
Exercise 2.2.1a

For relation Accounts, the attributes are:

 acctNo, type, balance

For relation Customers, the attributes are:

 firstName, lastName, idNo, account

Exercise 2.2.1b

For relation Accounts, the tuples are:

 (12345, savings, 12000),

 (23456, checking, 1000),

 (34567, savings, 25)

For relation Customers, the tuples are:

 (Robbie, Banks, 901-222, 12345),

 (Lena, Hand, 805-333, 12345),

 (Lena, Hand, 805-333, 23456)

Exercise 2.2.1c

For relation Accounts and the first tuple, the components are:

 123456 → acctNo

 savings → type

 12000 → balance

For relation Customers and the first tuple, the components are:

 Robbie → firstName

 Banks → lastName

 901-222 → idNo

 12345 → account

Exercise 2.2.1d

For relation Accounts, a relation schema is:

 Accounts(acctNo, type, balance)

For relation Customers, a relation schema is:

 Customers(firstName, lastName, idNo, account)

Exercise 2.2.1e

An example database schema is:

Accounts (

 acctNo,

 type,

 balance

)

Customers (

 firstName,

 lastName,

 idNo,

 account

)

Exercise 2.2.1f

A suitable domain for each attribute:

 acctNo → Integer

 type → String

 balance → Integer

 firstName → String

 lastName → String

 idNo → String (because there is a hyphen we cannot use Integer)

 account → Integer

Exercise 2.2.1g

Another equivalent way to present the Account relation:

acctNo balance type

34567 25 savings

23456 1000 checking

12345 12000 savings

Another equivalent way to present the Customers relation:

idNo firstName lastName account

805-333 Lena Hand 23456

805-333 Lena Hand 12345

901-222 Robbie Banks 12345

Exercise 2.2.2

Examples of attributes that are created for primarily serving as keys in a relation:

Universal Product Code (UPC) used widely in United States and Canada to track products in

stores.

Serial Numbers on a wide variety of products to allow the manufacturer to individually track

each product.

Vehicle Identification Numbers (VIN), a unique serial number used by the automotive industry

to identify vehicles.

Exercise 2.2.3a

We can order the three tuples in any of 3! = 6 ways. Also, the columns can be ordered in any of

3! = 6 ways. Thus, the number of presentations is 6*6 = 36.

Exercise 2.2.3b

We can order the three tuples in any of 5! = 120 ways. Also, the columns can be ordered in any

of 4! = 24 ways. Thus, the number of presentations is 120*24 = 2880

Exercise 2.2.3c

We can order the three tuples in any of m! ways. Also, the columns can be ordered in any of n!

ways. Thus, the number of presentations is n!m!

Exercise 2.3.1a

CREATE TABLE Product (

 maker CHAR(30),

 model CHAR(10) PRIMARY KEY,

 type CHAR(15)

);

Exercise 2.3.1b

CREATE TABLE PC (

 model CHAR(30),

 speed DECIMAL(4,2),

 ram INTEGER,

 hd INTEGER,

 price DECIMAL(7,2)

);

Exercise 2.3.1c

CREATE TABLE Laptop (

 model CHAR(30),

 speed DECIMAL(4,2),

 ram INTEGER,

 hd INTEGER,

 screen DECIMAL(3,1),

 price DECIMAL(7,2)

);

Exercise 2.3.1d

CREATE TABLE Printer (

 model CHAR(30),

 color BOOLEAN,

 type CHAR (10),

 price DECIMAL(7,2)

);

Exercise 2.3.1e

ALTER TABLE Printer DROP color;

Exercise 2.3.1f

ALTER TABLE Laptop ADD od CHAR (10) DEFAULT ‘none’;

Exercise 2.3.2a

CREATE TABLE Classes (

 class CHAR(20),

 type CHAR(5),

 country CHAR(20),

 numGuns INTEGER,

 bore DECIMAL(3,1),

 displacement INTEGER

);

Exercise 2.3.2b

CREATE TABLE Ships (

 name CHAR(30),

 class CHAR(20),

 launched INTEGER

);

Exercise 2.3.2c

CREATE TABLE Battles (

 name CHAR(30),

 date DATE

);

Exercise 2.3.2d

CREATE TABLE Outcomes (

 ship CHAR(30),

 battle CHAR(30),

 result CHAR(10)

);

Exercise 2.3.2e

ALTER TABLE Classes DROP bore;

Exercise 2.3.2f

ALTER TABLE Ships ADD yard CHAR(30);

Exercise 2.4.1a

 R1 := σspeed ≥ 3.00 (PC)

R2 := πmodel(R1)

Exercise 2.4.1b

 R1 := σhd ≥ 100 (Laptop)

R2 := Product (R1)

R3 := πmaker (R2)

model

1005

1006

1013

Exercise 2.4.1c

 R1 := σmaker=B (Product PC)

R2 := σmaker=B (Product Laptop)

R3 := σmaker=B (Product Printer)

R4 := πmodel,price (R1)

R5 := πmodel,price (R2)

R6: = πmodel,price (R3)

R7 := R4 R5 R6

model price

1004 649

1005 630

1006 1049

2007 1429

Exercise 2.4.1d

 R1 := σcolor = true AND type = laser (Printer)

R2 := πmodel (R1)

Exercise 2.4.1e

 R1 := σtype=laptop (Product)

R2 := σtype=PC(Product)

R3 := πmaker(R1)

R4 := πmaker(R2)

R5 := R3 – R4

Exercise 2.4.1f

maker

E

A

B

F

G

model

3003

3007

maker

F

G

 R1 := ρPC1(PC)

 R2 := ρPC2(PC)

 R3 := R1 (PC1.hd = PC2.hd AND PC1.model <> PC2.model) R2

 R4 := πhd(R3)

Exercise 2.4.1g

 R1 := ρPC1(PC)

 R2 := ρPC2(PC)

 R3 := R1 (PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model) R2

 R4 := πPC1.model,PC2.model(R3)

Exercise 2.4.1h

 R1 := πmodel(σspeed ≥ 2.80(PC)) πmodel(σspeed ≥ 2.80(Laptop))

 R2 := πmaker,model(R1 Product)

 R3 := ρR3(maker2,model2)(R2)

R4 := R2 (maker = maker2 AND model <> model2) R3

R5 := πmaker(R4)

Exercise 2.4.1i

 R1 := πmodel,speed(PC)

 R2 := πmodel,speed(Laptop)

 R3 := R1 R2

 R4 := ρR4(model2,speed2)(R3)

R5 := πmodel,speed (R3 (speed < speed2) R4)

R6 := R3 – R5

R7 := πmaker(R6 Product)

maker

B

Exercise 2.4.1j

hd

250

80

160

PC1.model PC2.model

1004 1012

maker

B

E

 R1 := πmaker,speed(Product PC)

 R2 := ρR2(maker2,speed2)(R1)

 R3 := ρR3(maker3,speed3)(R1)

 R4 := R1 (maker = maker2 AND speed <> speed2) R2

R5 := R4 (maker3 = maker AND speed3 <> speed2 AND speed3 <> speed) R3

R6 := πmaker(R5)

Exercise 2.4.1k

 R1 := πmaker,model(Product PC)

 R2 := ρR2(maker2,model2)(R1)

 R3 := ρR3(maker3,model3)(R1)

 R4 := ρR4(maker4,model4)(R1)

 R5 := R1 (maker = maker2 AND model <> model2) R2

 R6 := R3 (maker3 = maker AND model3 <> model2 AND model3 <> model) R5

 R7 := R4 (maker4 = maker AND (model4=model OR model4=model2 OR model4=model3)) R6

 R8 := πmaker(R7)

Exercise 2.4.2a

πmodel

σspeed≥3.00

PC

Exercise 2.4.2b

maker

A

D

E

maker

A

B

D

E

Laptop

σhd ≥ 100 Product

πmaker

Exercise 2.4.2c

σmaker=B

πmodel,price

σmaker=B

πmodel,price

σmaker=B

πmodel,price

Product PCLaptopPrinter ProductProduct

Exercise 2.4.2d

Printer

σcolor = true AND type = laser

 πmodel

Exercise 2.4.2e

σtype=laptopσtype=PC

πmakerπmaker

–

Product Product

Exercise 2.4.2f

ρPC1ρPC2

 (PC1.hd = PC2.hd AND PC1.model <> PC2.model)

πhd

PCPC

Exercise 2.4.2g

ρPC1ρPC2

PCPC

(PC1.speed = PC2.speed AND PC1.ram = PC2.ram AND PC1.model < PC2.model)

πPC1.model,PC2.model

Exercise 2.4.2h

PC Laptop

σspeed ≥ 2.80σspeed ≥ 2.80

πmodel πmodel

Product

πmaker,model

ρR3(maker2,model2)

(maker = maker2 AND model <> model2)

πmaker

Exercise 2.4.2i

PC Laptop

Product

πmodel,speedπmodel,speed

ρR4(model2,speed2)

πmodel,speed

(speed < speed2)

–

πmaker

Exercise 2.4.2j

Product PC

πmaker,speed

ρR3(maker3,speed3)ρR2(maker2,speed2)

(maker = maker2 AND speed <> speed2)

(maker3 = maker AND speed3 <> speed2 AND speed3 <> speed)

πmaker

Exercise 2.4.2k

Product PC

πmaker,model

ρR2(maker2,model2) ρR3(maker3,model3) ρR4(maker4,model4)

(maker = maker2 AND model <> model2)

(maker3 = maker AND model3 <> model2 AND model3 <> model)

(maker4 = maker AND (model4=model OR model4=model2 OR model4=model3))

πmaker

Exercise 2.4.3a

 R1 := σbore ≥ 16 (Classes)

R2 := πclass,country (R1)

class country

Iowa USA

North Carolina USA

Yamato Japan

Exercise 2.4.3b

 R1 := σlaunched < 1921 (Ships)

R2 := πname (R1)

name

Haruna

Hiei

Kirishima

Kongo

Ramillies

Renown

Repulse

Resolution

Revenge

Royal Oak

Royal Sovereign

Tennessee

Exercise 2.4.3c

 R1 := σbattle=Denmark Strait AND result=sunk(Outcomes)

R2 := πship (R1)

ship

Bismarck

Hood

Exercise 2.4.3d

 R1 := Classes Ships

R2 := σlaunched > 1921 AND displacement > 35000 (R1)

R3 := πname (R2)

name

Iowa

Missouri

Musashi

New Jersey

North Carolina

Washington

Wisconsin

Yamato

Exercise 2.4.3e

 R1 := σbattle=Guadalcanal(Outcomes)

 R2 := Ships (ship=name) R1

 R3 := Classes R2

R4 := πname,displacement,numGuns(R3)

name displacement numGuns

Kirishima 32000 8

Washington 37000 9

Exercise 2.4.3f

 R1 := πname(Ships)

 R2 := πship(Outcomes)

 R3 := ρR3(name)(R2)

 R4 := R1 R3

name

California

Haruna

Hiei

Iowa

Kirishima

Kongo

Missouri

Musashi

New Jersey

North Carolina

Ramillies

Renown

Repulse

Resolution

Revenge

Royal Oak

Royal Sovereign

Tennessee

Washington

Wisconsin

Yamato

Arizona

Bismarck

Duke of York

Fuso

Hood

King George V

Prince of Wales

Rodney

Scharnhorst

Exercise 2.4.3g

 From 2.3.2, assuming that every class has one ship named after the class.

 R1 := πclass(Classes)

 R2 := πclass(σname <> class(Ships))

 R3 := R1 – R2

Exercise 2.4.3h

 R1 := πcountry(σtype=bb(Classes))

 R2 := πcountry(σtype=bc(Classes))

 R3 := R1 ∩ R2

Exercise 2.4.3i

 R1 := πship,result,date(Battles (battle=name) Outcomes)

 R2 := ρR2(ship2,result2,date2)(R1)

 R3 := R1 (ship=ship2 AND result=damaged AND date < date2) R2

 R4 := πship(R3)

 No results from sample data.

Exercise 2.4.4a

σbore ≥ 16

πclass,country

Classes

South Dakota

West Virginia

Yamashiro

class

Bismarck

country

Japan

Gt. Britain

Exercise 2.4.4b

σlaunched < 1921

πname

Ships

Exercise 2.4.4c

Outcomes

πship

σbattle=Denmark Strait AND result=sunk

Exercise 2.4.4d

Classes Ships

σlaunched > 1921 AND displacement > 35000

πname

Exercise 2.4.4e

σbattle=Guadalcanal

Outcomes

Ships

Classes(ship=name)

πname,displacement,numGuns

Exercise 2.4.4f

Ships

Outcomes

πname

πship

ρR3(name)

Exercise 2.4.4g

Classes

Ships

πclass

σname <> class

πclass

–

Exercise 2.4.4h

ClassesClasses

σtype=bb σtype=bc

πcountry πcountry

∩

Exercise 2.4.4i

Battles Outcomes

(battle=name)

πship,result,date

ρR2(ship2,result2,date2)

(ship=ship2 AND result=damaged AND date < date2)

πship

Exercise 2.4.5

The result of the natural join has only one attribute from each pair of equated attributes. On the

other hand, the result of the theta-join has both columns of the attributes and their values are

identical.

Exercise 2.4.6

Union

If we add a tuple to the arguments of the union operator, we will get all of the tuples of

the original result and maybe the added tuple. If the added tuple is a duplicate tuple, then

the set behavior will eliminate that tuple. Thus the union operator is monotone.

Intersection

If we add a tuple to the arguments of the intersection operator, we will get all of the

tuples of the original result and maybe the added tuple. If the added tuple does not exist

in the relation that it is added but does exist in the other relation, then the result set will

include the added tuple. Thus the intersection operator is monotone.

Difference

If we add a tuple to the arguments of the difference operator, we may not get all of the

tuples of the original result. Suppose we have relations R and S and we are computing R

– S. Suppose also that tuple t is in R but not in S. The result of R – S would include tuple

t. However, if we add tuple t to S, then the new result will not have tuple t. Thus the

difference operator is not monotone.

Projection

If we add a tuple to the arguments of the projection operator, we will get all of the tuples

of the original result and the projection of the added tuple. The projection operator only

selects columns from the relation and does not affect the rows that are selected. Thus the

projection operator is monotone.

Selection

If we add a tuple to the arguments of the selection operator, we will get all of the tuples

of the original result and maybe the added tuple. If the added tuple satisfies the select

condition, then it will be added to the new result. The original tuples are included in the

new result because they still satisfy the select condition. Thus the selection operator is

monotone.

Cartesian Product

If we add a tuple to the arguments of the Cartesian product operator, we will get all of the

tuples of the original result and possibly additional tuples. The Cartesian product pairs the

tuples of one relation with the tuples of another relation. Suppose that we are calculating

R x S where R has m tuples and S has n tuples. If we add a tuple to R that is not already

in R, then we expect the result of R x S to have (m + 1) * n tuples. Thus the Cartesian

product operator is monotone.

Natural Joins

If we add a tuple to the arguments of a natural join operator, we will get all of the tuples

of the original result and possibly additional tuples. The new tuple can only create

additional successful joins, not less. If, however, the added tuple cannot successfully join

with any of the existing tuples, then we will have zero additional successful joins. Thus

the natural join operator is monotone.

Theta Joins

If we add a tuple to the arguments of a theta join operator, we will get all of the tuples of

the original result and possibly additional tuples. The theta join can be modeled by a

Cartesian product followed by a selection on some condition. The new tuple can only

create additional tuples in the result, not less. If, however, the added tuple does not satisfy

the select condition, then no additional tuples will be added to the result. Thus the theta

join operator is monotone.

Renaming

If we add a tuple to the arguments of a renaming operator, we will get all of the tuples of

the original result and the added tuple. The renaming operator does not have any effect on

whether a tuple is selected or not. In fact, the renaming operator will always return as

many tuples as its argument. Thus the renaming operator is monotone.

Exercise 2.4.7a

If all the tuples of R and S are different, then the union has n + m tuples, and this number is the

maximum possible.

The minimum number of tuples that can appear in the result occurs if every tuple of one relation

also appears in the other. Then the union has max(m , n) tuples.

Exercise 2.4.7b

If all the tuples in one relation can pair successfully with all the tuples in the other relation, then

the natural join has n * m tuples. This number would be the maximum possible.

The minimum number of tuples that can appear in the result occurs if none of the tuples of one

relation can pair successfully with all the tuples in the other relation. Then the natural join has

zero tuples.

Exercise 2.4.7c

If the condition C brings back all the tuples of R, then the cross product will contain n * m tuples.

This number would be the maximum possible.

The minimum number of tuples that can appear in the result occurs if the condition C brings

back none of the tuples of R. Then the cross product has zero tuples.

Exercise 2.4.7d

Assuming that the list of attributes L makes the resulting relation πL(R) and relation S schema

compatible, then the maximum possible tuples is n. This happens when all of the tuples of πL(R)

are not in S.

The minimum number of tuples that can appear in the result occurs when all of the tuples in

πL(R) appear in S. Then the difference has max(n – m , 0) tuples.

Exercise 2.4.8

Defining r as the schema of R and s as the schema of S:

1. πr(R S)

2. R δ(πr∩s(S)) where δ is the duplicate-elimination operator in Section 5.2 pg. 213

3. R – (R – πr(R S))

Exercise 2.4.9

Defining r as the schema of R

1. R - πr(R S)

Exercise 2.4.10

πA1,A2…An(R S)

Exercise 2.5.1a

σspeed < 2.00 AND price > 500(PC) = ø

Model 1011 violates this constraint.

Exercise 2.5.1b

σscreen < 15.4 AND hd < 100 AND price ≥ 1000(Laptop) = ø

Model 2004 violates the constraint.

Exercise 2.5.1c

πmaker(σtype = laptop(Product)) ∩ πmaker(σtype = pc(Product)) = ø

Manufacturers A,B,E violate the constraint.

Exercise 2.5.1d

This complex expression is best seen as a sequence of steps in which we define temporary

relations R1 through R4 that stand for nodes of expression trees. Here is the sequence:

 R1(maker, model, speed) := πmaker,model,speed(Product PC)

 R2(maker, speed) := πmaker,speed(Product Laptop)

 R3(model) := πmodel(R1 R1.maker = R2.maker AND R1.speed ≤ R2.speed R2)

 R4(model) := πmodel(PC)

The constraint is R4 ⊆ R3

Manufacturers B,C,D violate the constraint.

Exercise 2.5.1e

πmodel(σLaptop.ram > PC.ram AND Laptop.price ≤ PC.price(PC × Laptop)) = ø

Models 2002,2006,2008 violate the constraint.

Exercise 2.5.2a

πclass(σbore > 16(Classes)) = ø

The Yamato class violates the constraint.

Exercise 2.5.2b

πclass(σnumGuns > 9 AND bore > 14(Classes)) = ø

No violations to the constraint.

Exercise 2.5.2c

This complex expression is best seen as a sequence of steps in which we define temporary

relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:

 R1(class,name) := πclass,name(Classes Ships)

 R2(class2,name2) := ρR2(class2,name2)(R1)

 R3(class3,name3) := ρR3(class3,name3)(R1)

 R4(class,name,class2,name2) := R1 (class = class2 AND name <> name2) R2

 R5(class,name,class2,name2,class3,name3) := R4 (class=class3 AND name <> name3 AND name2 <> name3) R3

The constraint is R5 = ø

The Kongo, Iowa and Revenge classes violate the constraint.

Exercise 2.5.2d

πcountry(σtype = bb(Classes)) ∩ πcountry(σtype = bc(Classes)) = ø

Japan and Gt. Britain violate the constraint.

Exercise 2.5.2e

This complex expression is best seen as a sequence of steps in which we define temporary

relations R1 through R5 that stand for nodes of expression trees. Here is the sequence:

 R1(ship,battle,result,class) := πship,battle,result,class(Outcomes (ship = name) Ships)

 R2(ship,battle,result,numGuns) := πship,battle,result,numGuns(R1 Classes)

 R3(ship,battle) := πship,battle(σnumGuns < 9 AND result = sunk (R2))

 R4(ship2,battle2) := ρR4(ship2,battle2)(πship,battle(σnumGuns > 9(R2)))

 R5(ship2) := πship2(R3 (battle = battle2) R4)

The constraint is R5 = ø

No violations to the constraint. Since there are some ships in the Outcomes table that are not in

the Ships table, we are unable to determine the number of guns on that ship.

Exercise 2.5.3

Defining r as the schema A1,A2,…,An and s as the schema B1,B2,…,Bn:

πr(R) πs(S) = ø where is the antisemijoin

Exercise 2.5.4

The form of a constraint as E1 = E2 can be expressed as the other two constraints.

Using the “equating an expression to the empty set” method, we can simply say:

E1 – E2 = ø

As a containment, we can simply say:

E1 ⊆ E2 AND E2 ⊆ E1

Thus, the form E1 = E2 of a constraint cannot express more than the two other forms discussed in

this section.

