Seminars on Continuous Time Finance

Raquel M. Gaspar

Fall 2003

Contents

3	Stochastic Integrals	4		
4	Differential Equations			
6	Arbitrage Pricing			
7	Completeness and Hedging	13		
8	Parity Relations and Delta Hedging			
9	Several Underlying Assets	17		
10	Incomplete Markets	19		
11	Dividends	20		
12	Currency Derivatives	21		
15	Bonds and Interest Rates	24		
16	6 Short Rate Models			
17	Martingale Models for the Short Rate	28		
18	Forward Rate Models	32		
19	Change of Numeraire	34		
20	Extra Exercises	38		
	20.1 Exercises	38		
	20.2 Solution	39		
21	Exams	49		

21.1	Exerci	ses	49
	21.1.1	March 26, 2003	49
	21.1.2	January 10, 10.00-15.00, 2003	51
	21.1.3	March 18, 2002	53
21.2	Topics	s of solutions	55
	21.2.1	March 26, 2003	55
	21.2.2	January 10, 2003	58
	21.2.3	March 18, 2002	60

3 Stochastic Integrals

Exercise 3.1

(a) Since Z(t) is determinist, we have

$$dZ(t) = \alpha e^{\alpha t} dt$$
$$= \alpha Z(t) dt.$$

(b) By definition of a stochastic differential

$$dZ(t) = g(t)dW(t)$$

(c) Using Itô's formula

$$dZ(t) = \frac{\alpha^2}{2} e^{\alpha W(t)} dt + \alpha e^{\alpha W(t)} dW(t)$$
$$= \frac{\alpha^2}{2} Z(t) dt + \alpha Z(t) dW$$

(d) Using Itô's formula and considering the dynamics of X(t) we have

$$dZ(t) = \alpha e^{\alpha x} dX(t) + \frac{\alpha^2}{2} e^{\alpha x} (dX(t))^2$$

= $Z(t) \left[\alpha \mu + \frac{1}{2} \alpha^2 \sigma^2 \right] dt + \alpha \sigma Z(t) dW(t).$

(e) Using Itô's formula and considering the dynamics of X(t) we have

$$dZ(t) = 2X(t)dX(t) + (d(X(t))^2)$$

= $Z(t) [2\alpha + \sigma^2] dt + 2Z\sigma dW(t).$

Exercise 3.3 By definition we have that the dynamics of X(t) are given by $dX(t) = \sigma(t)dW(t)$.

Consider $Z(t) = e^{iuX(t)}$. Then using the Itô's formula we have that the dynamic of Z(t) can be described by

$$dZ(t) = \left[-\frac{u^2}{2}\sigma^2(t)\right]Z(t)dt + \left[iu\sigma(t)\right]Z(t)dW(t)$$

From Z(0) = 1 we get,

$$Z(t) = 1 - \frac{u^2}{2} \int_0^t \sigma^2(s) Z(s) ds + iu \int_0^t \sigma(s) Z(s) dW(s) ds$$

Taking expectations we have,

$$E[Z(t)] = 1 - \frac{u^2}{2} E\left[\int_0^t \sigma^2(s)Z(s)ds\right] + iuE\left[\int_0^t \sigma(s)Z(s)dW(s)\right]$$
$$= 1 - \frac{u^2}{2}\left[\int_0^t \sigma^2(s)E[Z(s)]ds\right] + 0$$

By setting E[Z(t)] = m(t) and differentiating with respect to t we find an ordinary differential equation,

$$\frac{\partial m(t)}{\partial t} = -\frac{u^2}{2}m(t)\sigma^2(t)$$

with the initial condition m(0) = 1 and whose solution is

$$m(t) = \exp\left\{-\frac{u^2}{2}\int_0^t \sigma 2(s)ds\right\}$$
$$= E[Z(t)]$$
$$= E\left[e^{iuX(t)}\right]$$

So, X(t) is normally distributed. By the properties of the normal distribution the following relation

$$E\left[e^{iuX(t)}\right] = e^{iuE[X(t)] - \frac{u^2}{2}V[X(t)]}$$

where V[X(t)] is the variance of X(t), so it must be that E[X(t)] = 0 and $V[X(t)] = \int_0^t \sigma^2(s) ds$.

Exercise 3.5 We have a sub-martingale if $E[X(t)|\mathcal{F}_s] \ge X(s) \forall, t \ge s$. From the dynamics of X we can write

$$X(t) = X(s) + \int_s^t \mu(z)dz + \int_s^t \sigma(z)dW(z).$$

By taking expectation, conditioned at time s, from both sides we get

$$E[X(t)|\mathcal{F}_{s}] = E[X(s)|\mathcal{F}_{s}] + E\left[\int_{s}^{t} \mu(z)dz \middle| \mathcal{F}_{s}\right]$$
$$= X(s) + E^{s}\left[\underbrace{\int_{s}^{t} \mu(z)dz}_{\geq 0} \middle| \mathcal{F}_{s}\right]$$
$$\geq X(s)$$

so X is a sub martingale.

Exercise 3.6 Set $X(t) = h(W_1(t), \dots, W_n(t))$.

We have by Itô that

$$dX(t) = \sum_{i=1}^{n} \frac{\partial h}{\partial x_i} dW_i(t) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 h}{\partial x_i \partial x_j} dW_i(t) dW_j(t)$$

where $\frac{\partial h}{\partial x_i}$ denotes the first derivative with respect to the *i*-th variable, $\frac{\partial^2 h}{\partial x_i \partial x_j}$ denotes the second order cross-derivative between the *i*-th and *j*-th variable and all derivatives should be evaluated at $(W_1(s), \dots, W_n(s))$.

Since we are dealing with independent Wiener processes we know

$$\forall u: \quad dW_i(u)dW_j(u) = 0 \text{ for } i \neq j \quad \text{and} \quad dW_i(u)dW_j(u) = du \text{ for } i = j,$$

so, integrating we get

$$X(t) = \int_0^t \sum_{i=1}^n \frac{\partial h}{\partial x_i} dW_i(u) + \frac{1}{2} \int_0^t \sum_{i,j=1}^n \frac{\partial^2 h}{\partial x_i \partial x_j} dW_i(u) dW_j(u)$$

$$= \int_0^t \sum_{i=1}^n \frac{\partial h}{\partial x_i} dW_i(u) + \frac{1}{2} \int_0^t \sum_{i=1}^n \frac{\partial^2 h}{\partial x_i \partial x_j} [dW_i(u)]^2$$

$$= \int_0^t \sum_{i=1}^n \frac{\partial h}{\partial x_i} dW_i(u) + \frac{1}{2} \int_0^t \sum_{i,j=1}^n \frac{\partial^2 h}{\partial x_i \partial x_j} du.$$

Taking expectations

$$E[X(t)|\mathcal{F}_{s}] = E\left[\int_{0}^{t} \sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}} dW_{i}(u) \middle| \mathcal{F}_{s}\right] + E\left[\frac{1}{2} \int_{0}^{t} \sum_{i,j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} du \middle| \mathcal{F}_{s}\right]$$

$$= \underbrace{\int_{0}^{s} \sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}} dW_{i}(u) + \frac{1}{2} \int_{0}^{s} \sum_{i,j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} du}_{X(s)}$$

$$+ \underbrace{E\left[\int_{0}^{t} \sum_{i=1}^{n} \frac{\partial h}{\partial x_{i}} dW_{i}(u) \middle| \mathcal{F}_{s}\right]}_{0} + E\left[\frac{1}{2} \int_{s}^{t} \sum_{i,j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} du \middle| \mathcal{F}_{s}\right]$$

$$= X(s) + E\left[\frac{1}{2} \int_{s}^{t} \sum_{i,j=1}^{n} \frac{\partial^{2} h}{\partial x_{i} \partial x_{j}} du \middle| \mathcal{F}_{s}\right].$$

• If h is harmonic the last term is zero, since $\sum_{i,j=1}^{n} \frac{\partial^2 h}{\partial x_i \partial x_j} = 0$, we have $E[X(t)|\mathcal{F}_s] = X(s)$ so X is a martingale. • If h is subharmonic the last term is always nonnegative, since $\sum_{i,j=1}^{n} \frac{\partial^2 h}{\partial x_i \partial x_j} \ge 0$ we have

$$E[X(t)|\mathcal{F}_s] \ge X(s)$$
 so X is a submartingale.

Exercise 3.8

(a) Using the Itô's formula we find the dynamics of R(t),

$$dR(t) = 2X(t)(dX(t)) + 2Y(t)(dY(t)) + \frac{1}{2} \left[2(dX(t))^2 + 2(dY(t))^2 \right]$$

= $(2\alpha + 1) \left[X^2(t) + Y^2(t) \right] dt$
= $(2\alpha + 1)R(t)dt$

From the dynamics we can see immediately that R(t) is deterministic (it has no stochastic component!).

(b) Integrating the SDE for X(t) and taking expectations we have

$$X(t) = x_0 + \alpha \int_0^t E\left[X(s)\right] ds$$

Which once more can be solve setting m(t) = E[X(t)], taking the derivative with respect to t and using ODE methods, to get the answer

$$E\left[X(t)\right] = x_0 e^{\alpha t}$$

4 Differential Equations

Exercise 4.1 We have:

$$dY(t) = \alpha e^{\alpha t} x_0 dt, \quad dZ(t) = \alpha e^{\alpha t} \sigma dt, \quad dR(t) = e^{-\alpha t} dW(t).$$

Itô's formula then gives us (the cross term $dZ(t) \cdot dR(t)$ vanishes)

$$\begin{split} dX(t) &= dY(t) + Z(t) \cdot dR(t) + R(t) \cdot dZ(t) \\ &= \alpha e^{\alpha t} x_0 dt + e^{\alpha t} \cdot \sigma \cdot e^{-\alpha t} dW(t) + \int_0^t e^{-\alpha s} dW(s) \cdot \alpha e^{\alpha t} \sigma dt \\ &= \alpha \left[e^{\alpha t} x_0 + \sigma \int_0^t e^{\alpha (t-s)} dW(s) \right] dt + \sigma dW(t) \\ &= \alpha X(t) dt + \sigma dW(t). \end{split}$$

Exercise 4.5 Using the dynamics of X(t) and the Itô formula we get

$$dY(t) = \left[\alpha\beta + \frac{1}{2}\beta(\beta - 1)\sigma^2\right]Y(t)dt + \sigma\beta Y(t)dW(t)$$
$$= \mu Y(t)dt + \delta Y(t)dW(t)$$

where $\mu = \alpha \beta + \frac{1}{2}\beta(\beta - 1)\sigma^2$ and $\delta = \sigma\beta$ so Y is also a GBM.

Exercise 4.6 From the Itô formula and using the dynamics of X and Y

$$dZ(t) = \frac{1}{Y(t)} dX(t) - \frac{X(t)}{Y(t)^2} dY(t) - \frac{1}{Y(t)^2} dX(t) dY(t) + \frac{X(t)}{Y(t)^3} (dY(t))^2$$

= $Z(t) \left[\alpha - \gamma + \delta^2 \right] dt + \sigma Z(t) dW(t) - \delta Z(t) dV(t).$

Exercise 4.9 From Feyman-Kac we have We have

$$F(t,x) = E^{t,x} [2 \ln[X(T)]],$$

 $\quad \text{and} \quad$

$$dX(s) = \mu X(s)ds + \sigma XdW(s),$$

$$X(t) = x.$$

Solving the SDE, we obtain (check the solution of the GBM in the extra exercises if you do not remmeber)

$$X(T) = \exp\left\{\ln x + (\mu - \frac{1}{2}\sigma^2)(T - t) + \sigma[W(T) - W(t)]\right\},\$$

and thus

$$F(t,x) = 2\ln(x) + 2(\mu - \frac{1}{2}\sigma^2)(T-t).$$

Exercise 4.10 Given the dynamics of X(t) any F(t, x) that solves the problem has the dynamics given by

$$dF(t,x) = \frac{\partial F}{\partial t}dt + \frac{\partial F}{\partial x}dX(t) + \frac{1}{2}\frac{\partial^2 F}{\partial x^2}(dX(t))^2$$

= $\frac{\partial F}{\partial t}dt + \frac{\partial F}{\partial x}\left[\mu(t,x)dt + \sigma(t,x)dW(t)\right] + k(t,x)dt - k(t,x)dt$

$$+ \frac{1}{2} \frac{\partial^2 F}{\partial x^2} \left[\sigma^2(t, x) dW(t) \right]$$

$$= \left\{ \underbrace{\frac{\partial F}{\partial t} + \mu(t, x) \frac{\partial F}{\partial x} + \frac{1}{2} \sigma^2(t, x) + k(t, x)}_{0} \right\} dt - k(t, x) dt$$

$$+ \frac{\partial F}{\partial x} \sigma(t, x) dW(t)$$

$$= -k(t, x) dt + \frac{\partial F}{\partial x} \sigma(t, x) dW(t)$$

We now write F(T, X(T)) in terms of F(t, x) and the dynamics of F during the time period $t \dots T$ (recall that we defined X(t) = x)

$$F(t, X(T)) = F(t, x) - \int_{t}^{T} k(s, X(s)ds + \int_{t}^{T} \frac{\partial F}{\partial x} \sigma(s, X(s))dW(s)$$

$$\Leftrightarrow$$

$$F(t, x) = F(T, X(T)) + \int_{t}^{T} k(s, X(s)ds - \int_{t}^{T} \frac{\partial F}{\partial x} \sigma(s, X(s))dW(s)$$

Taking expectations $E_{t,x}\left[.\right]$ from both sides

$$\begin{split} F(t,x) &= E_{t,x} \left[F(T,X(T)) \right] + E_{t,x} \left[\int_t^T k(s,X(s)) ds \right] \\ &= E_{t,x} \left[\Phi(T) \right] + \int_t^T E_{t,x} \left[k(s,X(s)) \right] ds \end{split}$$

Exercise 4.11 Using the representation formula from Exercise 4.10 we get

$$F(t,x) = E_{t,x} \left[2 \ln[X^2(T)] \right] + \int_t^T E_{t,x} \left[X(s) \right] ds,$$

Given

$$dX(s) = X(s)dW(s).$$

The first term is easily computed as in the exercise 4.9 above. Furthermore it is easily seen directly from the SDE (how?)that $E_{t,x}[X(s)] = x$. Thus we have the result

$$F(t,x) = 2\ln(x) - (T-t) + x(T-t)$$

= $\ln(x^2) + (x-1)(T-t)$

6 Arbitrage Pricing

Exercise 6.1

(a) From standard theory we have

 $\Pi\left(t\right)=F(t,S(t)),$ where F solves the Black-Scholes equation.

Using Itô we obtain

$$d\Pi\left(t\right) = \left[\frac{\partial F}{\partial t} + rS(t)\frac{\partial F}{\partial s} + \frac{1}{2}\sigma^{2}S^{2}(t)\frac{\partial^{2}F}{\partial s^{2}}\right]dt + \sigma S(t)\frac{\partial F}{\partial s}dW(t).$$

Using the fact that F satisfies the Black-Scholes equation, and that $F(t,S(t))=\Pi\left(t\right)$ we obtain

$$d\Pi(t) = r\Pi(t) dt + \sigma S(t) \frac{\partial F}{\partial s} dW(t)$$

and so $g(t) = \sigma S(t) \frac{\partial F}{\partial s}$.

(b) Apply Itô's formula to the process $Z(t) = \frac{\Pi(t)}{B(t)}$ and use the result in (a).

$$dZ(t) = \frac{1}{B(t)}(d\Pi(t)) - \frac{\Pi(t)}{B^2(t)}(d(B(t)))$$
$$= \frac{g(t)}{B(t)}dW(t)$$
$$= Z(t)\frac{\sigma S(t)}{\Pi(t)}\frac{\partial F}{\partial s}dW(t)$$

Z is a martingale since $E_t[Z(T)] = Z(t)$ for all t < T and its diffusion coefficient is given by $\sigma_Z(t) = \frac{\sigma S(t)}{\Pi(t)} \frac{\partial F}{\partial s}$.

Exercise 6.4 We have as usual

$$\Pi(t) = e^{-r(T-t)} E_{t,s}^Q \left[S^\beta(T) \right]$$

We know from earlier exercises (check exercises 3.4 and 4.5) that $Y(t) = S^{\beta}(t)$ satisfies the SDE under Q

$$dY(t) = \left[r\beta + \frac{1}{2}\beta(\beta - 1)\sigma^2\right]Y(t)dt + \sigma\beta Y(t)dW(t)$$

Using the standard technique, we can integrate, take expectations, differentiate with respect to time and solve by ODE techniques, to obtain

$$E_{t,s}^Q\left[S^\beta(T)\right] = s^\beta e^{\left[r\beta + \frac{1}{2}\beta(\beta-1)\sigma^2\right](T-t)},$$

$$\Pi(t) = s^{\beta} e^{\left[r(\beta-1) + \frac{1}{2}\beta(\beta-1)\sigma^2\right](T-t)}.$$

Exercise 6.6 We consider only the case when $t < T_0$. The other case is handled in very much the same way. We have to compute $E_{t,s}^Q \left[\frac{S(T_1)}{S(T_0)}\right]$. Define the process X on the time interval $[T_0, T_1]$ by

$$X(u) = \frac{S(u)}{S(T_0)}$$

We now want to compute $E_{t,s}^Q[X(T_1)]$. The stochastic differential (under Q) of X is easily seen to be

$$dX(u) = rXdu + \sigma XdW(u),$$

$$X(T_0) = 1.$$

From this SDE it follows at once (the same technique of integrating, taking expectations, differentiate with respect to time and solve by ODE techniques) that

$$E_{t,s}^Q \left[X(T_1) \right] = e^{r(T_1 - T_0)},$$

and thus the price, at t of the contract is given by

$$\Pi\left(t\right) = e^{-r(T_0 - t)}.$$

Exercise 6.7 The price in SEK of the ACME INC., Z, is defined as Z(t) = S(t)Y(t) and by Itô has the following dynamics under Q

$$dZ(t) = rZ(t)dt + \sigma Z(t)dW_1(t) + \delta Z(t)dW_2(t)$$

We also have, by using Itô once more, that the dynamics of $\ln Z^2$ are

$$d\ln Z^2(t) = \left[2r - \sigma^2 - \delta^2\right] dt + 2\sigma dW_1(t) + 2\delta dW_2(t)$$

which integrating and taking conditioned expectations give us

$$E_{t,z}^{Q} \left[\ln[Z^{2}(T)] \right] = \ln z^{2} + \left[2r - \sigma^{2} - \delta^{2} \right] (T - t)$$

Since we know that

$$\Pi(t) = F(t,s) = e^{-r(T-t)} E_{t,z}^{Q} \left[\ln[Z^2(T)] \right],$$

So,

the arbitrage free pricing function Π is

$$\Pi(t) = e^{-r(T-t)} \left\{ \ln z^2 + \left[2r - \sigma^2 - \delta^2 \right] (T-t) \right\} = e^{-r(T-t)} \left\{ 2\ln(sy) + \left[2r - \sigma^2 - \delta^2 \right] (T-t) \right\},$$

where, as usual, z = Z(t), s = S(t) and y = Y(t).

Exercise 6.9 The *forward price*, i.e. the amount of money to be payed out at time T, but decided at the time t is

$$F(t,T) = E_t^Q \left[\mathcal{X} \right].$$

Note that the forward price is not the price of the forward contract on the T-claim \mathcal{X} which is what we are looking for.

Take for instance the long position: at time T, the buyer of a forward contract receives \mathcal{X} and pays F(t,T). Hence, the price at time t of that position is

$$\Pi(t; \mathcal{X} - F(t, T)) = E_t^Q \left[e^{-r(T-t)} \left(\mathcal{X} - \underbrace{F(t, T)}_{E_t^Q[\mathcal{X}]} \right) \right] = 0.$$

At time s > t, however, the underlying asset may have changed in value, in a way different from expectations, so then the price of a forward contract can be defined as

$$\begin{split} \Pi(s;\mathcal{X} - F(t,T)) &= & E_s^Q \left[e^{-r(T-s)} \left(\mathcal{X} - F(t,T) \right) \right] \\ &= & e^{-r(T-s)} \left[E_s^Q \left[\mathcal{X} \right] - \overbrace{E_t^Q}^{F(t,T)} \left[\mathcal{X} \right] \right]. \end{split}$$

Remark: For the special case where the contract is on one share S we get:

$$\Pi(s) = e^{-r(T-s)} \left[E_s^Q \left[S(T) \right] - \underbrace{S(t) e^{r(T-t)}}_{E_t^Q \left[S(T) \right]} \right].$$

We can also easily calculate $E^Q_s\left[S(T)\right]$ since

$$E_s^Q\left[S(T)\right] = \underbrace{S(t) + r \int_t^s S(u) du}_{S(s)} + r \int_s^T E_s^Q\left[S(u)\right] du$$

so,

$$E_s^Q \left[S(T) \right] = S(s) e^{r(T-s)}$$

and, therefore, the free arbitrage pricing function at time s > t is

$$\Pi(s) = S(s) - S(t)e^{r(s-t)}.$$

7 Completeness and Hedging

Exercise 7.2 We have F(t, s, z) be defined by

$$F_t + r \cdot s \cdot F_s + \frac{1}{2}\sigma^2 s^2 F_{ss} + gF_z = rF$$
$$F(T, s, z) = \Phi(s, z)$$

and the dynamics under Q for S and Z

$$\begin{split} dS(u) &= rS(u)du + \sigma S(u)dW(u) \\ dZ(u) &= g(u,S(u))du \end{split}$$

We want to show that $F(t,S(t),Z(t))=e^{-r(T-t)}E^Q_{t,s,z}\left[\Phi(S(T),Z(T))\right].$

For that we find , by Itô, the dynamics of $\Pi(t)=F(t,S(t),Z(t)),$ the arbitrage free pricing process

$$d\Pi(t) = F_t dt + F_s \left[(rS(t)dt + \sigma S(t)dW(t)] + F_z \cdot g(t, S(t))dt + \frac{1}{2}F_{ss}\sigma^2 S^2(t)dt \right]$$
$$= \underbrace{\left[F_t + r \cdot S(t) \cdot F_s + \frac{1}{2}\sigma^2 S^2(t)F_{ss} + g(t, S(t))F_z \right]}_{r\Pi(t)} + \sigma S(t)F_s dW(t)$$

Integrating we have

$$\Pi(T) = \Pi(t) + r \int_t^T \Pi(u) du + \sigma \int_t^T S(u) F_s dW(u)$$

Hence

$$E_{t,z,s}^{Q} \left[\Pi(T) \right] = \Pi(t) + r \int_{t}^{T} E_{t,z,s}^{Q} \left[\Pi(u) \right] du$$

So, using the usual "trick" of setting $m(u) = E_{t,z,s}^Q [\Pi(u)]$ and using techniques of ODE we finally get

$$\Pi(t) = F(t, S(t), Z(t)) = e^{-r(T-t)} E^Q_{t,s,z} \left[\Phi(S(T), Z(T)) \right].$$

(Remember that $\Pi(T)=F(T,S(T),Z(T))=\Phi(S(T),Z(T)).)$

Exercise 7.3 The price arbitrage free price is given by (note that this time our claim is *not* simple, i.e. it is not of the form $\mathcal{X} = \Phi(S(T))$).

$$\Pi(t) = e^{-r(T_2-t)} E_t^Q [\mathcal{X}]$$

= $e^{-r(T_2-t)} \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} E_t^Q [S(u)] du$

We know that under ${\cal Q}$

$$dS(u) = rS(u)du + \sigma S(u)dW(u)$$

$$S(t) = s$$

So,

$$\Rightarrow E_t^Q \left[S(u) \right] = s e^{r(u-t)}$$

$$\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} s e^{r(u-t)} du = \frac{1}{T_2 - T_1} \frac{s}{r} \left[e^{r(T_2 - t)} - e^{r(T_1 - t)} \right]$$

The price to the "mean" contract is thus

$$\Pi(t) = \frac{s}{r(T_2 - T_1)} \left[1 - e^{-r(T_2 - T_1)} \right].$$

8 Parity Relations and Delta Hedging

Exercise 8.1 The *T*-claim \mathcal{X} given by:

$$\mathcal{X} = \begin{cases} K, & \text{if } S(T) \leq A \\ K + A - S(T), & \text{if } A < S(T) < K + A \\ 0, & \text{otherwise.} \end{cases}$$

has then following contract function (recall that $\mathcal{X} = \Phi S(T)$)

$$\Phi(x) = \begin{cases} K, & \text{if } x \le A \\ K + A - x, & \text{if } A < x < K + A , \\ 0, & \text{otherwise.} \end{cases}$$

which can be decomposed into the following "basic" contract functions written

$$\Phi(x) = K \cdot \underbrace{1}_{\Phi_B(x)} - \underbrace{\max\left[0, x - A\right]}_{\Phi_{c,A}(x)} + \underbrace{\max\left[0, x - A - K\right]}_{\Phi_{c,A+K}(x)}.$$

Having this T-claim \mathcal{X} is then equivalent to having the following (replicating) portfolio at time T:

- * K in monetary units
- * short (position in) a call with strike A
- * long (position in) a call with strike A + K

Given the decomposition of the contract function Φ into basic contract functions, we immediately have that the arbitrage free pricing process Π is

$$\Pi(t) = K \cdot \overbrace{e^{-r(T-t)}}^{B(t)} - c(s, A, T) + c(s, A + K, T)$$

where c(s, A, T) and c(s, A+K, T) stand for the prices of European call options on S and maturity T with strike prices A and A+K, respectively. The Black-Scholes formula give us both c(s, A, T) and c(s, A+K, T).

The hedge portfolio thus consists of a reverse position in the above components, i.e., borrow $e^{-r(T-t)}K$, buy a call with strike K and sell a call with strike A+K.

Exercise 8.4 We apply, once again, the exact same technique. The *T*-claim \mathcal{X} given by:

$$\mathcal{X} = \begin{cases} 0, & \text{if } S(T) < A \\ S(T) - A, & \text{if } A \le S(T) \le B \\ C - S(T), & \text{if } B < S(T) \le C \\ 0, & \text{if } S(T) > C. \end{cases}$$

where $B = \frac{A+C}{2}$, has a contract function Φ that can be written as

$$\Phi(x) = \underbrace{\max\left[0, x - A\right]}_{\Phi_{c,A}(x)} + \underbrace{\max\left[0, x - C\right]}_{\Phi_{c,C}(x)} - 2\underbrace{\max\left[0, x - B\right]}_{\Phi_{c,B}(x)}$$

Having this *butterfly* is then equivalent to having the following constant (replicating) portfolio at time T:

- * long (position in) a call option with strike A
- * long (position in) a call option with strike C
- * short (position in) a call option with strike B