
Chapter 2 Processor Architecture…Solutions

1. Having a large register-file is detrimental to the performance of a processor since it results
in a large overhead for procedure call/return in high-level languages. Do you agree or
disagree? Give supporting arguments.

Disagree.

By judicious use of calling conventions defining saved and temporary registers call/return

overhead can be managed to any desired level of performance

2. Distinguish between the frame pointer and the stack pointer.

The stack pointer points to the top of the stack and as more or less stack space is needed

will change position during the execution of a particular piece of code (e.g. function) .

Since it is common to reference the location of variables stored on the stack as an offset

from the stack pointer this movement becomes problematic. A solution is to use another

register to store the location of a fixed reference point that will be constant throughout

the execution of some particular piece of code (e.g. function). Note: This is not to say that

when a function calls another function the frame pointer will remain fixed. It will not.

Rather it will be changed on call and reestablished upon return thus for all execution of an

given functions own code it will be fixed.

3. In the LC-2200 architecture, where are operands normally found for an add instruction?

 The operands are in registers.

4. Endianness: Let’s say you want to write a program for comparing two strings. You have a
choice of using a 32-bit byte-addressable Big-endian or Little-endian architecture to do
this. In either case, you can pack 4 characters in each word of 32-bits. Which one would
you choose and how will you write such a program? [Hint: Normally, you would do string
comparison one character at a time. If you can do it a word at a time instead of a
character at a time, that implementation will be faster.]

 The choice of endianness should not matter, so long as you are consistent in the

comparison. Subtract each word in string A from string B. If you return zero, the strings

are identical. Note, you can only perform this operation on the same system. The

operation will be more complex if you are trying to compare a Big-endian system to a

Little-endian system. You would have to compare character by character.

5. ISA may support different flavors of conditional branch instructions such as BZ (branch on
Zero), BN (branch on negative), and BEQ (branch on equal). Figure out the predicate
expressions in an “if” statement that may be best served by these different flavors of
conditional branch instructions. Give examples of such predicates in “if” statement, and
how you will compile them using these different flavors of branch instructions.

 BZ: if (a == 0)

BEQ: if (a == b)

BN: if (a < 0) or if (a < b) which becomes if (a-b < 0)

BP: if (a > 0) or if (a>b) which becomes if(a-b > 0)

 6. We said that endianness will not affect your program performance or correctness so long
as the use of a (high level) data structure is commensurate with its declaration. Are there
situations where even if your program does not violate the above rule, you could be
bitten by the endianness of the architecture? [Hint: Think of programs that cross network
boundaries.]

 Yes, if data from a big-endian computer were transferred over a network to a small endian

computer data corruption could occur. However, this problem has largely been solved

with the Internet and networks which use similar technology. The solution is for networks

to use a standard endianness. If the endianness of the network is different from the host

computer, the host’s network interface will apply the appropriate conversion.

7. Work out the details of the implementing the switch statement using jump tables in

assembly using any flavor of conditional branch instruction. [Hint: After ensuring that the

value of the switch variable is within the bounds of valid case values, jump to the start of

the appropriate code segment corresponding to the current switch value, execute the

code and finally jump to exit.]

▪ First, check the bounds of the switch variable

▪ If the variable is within the bounds, you would index into the jump-table based on

which switch case was executed. For example, if you took the second switch

statement, you would jump to the second location listed in the jump-table.

▪ Execute the desired branch

▪ JLR or JMP $returnaddress

▪ Continue with your original code

8. Procedure A has important data in both S and T registers and is about to call procedure B.
Which registers should A store on the stack? Which registers should B store on the stack?

 Procedure A should save the T registers before calling procedure B. B should save any S

registers it uses OR save any T registers it needs before calling another function.

9. Consider the usage of the stack abstraction in executing procedure calls. Do all actions on

the stack happen only via pushes and pops on to and from the top of the stack? Explain
circumstances that warrant reaching into other parts of the stack during program
execution. How is this accomplished?

No, the amount of memory included in the stack at any given time is controlled by simply
changing the stack pointer value. Then values may be read or written in locations defined
as offsets from the address stored in the stack pointer (or frame pointer).

10. Answer True/False with justification: Procedure call/return cannot be implemented

without a frame pointer.

False, the frame pointer is not necessary to implement procedure calls, but it can make
code simpler.

11. DEC VAX had a single instruction for loading and storing all the program visible registers

from/to memory. Can you see a reason for such an instruction pair? Consider both the
pros and cons.

Pros: If you are a callee and need to use all of the temporary and safe registers, you can
perform this operation in one call. If you want to save the current state of execution, it
can be done in one call.

Cons: In most cases you do not need all available registers, so this command uses more
memory (and possibly time) than required.

 12. Show how you can simulate a subtract instruction using the existing LC-2200 ISA?

Since our system uses 2’s complement, the negative value of a number is NOT X plus 1.
The LC-2200 does not have support for NOT, but NAND serves the same function.

 B  B NAND B ; not B

 B  B+1 ; B+1

 A A+B ; A+B, net result is A-B

13. The BEQ instruction restricts the distance you can branch to from the current position of
the PC. If your program warrants jumping to a distance larger than that allowed by the
offset field of the BEQ instruction, show how you can accomplish such “long” branches
using the existing LC-2200 ISA.

 BEQ $s0, $s1, Near
 BEQ $zero, $zero, Skip
 Near JALR $s2, $zero
 Skip …

 Note: Assume the address of the location that is a "long" way away is in $s2

14. What is an ISA and why is it important?

The ISA (Instruction Set Architecture) serves as a kind of contractual document which
allows all parties concerned with the design, implementation and use of a given processor
to know what is expected of them and what resources will be afforded by that processor.

As soon as an ISA is finalized:

• Implementation engineers can design the detail that will allow the processor to
meet the ISA specification

• Assembler and compiler writers can create assemblers and compiler for use with
the processor long before a working model even exists.

• Operating system designers/maintainers can determine what needs to be done to
allow their operating system to run on this processor.

• I/O Device engineers can design controllers and driver software that will be used
with the processor.

• Box (or equivalent) engineers can determine how to use the processor in their
designs

• etc.

15. What are the influences on instruction set design?

Instruction sets are influenced by efficiency, ease of implementation, and ease of
programming. A larger instruction set makes writing compilers easier, but at the
detriment of speed or ease of implementation. See also CISC and RISC.

16. What are conditional statements and how are they handled in the ISA?

Conditional statements compare 2 values to determine some sort of relation (equality,
equal to zero, positive, or negative). The ISA specifies which conditional statements are
available. The LC-2200 features BEQ, but the LC-2110 had BR(N/Z/P).

17. Define the term addressing mode.

An addressing mode specifies how the bits of the instruction determine the location of
the operands. For example, some of the bits might be a register number or an offset to be
added to the PC, etc.

18. In Section 2.8, we mentioned that local variables in a procedure are allocated on the

stack. While this description is convenient for keeping the exposition simple, modern
compilers work quite differently. This exercise is for you to search the Internet and find
out how exactly modern compilers allocate space for local variables in a procedure call.
[Hint: Recall that registers are faster than memory. So, the objective should be to keep as
many of the variables in registers as possible.]

 As we have already seen many local variables which technically if located in memory

would be found on the stack are in reality maintained in registers because of the
significant advantage in speed enjoyed by the registers. We have already seen saved and
temporary register conventions, argument registers, return value and return address
registers. All of these are an attempt to increase speed and efficiency. In addition, modern
optimizing compilers employ sophisticated register allocation strategies designed to
maximize use of registers. However, arrays and structures are maintained on the stack
and not in registers.

19. We use the term abstraction to refer to the stack. What is meant by this term? Does the

term abstraction imply how it is implemented? For example, is a stack used in a procedure
call/return a hardware device or a software device?

 An abstraction is a way of simplifying and eliminating unnecessary details while defining

the desired behavior of a system. Normally abstraction implies hiding implementation
details. For example, a queue is an abstraction that has to support enqueuing and
dequeuing. The queue abstraction may be implemented with a linked list, an array, etc.
The stack facilitating a procedure call/return is a software abstraction implemented with
memory and register hardware but it could also be implemented as a separate device.

20. Given the following instructions

BEQ Rx, Ry, offset ; if (Rx == Ry) PC=PC+offset

SUB Rx, Ry, Rz ; Rx <- Ry - Rz

ADDI Rx, Ry, Imm ; Rx <- Ry + Immediate value

AND Rx, Ry, Rz ; Rx <- Ry AND Rz

 Show how you can realize the effect of the following instruction:

 BGT Rx, Ry, offset ; if (Rx > Ry) PC=PC+offset

Assume that the registers and the Imm field are 8-bits wide. You can ignore the case that
the SUB instruction causes an overflow.

 Solution:

 If Rx > Ry then Ry-Rx < 0

SUB $at, Ry, Rx ; Ry - Rx

ADDI $t3, $zero, x80 ; Create the mask 1000 0000

AND $at, $at, $t3 ; Check for negative

BEQ $at, $zero offset

Note: $t3 would need to be saved if in use already

21. Given the following load instruction

LW Rx, Ry, OFFSET ; Rx <- MEM[Ry + OFFSET]

Show how to realize a new addressing mode, called indirect, for use with the load
instruction that is represented in assembly language as:

LW Rx, @(Ry) ;

The semantics of this instruction is that the contents of register Ry is the address of a
pointer to the memory operand that must be loaded in Rx.

Solution:

LW Rx, Ry, 0

LW Rx, Rx, 0

22. Convert this statement:

g = h + A[i];

into an LC-2200 assembler with the assumption that the address of A is located in $t0, g is
in $s1, h is in $s2, and, i is in $t1.

 ADD $t2, $t0, $t1 ; Calculate address of A[i]
 LW $t3, 0($t2) ; Load the contents of A[i] into a register
 ADD $s1, $s2, $t3 ; Assign sum to g

23. Suppose you design a computer called the Big Looper 2000 that will never be used to call
procedures and that will automatically jump back to the beginning of memory when it
reaches the end. Do you need a program counter? Justify your answer.

 Even the Big Looper 2000 will need a PC in order to know from what address to fetch an

instruction from on each cycle. The PC will also be used in the calculation of PC relative
addressing such as those used with branch instructions.

24. Consider the following program and assume that for this processor:

• All arguments are passed on the stack.
• Register V0 is for return values.
• The S registers are expected to be saved, that is a calling routine can leave values in

the S registers and expect it to be there after a call.
• The T registers are expected to be temporary, that is a calling routine must not

expect values in the T registers to be preserved after a call.

int bar(int a, int b)

{

/* Code that uses registers T5, T6, S11-S13; */

return(1);

}

int foo(int a, int b, int c, int d, int e)

{

int x, y;

/* Code that uses registers T5-T10, S11-S13; */

bar(x, y); /* call bar */

/* Code that reuses register T6 & arguments a, b, & c; */

return(0);

}

main(int argc, char **argv)

{

int p, q, r, s, t, u;

/* Code that uses registers T5-T10, S11-S15; */

foo(p, q, r, s, t); /* Call foo */

/* Code that reuses registers T9, T10; */

}

Here is the stack when bar is executing, clearly indicate in the spaces provided which
procedure (main, foo, bar) saved specific entries on the stack.

main foo bar
_X__ ____ ____ p
_X__ ____ ____ q

_X__ ____ ____ r
_X__ ____ ____ s
_X__ ____ ____ t
_X__ ____ ____ u
_X__ ____ ____ T9
_X__ ____ ____ T10
____ _X__ ____ p
____ _X__ ____ q
____ _X__ ____ r
____ _X__ ____ s
____ _X__ ____ t
____ _X__ ____ x
____ _X__ ____ y
____ _X__ ____ S11
____ _X__ ____ S12
____ _X__ ____ S13
____ ____ ____ S14
____ ____ ____ S15
____ _X__ ____ T6
____ ____ _X__ x
____ ____ _X__ y
____ ____ _X__ S11
____ ____ _X__ S12
____ ____ _X__ S13 <----------- Top of Stack

