. Thus the intersection operator is monotone. 

 

Difference 

If we add a tuple to the arguments of the difference operator, we may not get all of the 

tuples of the original result. Suppose we have relations R and S and we are computing R 

– S. Suppose also that tuple t is in R but not in S. The result of R – S would include tuple 

t. However, if we add tuple t to S, then the new result will not have tuple t. Thus the 

difference operator is not monotone. 

 

Projection 

If we add a tuple to the arguments of the projection operator, we will get all of the tuples 

of the original result and the projection of the added tuple. The projection operator only 

selects columns from the relation and does not affect the rows that are selected. Thus the 

projection operator is monotone. 

 

Selection 

If we add a tuple to the arguments of the selection operator, we will get all of the tuples 

of the original result and maybe the added tuple. If the added tuple satisfies the select 

condition, then it will be added to the new result. The original tuples are included in the 

new result because they still satisfy the select condition. Thus the selection operator is 

monotone. 

 

Cartesian Product 

If we add a tuple to the arguments of the Cartesian product operator, we will get all of the 

tuples of the original result and possibly additional tuples. The Cartesian product pairs the 

tuples of one relation with the tuples of another relation. Suppose that we are calculating 

R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already 

in R, then we expect the result of R x S to have (m + 1) * n tuples. Thus the Cartesian 

product operator is monotone. 

 

Natural Joins 

If we add a tuple to the arguments of a natural join operator, we will get all of the tuples 

of the original result and possibly additional tuples. The new tuple can only create 

additional successful joins, not less. If, however, the added tuple cannot successfully join 

with any of the existing tuples, then we will have zero additional successful joins. Thus 

the natural join operator is monotone. 

 



Theta Joins 

If we add a tuple to the arguments of a theta join operator, we will get all of the tuples of 

the original result and possibly additional tuples. The theta join can be modeled by a 

Cartesian product followed by a selection on some condition. The new tuple can only 

create additional tuples in the result, not less. If, however, the added tuple does not satisfy 

the select condition, then no additional tuples will be added to the result. Thus the theta 

join operator is monotone. 

 

Renaming 

If we add a tuple to the arguments of a renaming operator, we will get all of the tuples of 

the original result and the added tuple. The renaming operator does not have any effect on 

whether a tuple is selected or not. In fact, the renaming operator will always return as 

many tuples as its argument. Thus the renaming operator is monotone. 

 

Exercise 2.4.7a 

 

If all the tuples of R and S are different, then the union has n + m tuples, and this number is the 

maximum possible. 

The minimum number of tuples that can appear in the result occurs if every tuple of one relation 

also appears in the other. Then the union has max(m , n) tuples.  

Exercise 2.4.7b 

 

If all the tuples in one relation can pair successfully with all the tuples in the other relation, then 

the natural join has n * m tuples. This number would be the maximum possible. 

 

The minimum number of tuples that can appear in the result occurs if none of the tuples of one 

relation can pair successfully with all the tuples in the other relation. Then the natural join has 

zero tuples. 

 

Exercise 2.4.7c 

 

If the condition C brings back all the tuples of R, then the cross product will contain n * m tuples. 

This number would be the maximum possible. 

 

The minimum number of tuples that can appear in the result occurs if the condition C brings 

back none of the tuples of R. Then the cross product has zero tuples. 

 

Exercise 2.4.7d 

 

Assuming that the list of attributes L makes the resulting relation πL(R) and relation S schema 

compatible, then the maximum possible tuples is n. This happens when all of the tuples of πL(R) 

are not in S. 

 



The minimum number of tuples that can appear in the result occurs when all of the tuples in 

πL(R) appear in S. Then the difference has max(n – m , 0) tuples.  

 

Exercise 2.4.8 

 

Defining r as the schema of R and s as the schema of S: 

 

1. πr(R  S) 

 

2. R  δ(πr∩s(S)) where δ is the duplicate-elimination operator in Section 5.2 pg. 213 

 

3. R – (R – πr(R  S)) 

 

Exercise 2.4.9 

 

Defining r as the schema of R 

 

1. R - πr(R  S) 

 

Exercise 2.4.10 

 

πA1,A2…An(R  S) 

 

Exercise 2.5.1a 

 

σspeed < 2.00 AND price > 500(PC) = ø 

 

Model 1011 violates this constraint. 

 

Exercise 2.5.1b 

 

σscreen < 15.4 AND hd < 100 AND price ≥ 1000(Laptop) = ø 

 

Model 2004 violates the constraint. 

 

Exercise 2.5.1c 

 

πmaker(σtype = laptop(Product)) ∩ πmaker(σtype = pc(Product)) = ø 

 

Manufacturers A,B,E violate the constraint. 

 

Exercise 2.5.1d 

 

This complex expression is best seen as a sequence of steps in which we define temporary 

relations R1 through R4 that stand for nodes of expression trees. Here is the sequence: 

 
    R1(maker, model, speed) := πmaker,model,speed(Product  PC) 



     R2(maker, speed) := πmaker,speed(Product  Laptop) 

     R3(model) := πmodel(R1  R1.maker = R2.maker AND R1.speed ≤ R2.speed R2) 

     R4(model) := πmodel(PC) 

 

The constraint is R4 ⊆ R3 

Manufacturers B,C,D violate the constraint. 

 

Exercise 2.5.1e 

 

πmodel(σLaptop.ram > PC.ram AND Laptop.price ≤ PC.price(PC × Laptop)) = ø 

 

Models 2002,2006,2008 violate the constraint. 

 

Exercise 2.5.2a 

 

πclass(σbore > 16(Classes)) = ø 

 

The Yamato class violates the constraint. 

 

Exercise 2.5.2b 

 

πclass(σnumGuns > 9 AND bore > 14(Classes)) = ø 

 

No violations to the constraint. 

 

Exercise 2.5.2c 

 

This complex expression is best seen as a sequence of steps in which we define temporary 

relations R1 through R5 that stand for nodes of expression trees. Here is the sequence: 

 
    R1(class,name) := πclass,name(Classes  Ships) 

    R2(class2,name2) := ρR2(class2,name2)(R1) 

    R3(class3,name3) := ρR3(class3,name3)(R1) 

    R4(class,name,class2,name2) := R1  (class = class2 AND name <> name2) R2 

    R5(class,name,class2,name2,class3,name3) := R4  (class=class3 AND name <> name3 AND name2 <> name3) R3 

 

The constraint is R5 = ø 

The Kongo, Iowa and Revenge classes violate the constraint. 

 

Exercise 2.5.2d 

 

πcountry(σtype = bb(Classes)) ∩ πcountry(σtype = bc(Classes)) = ø 

 

Japan and Gt. Britain violate the constraint. 

 

Exercise 2.5.2e 

 



This complex expression is best seen as a sequence of steps in which we define temporary 

relations R1 through R5 that stand for nodes of expression trees. Here is the sequence: 

 
    R1(ship,battle,result,class) := πship,battle,result,class(Outcomes  (ship = name) Ships) 

    R2(ship,battle,result,numGuns) := πship,battle,result,numGuns(R1  Classes) 

    R3(ship,battle) := πship,battle(σnumGuns < 9 AND result = sunk (R2)) 

    R4(ship2,battle2) := ρR4(ship2,battle2)(πship,battle(σnumGuns > 9(R2))) 

    R5(ship2) := πship2(R3  (battle = battle2) R4) 

 

The constraint is R5 = ø 

No violations to the constraint. Since there are some ships in the Outcomes table that are not in 

the Ships table, we are unable to determine the number of guns on that ship. 

 

Exercise 2.5.3 

 

Defining r as the schema A1,A2,…,An and s as the schema B1,B2,…,Bn: 

 

πr(R)  πs(S) = ø where  is the antisemijoin 

 

Exercise 2.5.4 

 

The form of a constraint as E1 = E2 can be expressed as the other two constraints.  

Using the “equating an expression to the empty set” method, we can simply say: 

 

E1 – E2 = ø 

 

As a containment, we can simply say: 

 

E1 ⊆ E2 AND E2 ⊆ E1 

 

Thus, the form E1 = E2 of a constraint cannot express more than the two other forms discussed in 

this section. 


