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3 Stochastic Integrals

Exercise 3.1

(a) Since Z(t) is determinist, we have

dZ(t) = αeαtdt

= αZ(t)dt.

(b) By definition of a stochastic differential

dZ(t) = g(t)dW (t)

(c) Using Itô’s formula

dZ(t) =
α2

2
eαW (t)dt + αeαW (t)dW (t)

=
α2

2
Z(t)dt + αZ(t)dW

(d) Using Itô’s formula and considering the dynamics of X(t) we have

dZ(t) = αeαxdX(t) +
α2

2
eαx(dX(t))2

= Z(t)
[
αµ +

1
2
α2σ2

]
dt + ασZ(t)dW (t).

(e) Using Itô’s formula and considering the dynamics of X(t) we have

dZ(t) = 2X(t)dX(t) + (d(X(t))2

= Z(t)
[
2α + σ2

]
dt + 2ZσdW (t).

Exercise 3.3 By definition we have that the dynamics of X(t) are given by
dX(t) = σ(t)dW (t).

Consider Z(t) = eiuX(t). Then using the Itô’s formula we have that the dynamic
of Z(t) can be described by

dZ(t) =
[
−u2

2
σ2(t)

]
Z(t)dt + [iuσ(t)] Z(t)dW (t)

From Z(0) = 1 we get,

Z(t) = 1 − u2

2

∫ t

0

σ2(s)Z(s)ds + iu

∫ t

0

σ(s)Z(s)dW (s).
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Taking expectations we have,

E [Z(t)] = 1 − u2

2
E

[∫ t

0

σ2(s)Z(s)ds

]
+ iuE

[∫ t

0

σ(s)Z(s)dW (s)
]

= 1 − u2

2

[∫ t

0

σ2(s)E [Z(s)] ds

]
+ 0

By setting E [Z(t)] = m(t) and differentiating with respect to t we find an
ordinary differential equation,

∂m(t)
∂t

= −u2

2
m(t)σ2(t)

with the initial condition m(0) = 1 and whose solution is

m(t) = exp
{
−

u2

2

∫ t

0

σ2(s)ds

}

= E [Z(t)]

= E
[
eiuX(t)

]

So, X(t) is normally distributed. By the properties of the normal distribution
the following relation

E
[
eiuX(t)

]
= eiuE[X(t)]−u2

2 V [X(t)]

where V [X(t)] is the variance of X(t), so it must be that E [X(t)] = 0 and
V [X(t)] =

∫ t

0
σ2(s)ds.

Exercise 3.5 We have a sub martingale if E [X(t)| Fs] ≥ X(s)∀, t ≥ s. From
the dynamics of X we can write

X(t) = X(s) +
∫ t

s

µ(z)dz +
∫ t

s

σ(z)dW (z).

By taking expectation, conditioned at time s, from both sides we get

E [X(t)| Fs] = E [X(s)| Fs] + E

[∫ t

s

µ(z)dz

∣∣∣∣Fs

]

= X(s) + Es




∫ t

s

µ(z)dz

︸ ︷︷ ︸
≥0

∣∣∣∣∣∣∣∣∣
Fs




≥ X(s)

so X is a sub martingale.
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Exercise 3.6 Set X(t) = h(W1(t), · · · , Wn(t)).

We have by Itô that

dX(t) =
n∑

i=1

∂h

∂xi
dWi(t) +

1
2

n∑

i,j=1

∂2h

∂xi∂xj
dWi(t)dWj(t)

where ∂h
∂xi

denotes the first derivative with respect to the i-th variable, ∂2h
∂xi∂xj

denotes the second order cross-derivative between the i-th and j-th variable and
all derivatives should be evaluated at (W1(s), · · · , Wn(s)).

Since we are dealing with independent Wiener processes we know

∀u : dWi(u)dWj(u) = 0 for i 6= j and dWi(u)dWj(u) = du for i = j,

so, integrating we get

X(t) =
∫ t

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ t

0

n∑

i,j=1

∂2h

∂xi∂xj
dWi(u)dWj(u)

=
∫ t

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ t

0

n∑

i=1

∂2h

∂xi∂xj
[dWi(u)]2

=
∫ t

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ t

0

n∑

i,j=1

∂2h

∂xi∂xj
du.

Taking expectations

E [X(t)| Fs] = E

[∫ t

0

n∑

i=1

∂h

∂xi
dWi(u)

∣∣∣∣∣Fs

]
+ E


 1

2

∫ t

0

n∑

i,j=1

∂2h

∂xi∂xj
du

∣∣∣∣∣∣
Fs




=
∫ s

0

n∑

i=1

∂h

∂xi
dWi(u) +

1
2

∫ s

0

n∑

i,j=1

∂2h

∂xi∂xj
du

︸ ︷︷ ︸
X(s)

+ E

[∫ t

0

n∑

i=1

∂h

∂xi
dWi(u)

∣∣∣∣∣Fs

]

︸ ︷︷ ︸
0

+E


 1

2

∫ t

s

n∑

i,j=1

∂2h

∂xi∂xj
du

∣∣∣∣∣∣
Fs




= X(s) + E


 1

2

∫ t

s

n∑

i,j=1

∂2h

∂xi∂xj
du

∣∣∣∣∣∣
Fs


 .

• If h is harmonic the last term is zero, since
∑n

i,j=1
∂2h

∂xi∂xj
= 0, we have

E [X(t)| Fs] = X(s) so X is a martingale.
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• If h is subharmonic the last term is always nonnegative, since
∑n

i,j=1
∂2h

∂xi∂xj
≥

0 we have

E [X(t)| Fs] ≥ X(s) so X is a submartingale.

Exercise 3.8

(a) Using the Itô’s formula we find the dynamics of R(t),

dR(t) = 2X(t)(dX(t)) + 2Y (t)(dY (t)) +
1
2
[
2(dX(t))2 + 2(dY (t))2

]

= (2α + 1)
[
X2(t) + Y 2(t)

]
dt

= (2α + 1)R(t)dt

From the dynamics we can see immediately that R(t) is deterministic (it
has no stochastic component!).

(b) Integrating the SDE for X(t) and taking expectations we have

X(t) = x0 + α

∫ t

0

E [X(s)] ds

Which once more can be solve setting m(t) = E [X(t)],taking the deriva-
tive with respect to t and using ODE methods, to get the answer

E [X(t)] = x0e
αt

4 Differential Equations

Exercise 4.1 We have:

dY (t) = αeαtx0dt, dZ(t) = αeαtσdt, dR(t) = e−αtdW (t).

Itô’s formula then gives us (the cross term dZ(t) · dR(t) vanishes)

dX(t) = dY (t) + Z(t) · dR(t) + R(t) · dZ(t)

= αeαtx0dt + eαt · σ · e−αtdW (t) +
∫ t

0

e−αsdW (s) · αeαtσdt

= α

[
eαtx0 + σ

∫ t

0

eα(t−s)dW (s)
]

dt + σdW (t)

= αX(t)dt + σdW (t).
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Exercise 4.5 Using the dynamics of X(t) and the Itô formula we get

dY (t) =
[
αβ +

1
2
β(β − 1)σ2

]
Y (t)dt + σβY (t)dW (t)

= µY (t)dt + δY (t)dW (t)

where µ = αβ + 1
2β(β − 1)σ2 and δ = σβ so Y is also a GBM.

Exercise 4.6 From the Itô formula and using the dynamics of X and Y

dZ(t) =
1

Y (t)
dX(t) − X(t)

Y (t)2
dY (t) − 1

Y (t)2
dX(t)dY (t) +

X(t)
Y (t)3

(dY (t))2

= Z(t)
[
α − γ + δ2

]
dt + σZ(t)dW (t) − δZ(t)dV (t).

Exercise 4.9 From Feyman-Kac we have We have

F (t, x) = Et,x [2 ln[X(T )]] ,

and

dX(s) = µX(s)ds + σXdW (s),

X(t) = x.

Solving the SDE, we obtain (check the solution of the GBM in th extra exercises
if you do not remmeber)

X(T ) = exp
{

ln x + (µ −
1
2
σ2)(T − t) + σ[W (T ) − W (t)]

}
,

and thus
F (t, x) = 2 ln(x) + 2(µ −

1
2
σ2)(T − t).

Exercise 4.10 Given the dynamics of X(t) any F (t, x) that solves the problem
has the dynamics given by

dF (t, x) =
∂F

∂t
dt +

∂F

∂x
dX(t) +

1
2

∂2F

∂x2
(dX(t))2

=
∂F

∂t
dt +

∂F

∂x
[µ(t, x)dt + σ(t, x)dW (t)] + k(t, x)dt − k(t, x)dt
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+
1
2

∂2F

∂x2

[
σ2(t, x)dW (t)

]

=





∂F

∂t
+ µ(t, x)

∂F

∂x
+

1
2
σ2(t, x) + k(t, x)

︸ ︷︷ ︸
0





dt − k(t, x)dt

+
∂F

∂x
σ(t, x)dW (t)

= −k(t, x)dt +
∂F

∂x
σ(t, x)dW (t)

We now write F (T, X(T )) in terms of F (t, x) and the dynamics of F during the
time period t . . . T (recall that we defined X(t) = x)

F (t, X(T )) = F (t, x) −
∫ T

t

k(s, X(s)ds +
∫ T

t

∂F

∂x
σ(s, X(s))dW (s)

⇔

F (t, x) = F (T, X(T )) +
∫ T

t

k(s, X(s)ds −
∫ T

t

∂F

∂x
σ(s, X(s))dW (s)

Taking expectations Et,x [.] from both sides

F (t, x) = Et,x [F (T, X(T ))] + Et,x

[∫ T

t

k(s, X(s)ds

]

= Et,x [Φ(T )] +
∫ T

t

Et,x [k(s, X(s)] ds

Exercise 4.11 Using the representation formula from Exercise 4.10 we get

F (t, x) = Et,x

[
2 ln[X2(T )]

]
+
∫ T

t

Et,x [X(s)] ds,

Given
dX(s) = X(s)dW (s).

The first term is easily computed as in the exercise 4.9 above. Furthermore it
is easily seen directly from the SDE (how?)that Et,x [X(s)] = x. Thus we have
the result

F (t, x) = 2 ln(x) − (T − t) + x(T − t)

= ln(x2) + (x − 1)(T − t)
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6 Arbitrage Pricing

Exercise 6.1

(a) From standard theory we have

Π (t) = F (t, S(t)), where F solves the Black-Scholes equation.

Using Itô we obtain

dΠ (t) =
[
∂F

∂t
+ rS(t)

∂F

∂s
+

1
2
σ2S2(t)

∂2F

∂s2

]
dt + σS(t)

∂F

∂s
dW (t).

Using the fact that F satisfies the Black-Scholes equation, and that F (t, S(t)) =
Π (t) we obtain

dΠ (t) = rΠ (t) dt + σS(t)
∂F

∂s
dW (t)

and so g(t) = σS(t)∂F
∂s .

(b) Apply Itô’s formula to the process Z(t) = Π(t)
B(t) and use the result in (a).

dZ(t) =
1

B(t)
(dΠ(t)) − Π(t)

B2(t)
(d(B(t))

=
g(t)
B(t)

dW (t)

= Z(t)
σS(t)
Π(t)

∂F

∂s
dW (t)

Z is a martingale since Et [Z(T )] = Z(t) for all t < T and its diffusion
coefficient is given by σZ(t) = σS(t)

Π(t)
∂F
∂s .

Exercise 6.4 We have as usual

Π (t) = e−r(T−t)EQ
t,s

[
Sβ(T )

]
.

We know from earlier exercises (check exercises 3.4 and 4.5) that Y (t) = Sβ(t)
satisfies the SDE under Q

dY (t) =
[
rβ +

1
2
β(β − 1)σ2

]
Y (t)dt + σβY (t)dW (t).

Using the standard technique, we can integrate, take expectations, differentiate
with respect to time and solve by ODE techniques, to obtain

EQ
t,s

[
Sβ(T )

]
= sβe[rβ+ 1

2 β(β−1)σ2](T−t),
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So,
Π(t) = sβe[r(β−1)+ 1

2 β(β−1)σ2](T−t).

Exercise 6.6 We consider only the case when t < T0. The other case is handled
in very much the same way. We have to compute EQ

t,s

[
S(T1)
S(T0)

]
. Define the process

X on the time interval [T0, T1] by

X(u) =
S(u)
S(T0)

.

We now want to compute EQ
t,s [X(T1)]. The stochastic differential (under Q) of

X is easily seen to be

dX(u) = rXdu + σXdW (u),

X(T0) = 1.

From this SDE it follows at once (the same technique of integrating, taking
expectations, differentiate with respect to time and solve by ODE techniques)
that

EQ
t,s [X(T1)] = er(T1−T0),

and thus the price, at t of the contract is given by

Π (t) = e−r(T0−t).

Exercise 6.7 The price in SEK of the ACME INC., Z, is defined as Z(t) =
S(t)Y (t) and by Itô has the following dynamics under Q

dZ(t) = rZ(t)dt + σZ(t)dW1(t) + δZ(t)dW2(t)

We also have, by using Itô once more, that the dynamics of ln Z2 are

d ln Z2(t) =
[
2r − σ2 − δ2

]
dt + 2σdW1(t) + 2δdW2(t)

which integrating and taking conditioned expectations give us

EQ
t,z

[
ln[Z2(T )]

]
= ln z2 +

[
2r − σ2 − δ2

]
(T − t)

Since we know that

Π(t) = F (t, s) = e−r(T−t)EQ
t,z

[
ln[Z2(T )]

]
,
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the arbitrage free pricing function Π is

Π(t) = e−r(T−t)
{
ln z2 +

[
2r − σ2 − δ2

]
(T − t)

}

= e−r(T−t)
{
2 ln(sy) +

[
2r − σ2 − δ2

]
(T − t)

}
,

where, as usual, z = Z(t), s = S(t) and y = Y (t).

Exercise 6.9 The forward price, i.e. the amount of money to be payed out at
time T , but decided at the time t is

F (t, T ) = EQ
t [X ] .

Note that the forward price is not the price of the forward contract on the
T -claim X which is what we are looking for.

Take for instance the long position: at time T , the buyer of a forward contract
receives X and pays F (t, T ). Hence, the price at time t of that position is

Π(t;X − F (t, T )) = EQ
t


e−r(T−t)


X − F (t, T )︸ ︷︷ ︸

EQ
t [X ]





 = 0.

At time s > t, however, the underlying asset may have changed in value, in a
way different from expectations, so then the price of a forward contract can be
defined as

Π(s;X − F (t, T )) = EQ
s

[
e−r(T−s) (X − F (t, T ))

]

= e−r(T−s)


EQ

s [X ] −

F (t,T )︷ ︸︸ ︷
EQ

t [X ]


 .

Remark: For the special case where the contract is on one share S we get:

Π(s) = e−r(T−s)


EQ

s [S(T )] − S(t)er(T−t)

︸ ︷︷ ︸
EQ

t [S(T )]


 .

We can also easily calculate EQ
s [S(T )] since

EQ
s [S(T )] = S(t) + r

∫ s

t

S(u)du

︸ ︷︷ ︸
S(s)

+r

∫ T

s

EQ
s [S(u)] du

12



so,
EQ

s [S(T )] = S(s)er(T−s)

and, therefore, the free arbitrage pricing function at time s > t is

Π(s) = S(s) − S(t)er(s−t).

7 Completeness and Hedging

Exercise 7.2 We have F (t, s, z) be defined by

Ft + r · s · Fs +
1
2
σ2s2Fss + gFz = rF

F (T, s, z) = Φ(s, z)

and the dynamics under Q for S and Z

dS(u) = rS(u)du + σS(u)dW (u)

dZ(u) = g(u, S(u))du

We want to show that F (t, S(t), Z(t)) = e−r(T−t)EQ
t,s,z [Φ(S(T ), Z(T ))].

For that we find , by Itô, the dynamics of Π(t) = F (t, S(t), Z(t)), the arbitrage
free pricing process

dΠ(t) = Ftdt + Fs [(rS(t)dt + σS(t)dW (t)] + Fz · g(t, S(t))dt +
1
2
Fssσ

2S2(t)dt

=
[
Ft + r · S(t) · Fs +

1
2
σ2S2(t)Fss + g(t, S(t))Fz

]

︸ ︷︷ ︸
rΠ(t)

+σS(t)FsdW (t)

Integrating we have

Π(T ) = Π(t) + r

∫ T

t

Π(u)du + σ

∫ T

t

S(u)FsdW (u)

Hence

EQ
t,z,s [Π(T )] = Π(t) + r

∫ T

t

EQ
t,z,s [Π(u)] du

So, using the usual ”trick” of setting m(u) = EQ
t,z,s [Π(u)] and using techniques

of ODE we finally get

Π(t) = F (t, S(t), Z(t)) = e−r(T−t)EQ
t,s,z [Φ(S(T ), Z(T ))] .

(Remember that Π(T ) = F (T, S(T ), Z(T )) = Φ(S(T ), Z(T )).)
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Exercise 7.3 The price arbitrage free price is given by (note that this time our
claim is not simple, i.e. it is not of the form X= Φ(S(T ))).

Π(t) = e−r(T2−t)EQ
t [X ]

= e−r(T2−t) 1
T2 − T1

∫ T2

T1

EQ
t [S(u)] du

We know that under Q

dS(u) = rS(u)du + σS(u)dW (u)

S(t) = s

So,
⇒ EQ

t [S(u)] = ser(u−t)

1
T2 − T1

∫ T2

T1

ser(u−t)du =
1

T2 − T1

s

r

[
er(T2−t) − er(T1−t)

]

The price to the ”mean” contract is thus

Π(t) =
s

r(T2 − T1)

[
1 − e−r(T2−T1)

]
.

8 Parity Relations and Delta Hedging

Exercise 8.1 The T -claim X given by:

X =





K, if S(T ) ≤ A

K + A − S(T ), if A < S(T ) < K + A

0, otherwise.

,

has then following contract function (recall that X = ΦS(T ))

Φ(x) =





K, if x ≤ A

K + A − x, if A < x < K + A

0, otherwise.
,

which can be decomposed into the following ”basic” contract functions written

Φ(x) = K · 1︸︷︷︸
ΦB(x)

−max [0, x − A]︸ ︷︷ ︸
Φc,A(x)

+ max [0, x − A − K]︸ ︷︷ ︸
Φc,A+K(x)

.

Having this T-claim X is then equivalent to having the following (replicating)
portfolio at time T :

14



* K in monetary units

* short (position in) a call with strike A

* long (position in) a call with strike A + K

Given the decomposition of the contract function Φ into basic contract functions,
we immediately have that the arbitrage free pricing process Π is

Π(t) = K ·

B(t)︷ ︸︸ ︷
e−r(T−t) −c(s, A, T ) + c(s, A + K, T )

where c(s, A, T ) and c(s, A+K, T ) stand for the prices of European call options
on S and maturity T with strike prices A and A + K, respectively. The Black-
Scholes formula give us both c(s, A, T ) and c(s, A + K, T ) .

The hedge portfolio thus consists of a reverse position in the above components,
i.e., borrow e−r(T−t)K, buy a call with strike K and sell a call with strike A+K.

Exercise 8.4 We apply, once again, the exact same technique. The T -claim X
given by:

X =





0, if S(T ) < A

S(T ) − A, if A ≤ S(T ) ≤ B

C − S(T ), if B < S(T ) ≤ C

0, if S(T ) > C.

where B = A+C
2 , has a contract function Φ that can be written as

Φ(x) = max [0, x − A]︸ ︷︷ ︸
Φc,A(x)

+ max [0, x − C]︸ ︷︷ ︸
Φc,C (x)

−2 max [0, x − B]︸ ︷︷ ︸
Φc,B(x)

Having this butterfly is then equivalent to having the following constant(replicating)
portfolio at time T :

* long (position in) a call option with strike A

* long (position in) a call option with strike C

* short (position in) a call option with strike B
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