

Data Structures and Problem
Solving with C++
Second Edition

Instructors Resource Manual

Mark Allen Weiss
Florida International University

Addison-Wesley Publishing Company, Inc.
Menlo Park, California • Reading, Massachusetts • New York • Don Mills, Ontario

Wokingham, U.K. • Amsterdam • Bonn • Paris • Milan • Madrid • Sydney
Singapore • Tokyo • Seoul • Tapei • Mexico City • San Juan, Puerto Rico

� � �

Chapter 1 Pointers, Arrays, and Structures 1

1.1 Key Concepts and How To Teach Them 1
1.1.1 Arrays 1
1.1.2 Strings 1
1.1.3 Pointers 2
1.1.4 Dynamic Allocation 2
1.1.5 Reference Variables and Parameter Passing Mechanisms 2
1.1.6 Structures 2

1.2 Solutions To Exercises 3

1.3 Exam Questions 4

Chapter 2 Objects and Classes 7

2.1 Key Concepts and How To Teach Them 7
2.1.1 The class Construct 7
2.1.2 Public and Private Sections 8
2.1.3 Interface vs. Implementation 8
2.1.4 Constructors, Destructors, Copy Constructor, and Copy Assignment

operator= 8
2.1.5 const Member Functions 9
2.1.6 this Pointer 9
2.1.7 Operator Overloading 9
2.1.8 Type Conversions 10
2.1.9 I/O (Friends), and More on Binary Operators 10
2.1.10 static Class Members 10
2.1.11 enum, and Constant Class Members 10
2.1.12 string Class 10

2.2 Solutions To Exercises 11

2.3 Exam Questions 13

Chapter 3 Templates 19

3.1 Key Concepts and How To Teach Them 19
3.1.1 The Concept of a Template 19
3.1.2 Function Templates 19
3.1.3 Class Templates 20
3.1.4 vector Class 20
3.1.5 Fancy Stuff 20
3.1.6 Bugs 20

3.2 Solutions To Exercises 21

3.3 Exam Questions 22

� �

Chapter 4 Inheritance 25

4.1 Key Concepts and How To Teach Them 25
4.1.1 The Concept of Inheritance and Polymorphism 25
4.1.2 Public, Private, and Protected Members and Inheritance 26
4.1.3 Static vs. Dynamic Binding 26
4.1.4 Default Constructor, Copy Constructor, and Copy Assignment Op-

erator 26
4.1.5 Abstract Classes 27
4.1.6 Tricky Details 27

4.2 Solutions To Exercises 27

4.3 Exam Questions 28

Chapter 5 Design Patterns 31

5.1 Key Concepts and How To Teach Them 31
5.1.1 Must-Teach Patterns 31

5.2 Solutions To Exercises 31

5.3 Exam Questions 32

Chapter 6 Algorithm Analysis 33

6.1 Key Concepts and How To Teach Them 33
6.1.1 What is Algorithm Analysis 33
6.1.2 Some Examples 33
6.1.3 The Maximum Contiguous Subsequence Sum Problem 33
6.1.4 Official Big-oh Rules 34
6.1.5 Logarithms 34

6.2 Solutions To Exercises 34

6.3 Exam Questions 37

Chapter 7 The Standard Template Library 43

7.1 Key Concepts and How To Teach Them 43

7.2 Solutions To Exercises 44

7.3 Exam Questions 46

Chapter 8 Recursion 49

8.1 Key Concepts and How To Teach Them 49
8.1.1 What is Recursion? 49
8.1.2 Proof by Induction 49
8.1.3 Basic Recursion 50

�

8.1.4 Numerical Applications 50
8.1.5 Divide and Conquer 50
8.1.6 Dynamic Programming and Backtracking 50

8.2 Solutions To Exercises 51

8.3 Exam Questions 54

Chapter 9 Sorting 59

9.1 Key Concepts and How To Teach Them 59
9.1.1 Motivation for Sorting 59
9.1.2 Insertion Sort Analysis 60
9.1.3 Shellsort 60
9.1.4 Mergesort 60
9.1.5 Quicksort 60
9.1.6 Selection 60
9.1.7 Lower Bound for Sorting 60
9.1.8 Indirect sorting 61

9.2 Solutions To Exercises 61

9.3 Exam Questions 64

Chapter 10 Rando mization 67

10.1 Key Concepts and How To Teach Them 67
10.1.1 Linear Congruential Generators 67
10.1.2 Permutation Generation 67
10.1.3 Randomized Algorithms 68

10.2 Solutions To Exercises 68

10.3 Exam Questions 69

Chapter 11 Fun and Games 71

11.1 Key Concepts and How To Teach Them 71
11.1.1 Word Search Puzzle 71
11.1.2 Tic-tac-toe 71

11.2 Solutions To Exercises 72

11.3 Exam Questions 73

Chapter 12 Stacks and Compilers 75

12.1 Key Concepts and How To Teach Them 75
12.1.1 Balanced Symbol Checker 75
12.1.2 Infix to Postfix Conversion 75

� �

12.2 Solutions To Exercises 76

12.3 Exam Questions 79

Chapter 13 Utili ties 81

13.1 Key Concepts and How To Teach Them 81
13.1.1 Huffman’s Algorithm 81
13.1.2 Cross-reference Generator 81

13.2 Solutions To Exercises 82

13.3 Exam Questions 83

Chapter 14 Simulation 85

14.1 Key Concepts and How To Teach Them 85
14.1.1 Josephus Problem 85
14.1.2 Discrete-event Simulation 85

14.2 Solutions To Exercises 86

14.3 Exam Questions 87

Chapter 15 Graphs and Paths 89

15.1 Key Concepts and How To Teach Them 89
15.1.1 Definitions and Implementation 89
15.1.2 Unweighted Shortest Paths 90
15.1.3 Positive Weighted Shortest Paths 90
15.1.4 Negative Weighted Shortest Paths 90
15.1.5 Acyclic Graphs 90

15.2 Solutions To Exercises 91

15.3 Exam Questions 93

Chapter 16 Stacks and Queues 97

16.1 Key Concepts and How To Teach Them 97
16.1.1 Array-based Stack 97
16.1.2 Array-based Queue 97
16.1.3 Linked list-based Stack 97
16.1.4 Linked list-based Queue 98
16.1.5 Double-ended Queue 98

16.2 Solutions To Exercises 98

16.3 Exam Questions 100

� � �

Chapter 17 Linked Lists 103

17.1 Key Concepts and How To Teach Them 103
17.1.1 Basic Ideas: Header Nodes and Iterator Classes 103
17.1.2 Implementation Details 103
17.1.3 Doubly Linked Lists and Circular Linked Lists 104
17.1.4 Sorted Linked Lists 104
17.1.5 The STL list Implementation 104

17.2 Solutions To Exercises 104

17.3 Exam Questions 106

Chapter 18 Trees 109

18.1 Key Concepts and How To Teach Them 109
18.1.1 General Trees and Recursion 109
18.1.2 Binary Trees and Recursion 109
18.1.3 Tree Traversal 110

18.2 Solutions To Exercises 110

18.3 Exam Questions 113

Chapter 19 Binary Search Trees 117

19.1 Key Concepts and How To Teach Them 117
19.1.1 The Basic Binary Search Tree 117
19.1.2 Order Statistics 118
19.1.3 AVL Trees, Red-Black Trees, and AA-trees 118
19.1.4 STL set and map 118
19.1.5 B-trees 118

19.2 Solutions To Exercises 118

19.3 Exam Questions 123

Chapter 20 Hash Tables 127

20.1 Key Concepts and How To Teach Them 127
20.1.1 Basic Ideas 127
20.1.2 Hash Function 127
20.1.3 Linear Probing 127
20.1.4 Quadratic Probing 128
20.1.5 Other Implementations 128

20.2 Solutions To Exercises 128

20.3 Exam Questions 131

� � � �

Chapter 21 A Priority Queue: The Binary Heap 135

21.1 Key Concepts and How To Teach Them 135
21.1.1 Binary Heap and Heapsort 135

21.2 Solutions To Exercises 136

21.3 Exam Questions 139

Chapter 22 Splay Trees 143

22.1 Key Concepts and How To Teach Them 143

22.2 Solutions To Exercises 143

22.3 Exam Questions 144

Chapter 23 Merging Priority Queues 147

23.1 Key Concepts and How To Teach Them 147

23.2 Solutions To Exercises 147

23.3 Exam Questions 149

Chapter 24 The Disjoint Set Class 151

24.1 Key Concepts and How To Teach Them 151

24.2 Solutions To Exercises 151

24.3 Exam Questions 154

APPENDIX 157

Appendix A Sample Syllabi 159

Appendix B Sample Ass ignments 163

Preface

This Instructor’s Resource Manual provides additional material for instructors to
use in conjunction with Data Structures, and Problem Solving with C++ , second
edition.

Each chapter in the text has a corresponding chapter in this manual that con-
sists of:

• A section on the important concepts and how to teach them
• Solutions to many of the In Short and In Theory questions, as well as some

comments for some of the In Practice questions
• Multiple choice questions

I have attempted to avoid redundancy. As a result, common errors, which are
already listed in the text for each chapter, are not repeated. You should be sure to
review these errors with your students. Also, I have not repeated material already
stated in the book’s preface.

A minimal set of multiple choice questions is provided. It is easy to generate
additional questions from both these multiple choice questions (for example,
replace inorder with postorder, and you have a different question in Chapter 18)
and from some of the in chapter exercises. It is also a simple matter to design true/
false questions or fil l in questions based on what is provided. My own preference
is to give three types of questions on an exam: long answer (write a code frag-
ment...), simulation (show the data structure after the following operations...), and
questions. Of course if you have very large sections, grading this might be too
time consuming.

As mentioned in the textbook, the source code is available online. I have not
included any additional directly compilable code in this supplement.

Appendix A provides two syllabii: One for the separation approach, and one
for the traditional approach. Eight assignments are described in Appendix B.
Many many more are sugested as Programming Projects throughout the text.

E-mail

Please send comments and error reports to weiss@fiu.edu. Eventually, my
home page http://www.fiu.edu/~weiss will maintain an updated error
list and additional notes.

� � � � � � ��

Chapter 1

Pointers, Arrays, and Structures

1.1 Key Concepts and How To Teach Them

This chapter introduces several concepts:

• basic arrays (first-class arrays, using vector)
• basic strings (using string)
• pointers
• dynamic allocation
• reference variables and parameter passing mechanisms
• structures

Depending on the students’ background, some or even al l of this chapter
could be skipped, but I recommend at least a quick review of the chapter in all cir-
cumstances. Students who have not had C or C++ should go through the entire
chapter slowly. It is easy for students to think they understand the material in this
chapter based on an earlier course, and my experience is that they do not.

1.1.1 Arrays

Modern C++ arrays use the standard vector class and avoids the C-style array.
I li ke to explain the idea of using a li brary class, so as to lead in to Chapter 2.
Remind students that array indexing starts at 0 and goes to size()-1. Off -by-
one errors are very common; make sure the students are aware of these possibil i-
ties, and that the standard vector is not bounds checked (we write a better one in
Chapter 3). Explain parameter passing. Finall y discuss the push_back idea. I
have found that push_back is easy for students to understand.

1.1.2 Strings

There is not much to do here; avoid C-style strings. You may prefer to do strings
before arrays.

� 	
 � � � � � � � � � � � � � � � � � � � � � � � �

1.1.3 Pointers

Draw the usual memory pictures and emphasize that a pointer object is an object
that stores a memory address. Go through as many examples as you can to distin-
guish between accessing a pointer and dereferencing it. Note: The NULL constant
is defined in several header files, including stdlib.h.

1.1.4 Dynamic Allocation

This is here to avoid forward references in the text. You may prefer to delay this
material until linked lists are discussed. Or you can preview the idea of new and
delete, and explain the problems of stale pointers and double-deletion. Explain
the term memory leak.

1.1.5 Reference Variables and Parameter Passing Mech-
anisms

The key topic here is the distinction between call-by-value, call-by-reference, and
call -by-constant reference. Emphasize over and over again, that there are reall y
three forms of parameter passing and that the const is not merely window
dressing. Here are my rules:

• Call by value: used for IN parameters for buil t-in types
• Call by constant reference: used for IN parameters for class types
• Call by reference: used for IN OUT parameters

Many students insists on passing int objects by constant reference; this is
wrong! I t induces the overhead of pointer indirection when the reference is
accessed inside the function.

Many students get confused about passing pointers. When a pointer object is
passed, the value of the object is an address. Passing a pointer by reference means
that where the pointer points at could change. This is useful for resizing dynami-
cally allocated C-style arrays and also in binary tree updates.

1.1.6 Structures

This is a quickie opener to the class discussion. A C-style structure achieves the
grouping of data, but does not provide for information hiding or encapsulation of
functionality. Even so, some issues become evident and are worth discussing:

1. Structures should be passed either by reference or constant reference.
2. Deep vs. shallow copy.
3. Quick introduction to the linked list, C-style.

� 	 � � �
 	 � � 	 � � � � �
 � �

1.2 Solutions To Exercises

In Short

1.1 Pointers can be declared and initialized, they can be assigned to point at
an object, they can be dereferenced, they can be involved in arithmetic.
The address-of operator can be applied to a pointer in the same manner as
any other object.

1.2 (a) Yes; (b) Both have the same value as A; (c) *ptrPtr=&b; (d) No;
these objects have different types.

1.3 (a) Yes as long as x is an object. (b) No, because x might not be a pointer.
1.4 (a) the address where a is stored; (b) the value of a (5); (c) 1; (d) this is a

type mismatch, and if accepted by the compiler is most likely 0; (e) the
address where ptr is stored; (f) il legal, because a is not a pointer; (g) the
value of a (5); (h) the value of a (5).

1.5 (a) a is a member of type int in struct S and b is a member of type
pointer to S in struct S; (b) z is of type S; (c) x is of type pointer to S; (d)
y is of type array of 10 S; (e) u is of type array of 10 pointer to S; (f) x-
>a is of type int; (g) x->b is of type pointer to S; (h) z.b is of type
pointer to S; (i) z.a is of type int; (j) *z.a is ill egal because z.a is
not a pointer type; (k) (*z).a is illegal because z is not a pointer type;
(l) (this question should not be here) x->b-z.b is a subtraction of point-
ers and is thus of type int; (m) y->a is ill egal; (n) y[1] is of type S;
(o) y[1].a is of type int; (p) y[1].b is of type pointer to S; (q)
u[2] is of type pointer to S; (r) *u[2] is of type S; (s) u[2]->a is of
type int; (t) u[2]->b is of type pointer to S; (u) u[10] is of type
pointer to S but is past the declared bounds of u; (v) &z is of type pointer
to S; (w) &x is of type pointer to pointer to S; (x) u is of type array of
pointer to S; (y) y is of type array of S.

1.6 The picture below reflects a, b, and c after the declarations. The state-
ment b=5 changes a to 5 and then c=2 changes a to 2.

a = 3

b

c

� 	
 � � � � � � � � � � � � � � � � � � � � � � � �

1.7 This is perfectly legal. However if the const is moved from the second
declaration to the first, then the declaration and initialization of b would
be illegal.

1.8 /* begins a comment.

1.3 Exam Questions

1.1. For the declarations below, which statement is illegal?

int *ptr1;
int *ptr2;
int a = 5;

a. ptr1 = ptr2;
b. ptr1 = a;
c. ptr1 = &a;
d. *ptr1 = *ptr2;
e. *ptr1 = a;

1.2. For the declarations below, which expression is true if ptr1 and ptr2
point at the same object?

int *ptr1;
int *ptr2;

a. ptr1 == ptr2
b. *ptr1 == *ptr2
c. *(ptr1 == *ptr2)
d. &ptr1 == &ptr2
e. None of the above

1.3. For the declaration below, what is the type of *a?

const int *a;

a. int
b. const int
c. int *
d. const int *
e. none of the above

� � � � � � � �
 	 � �

1.4. A memory leak occurs when:

a. A local array is deleted.
b. A dynamically allocated object is deleted.
c. A dynamically allocated object is no longer referenced.
d. Two pointers point at the same object.
e. A dynamically allocated object is deleted twice.

1.5. Which of the following parameter passing mechanisms can be used to
alter a parameter?

a. Call by value
b. Call by reference
c. Call by constant reference
d. All of the above
e. None of the above

1.6. A shallow copy refers to

a. the copying of small objects
b. the copying of pointers
c. the copying of objects that are being pointed at
d. the copying of basic types, such as integers
e. call by value

1.7. Exogenous data is

a. a small member of a structure
b. a large member of a structure
c. an object that is not part of the structure, but is pointed at by the

structure
d. a global variable
e. the entire structure

1.8. If f is a member of structure S, and p is of type pointer to S, then which
expression must be legal?

a. p.f
b. p->f
c. *p.f
d. s.f
e. More than one of the above

� 	
 � � � � � � � � � � � � � � � � � � � � � � � �

1.9. What is the result of the following?

int x = 5;
int & ref = x;
ref++;

a. It increments x

b. It increments ref

c. It increments *ref

d. It increments &ref

e. It is illegal

1.10. What is the result of the following?

int x = 5;
int *ptr = &x;
int * & ref = ptr;
*ref++;

a. It increments ptr

b. It increments ref

c. It increments x

d. It increments &ref

e. It is illegal

Answers to Exam Questions

1. B
2. A
3. B
4. C
5. B
6. B
7. C
8. B
9. A

10. A

Chapter 2

Objects and Classes

2.1 Key Concepts and How To Teach Them

Students who have not had C++, with a description of class design, wil l need to
go through this chapter in its entirety. Students who have may want to quickly
review the chapter.

This chapter introduces the general concept of encapsulation and information
hiding, but is geared towards practical use of C++ with lots of emphasis on
designing classes and syntax. You may want to have the students bring a copy of
the code to class so you can avoid rewriting the classes. You also may want to
devote an entire class to reviewing the common error section at the end of the
chapter. The basic concepts are:

• the class construct
• public and private sections
• interface vs. implementation
• constructors, destructors, copy constructor, and copy assignment operator
• const member functions
• this pointer
• operator overloading
• type conversions
• I/O
• static class members
• enum, and constant class members
• string class implementation

2.1.1 The class Construct

Describe how the structure achieves the grouping of data members, and that C++
extends it to allow information hiding and encapsulation of functionality. The
basic mechanism for the latter is to allow functions to be data members. You can

� ! � � � � � � " � � � #

il lustrate this with IntCell. Add the private and public after discussing it.

2.1.2 Public and Private Sections

This seems to be a relatively easy topic. Explain that everything in the private
section is inaccessible to non-class routines. Continue with the IntCell exam-
ple.

2.1.3 Interface vs. Implementation

Explain that the implementation of member functions cannot be practical for
large classes, so we have to separate. Continue with IntCell class. At this point
you can describe the entire layout for separate compilation (if appropriate), and
remark about the #ifndef/#endif trick.

2.1.4 Constructors, Destructors, Copy Constructor, and
Copy Assignment operator=

Explain that in addition to particular member functions, every class has implicit
characteristics such as creation, destruction, and copying. The mechanics in C++
are complex because of default scenarios and syntax.

Describe the constructor first. Show how a declaration is matched by a con-
structor. Warn about several potential errors (see common errors). Next show the
copy constructor. Explain over and over again the difference between the copy
constructor and operator=: The copy constructor is called when a new object
is created, while operator= copies into an already existing object. Emphasize
the signature of the copy constructor (it takes a constant reference). Finally,
describe the destructor. It is enough to say at this time that it cleans up things.

Remark about the defaults: The rules are uniform, and boil s down to mem-
ber-by-member application. If no constructor is provided, a default zero-parame-
ter constructor is generated. The copy constructor is not counted in deciding if a
default zero-parameter constructor is generated.

Remark about initiali zer lists. These are very important for more complex
cases, and must be used for constant members or reference members.

Explain that copy constructors are needed for call by value and return by
value. Both of these mechanisms generate a hidden temporary by using the copy
constructor (and then eventually call a destructor for the temporary). Later on,
return types are discussed (when operator overloading is examined).

Explain that if the destructor is non-trivial, then the copy constructor and
copy assignment operator must almost certainly not use the default.

$ � � " 	 � � � % � � � � & 	 ' � 	 � � � � (� (� �)

2.1.5 const Member Functions

This is another often overlooked task. Constant member functions promise not to
change the state of an object. Consider carefully whether each member function
should be a constant member function. This is not merely an afterthought. Pro-
vide an example where it matters.

2.1.6 this Pointer

The this pointer enters into place when assignment operators are overloaded. It
i s used i n both the return val ue (*this) and i n test i ng f or al i asi ng
(*this==&rhs). Emphasize the distinction between this and *this. Here
are examples where aliasing can hurt:

1. Copying from one file to another. If f ile names are the same, the file is
probably clobbered unless a check is performed first.

2. strcat(a,a) fails in primitive C; overlapping memory copies fail i n
most languages.

3. A simple implementation of operator/= for the Rational class if
temporaries are not used will fail. This is a nice convincing example
because = does work, and gives a false sense of security. Explain that
the test should always be performed because it is too hard to try to
decide whether or not it might be needed.

2.1.7 Operator Overloading

For assignment operators, explain the signature and the return type. The return
type is a constant reference because it is just a synonym for the object being
assigned to. Explain that the return value represents the value of the expression, a
op= b, when used in a further expression. If the return type was void, that
would still change a, and would mean only that the result of the assignment could
not be used in a larger expression. Show an implementation that includes alias
testing and a return of *this.

For binary operators, we always have constant member functions and con-
stant reference parameters because the objects do not change. The return value is
by copy because the result is a brand new object that did not exist. Explain how
reference returns would give garbage. Then show how these operators can always
be implemented in terms of the corresponding assignment operators. Comparison
operators are straightforward.

Unary operators have no parameters. Explain why operator+ can return a
constant reference but operator- cannot (because in the first case, we have a
synonym for an already existing object). The ++ and -- operators are used later
on, so discuss them briefly. Again, as the functions are described, make the stu-
dents tell you if they should be constant members and what the return types and

� ! � � � � � � " � � � * +

parameters should be.

2.1.8 Type Conversions

Several things: first, a constructor defines an automatic type conversion whether
you want it or not. Second, for a member function, the controlling object (and
first parameter for operators) must be an exact match. Third, for reference param-
eters, the match must be exact (for constant reference, conversions are ok).
Fourth, type conversion operators can be written, but avoid them because they
will introduce ambiguities.

2.1.9 I/O (Friends), and More on Binary Operators

I/O is achieved by overloading << and >> for ostream and istream objects.
Since the first parameter is not of the class, it must be a global function. Since the
global function accesses private members, it must be a friend. Remark that the
same trick is used for mixed types of operators, such as ==; furthermore, remark
that although a friend function

bool operator!=(const Rational& lhs, const Rational& rhs);

will match Rational and int interchangeably, it involves the overhead of
construction and destruction. As a result, a high quali ty class would have function
for each case. If Rational is on the left side, operator!= is overloaded as a
member function (with one less parameter); otherwise it is a friend function. I do
not like using friends; Section 2.4.1 should be emphasized.

2.1.10 static Class Members

Not a big deal. Describe it briefly.

2.1.11 enum, and Constant Class Members

You may want to explain the enum trick at some point. I hardly use it. For con-
stants, I use static const defined in implementation fil es. These are static
global variables. This restricts its visibility to the implementation file, and avoids
possible name clashes. An alternative is a static constant member.

2.1.12 string Class

This is not a high-quali ty replacement, but does ill ustrate the basics. There isn’ t
real ly much new here, except for the two versions of operator[]. This is
worth a short discussion, but not much more than that, since it is a technical detail
and is fairly confusing.

� 	 � � �
 	 � � 	 � � � � �
 � * *

2.2 Solutions To Exercises

In Short

2.1 Information hiding makes implementation details, including components
of an object, inaccessible. Encapsulation is the grouping of data and the
operations that apply to them to form an aggregate whil e hiding the
implementation of the aggregate. Encapsulation and information hiding
are achieved in C++ through the use of the class.

2.2 Members in the public section of a class are visible to non-class routines
and can be accessed via the. member operator. Private members are not
visible outside of the class.

2.3 The constructor is called when an object is created, either by declaration,
a call to new, or as a member of an object which itself is being con-
structed. The destructor is call ed when the object exits scope, either
because it is a local variable in a terminating function, it is subject to a
delete, or it is a member of an object whose destructor is called.

2.4 The copy constructor creates and initi ali zes a new object. It is used to
implement call by value. The copy assignment operator copies into an
already existing object.

2.5 The default constructor is a member-by-member application of a default
constructor. The default destructor is a member-by-member application
of a destructor.

2.6 A destructor is not needed if no resources are allocated for the object or if
allocated resources are deallocated automaticall y by the default destruc-
tor. operator= and a copy constructor should be provided whenever a
default would be wrong. The most common example involves data mem-
bers that are pointers. The default would be a shallow copy.

2.7 (This material is not explicitly discussed in the second edition and thus
this question should have been removed.) The benefit of an inline func-
tion is that it avoids the overhead of a function call . One disadvantage is
that it increases code size (which may offset the gain incurred by avoiding
a function call). A second disadvantage is that the definition of an inline
function must be visible to all call ing routines and the calli ng routines
must be recompiled when the definition of the inline function changes.

2.8 Four operators cannot be overloaded: ., .*, ?:, and sizeof. Prece-
dence cannot be changed, arity cannot be changed, and only existing
operators can be overloaded.

2.9 A friend function of class C is a function that is not a member of C but
nonetheless has access to C’ s private members.

2.10 << and >> need to be overloaded as friend functions. The first parameter
and return type are ostream& for output and istream& for input. The
second parameter is a constant reference to a ClassName object for out-
put and a reference to a ClassName object for input.

2.11 (i and k may be beyond the scope of this edition of the text.) a, b, and d

� ! � � � � � � " � � � * �

are initialized using the constructor at line 25. The initial values are 0, 3,
and 0, respectively. c and e are initialized using the constructor at line 27.
f is a function that returns a Rational object. g and h point at objects
created by a call to the constructors at line 27 and 25, respectively. i
points at an array of 5 objects each constructed by the constructor at line
25 (with default initi al value 0). j represents a vector of size 10, with
each object constructed as was done for i. k represents an array of 10
zero-sized vectors.

2.12 (i may be beyond the scope of this edition of the text.) We need three
calls:

delete g;
delete h;
delete[] i;

2.13 The sizeof operator returns the size of the object, including all private
members.

2.14 In that situation, no operations can be performed on the class.

In Theory

2.15 If rhs is passed by copy, the copy constructor will be called ad-infini-
tum.

In Practice

2.16 (d) Although ̂ can be overloaded, its precedence is low, so 1+2^3 (with
Rational objects) would evaluate to 27.

2.18 (a) The return type should be a string (that is, return by value), unless
the string class itself is drastically rewritten. (c) The difference is the
usual difference between initiali zation versus assignment. In alternative
2, an empty string is constructed, and then a copy is performed. This
could be more expensive that the initialization at construction.

2.19 (a) Yes, because the char can be implicitl y converted using a string
constructor. (b) A temporary is created, and string::operator+= is
used.

Programming Projects

2.23 First, move totalDays into the private section. The default construc-
tors and destructor are acceptable. operator+= should return a con-
stant reference. The parameters to operator- and operator< should
be references. The implementation is left to the reader.

2.24 The defaults are acceptable.

� � � � � � � �
 	 � * �

2.3 Exam Questions

2.1. Which of the following is the most direct example of how encapsula-
tion is supported in C++?

a. constructors
b. destructors
c. member functions
d. public and private specifiers
e. the class declaration

2.2. Which of the following is the most direct example of how information
hiding is supported in C++?

a. constructors
b. destructors
c. member functions
d. public and private specifiers
e. the class declaration

2.3. What is the difference between a struct and a class?

a. constructors and destructors are allowed for the class

b. member functions are allowed for the class

c. members are private by default for the class
d. copying is not allowed for the struct

e. none of the above

2.4. Which of the following should be placed in a header file?

a. class interface
b. class implementation
c. inline function bodies
d. (a) and (c)
e. (a), (b), and (c)

2.5. What happens if a non-class function attempts to access a private mem-
ber?

a. compile time error
b. compile time warning, but program compiles
c. the program compiles but the results are undefined
d. the program is certain to crash
e. some of the above, but the result varies from system to system

� ! � � � � � � " � � � * �

2.6. When a parameter is passed call by value, what functions are guaran-
teed to be called?
a. zero-parameter constructor
b. copy constructor
c. destructor
d. operator=
e. two or more of the above

2.7. Suppose the string class defines operator== as a class member
with a single string parameter. Assume that no other operator==
are defined, that a constructor for string from const char * is
defined, but operator const char* () is not defined. s is of
type string. Which of the following is illegal?

a. s==s
b. s=="junk"
c. "junk"==s
d. all are il legal
e. all are legal

2.8. If a class contains a pointer to dynamically allocated memory, which of
the following defaults is likely to be unacceptable?

a. copy constructor
b. destructor
c. operator=
d. all of the above
e. none of the above

2.9. Which of the following does not default to member-by-member appli-
cation?

a. zero-parameter constructor
b. copy constructor
c. destructor
d. operator=
e. all of the above default to member-by-member application.

2.10. When is a destructor not called?

a. A local automatic variable goes out of scope
b. A pointer variable goes out of scope
c. delete
d. delete []
e. Destructors are called in all instances

� � � � � � � �
 	 � * �

2.11. A copy constructor is not called for

a. call by value
b. return by value
c. string s = t; // t is also a string
d. string s(t); // t is also a string
e. s = t; // s and t are both string

2.12. What is the prototype for the copy constructor?

a. ClassType();
b. ClassType(ClassType);
c. ClassType(ClassType &);
d. ClassType(const ClassType &);
e. None of the above

2.13. A constant member function means that:

a. All of the parameters are constant
b. The object being acted upon is a constant
c. The parameters are not passed using call by value
d. The result of the function call cannot be assigned to
e. none of the above

2.14. Which condition occurs when the same object appears as both an input
and output parameter?

a. aliasing
b. copy construction
c. operator overloading
d. type conversion
e. none of the above

2.15. The current object is given by

a. this
b. *this
c. &this
d. **this
e. none of the above

� ! � � � � � � " � � � * �

2.16. Which of the following statements is false?

a. some operators cannot be overloaded
b. the precedence of an operator cannot be changed
c. the arity of an operator cannot be changed
d. only existing operators can be overloaded
e. binary operators can be overloaded only if both operands have the

same type.

2.17. If operator== is written as member function, how many parameters
should it have?

a. none
b. 1, passed by value
c. 1, passed by constant reference
d. 2, both passed by value
e. 2, both passed by constant reference

2.18. Which of the following string operators should not return by con-
stant reference?

a. operator=
b. operator+=
c. unary operator+
d. binary operator+
e. constant reference is acceptable for all of these

2.19. Which of (a) to (d) is false about the pointer this?

a. it is used to test for aliasing
b. it is used for the return in an assignment operator
c. this is not modifiable
d. *this is not modifiable
e. all of the above are true

2.20. Initializer lists are used in

a. assignment operators
b. all member functions
c. constructors
d. destructors
e. friend functions

� � � � � � � �
 	 � * ,

2.21. Which of (a) to (d) is false about overloading << for output?

a. the output function cannot be a class member
b. the output function must be a friend
c. the output function takes a stream passed by reference
d. the output function takes an object passed by reference
e. more than one of the above statements is false

2.22. Which of (a) to (c) is false about a static class member?

a. a defining declaration must be placed in the implementation file
b. one member is allocated for each declared class object
c. the static class member is guaranteed to be private to the class
d. two of the above are false
e. all of (a), (b), and (c) are false

2.23. Which of the following is not part of the function signature?

a. function name
b. constant member function declaration
c. parameter passing mechanisms
d. return type
e. all of the above are part of the signature

2.24. Which of the following parameter passing mechanisms requires an
exact match?

a. call by value
b. call by reference
c. call by constant reference
d. all of the above require exact matches
e. none of the above require exact matches

2.25. In which of the following cases is a class member M invisible in a func-
tion F?

a. F is a member function and M is private
b. F is a friend function and M is private
c. F is a general function and M is public
d. F is a general function and M is private
e. none of the above

Answers to Exam Questions

1. C

� ! � � � � � � " � � � * #

2. D
3. C
4. D
5. A
6. E
7. C
8. D
9. E

10. B
11. E
12. D
13. B
14. A
15. B
16. E
17. C
18. D
19. D
20. C
21. E
22. D
23. D
24. B
25. D

