Chapter 2

Problems

1. (a) $S=\{(r, r),(r, g),(r, b),(g, r),(g, g),(g, b),(b, r), b, g),(b, b)\}$
(b) $S=\{(r, g),(r, b),(g, r),(g, b),(b, r),(b, g)\}$
2. $S=\left\{\left(n, x_{1}, \ldots, x_{n-1}\right), n \geq 1, x_{i} \neq 6, i=1, \ldots, n-1\right\}$, with the interpretation that the outcome is $\left(n, x_{1}, \ldots, x_{n-1}\right)$ if the first 6 appears on roll n, and x_{i} appears on roll, $i, i=1, \ldots, n-1$. The event $\left(\cup_{n=1}^{\infty} E_{n}\right)^{c}$ is the event that 6 never appears.
3. $E F=\{(1,2),(1,4),(1,6),(2,1),(4,1),(6,1)\}$.
$E \cup F$ occurs if the sum is odd or if at least one of the dice lands on $1 . F G=\{(1,4),(4,1)\}$. $E F^{c}$ is the event that neither of the dice lands on 1 and the sum is odd. $E F G=F G$.
4. $A=\{1,0001,0000001, \ldots\} \quad B=\{01,00001,00000001, \ldots\}$
$(A \cup B)^{c}=\{00000 \ldots, 001,000001, \ldots\}$
5. (a) $2^{5}=32$
(b)
$W=\{(1,1,1,1,1),(1,1,1,1,0),(1,1,1,0,1),(1,1,0,1,1),(1,1,1,0,0),(1,1,0,1,0)$
$(1,1,0,0,1),(1,1,0,0,0),(1,0,1,1,1),(0,1,1,1,1),(1,0,1,1,0),(0,1,1,1,0),(0,0,1,1,1)$ $(0,0,1,1,0),(1,0,1,0,1)\}$
(c) 8
(d) $A W=\{(1,1,1,0,0),(1,1,0,0,0)\}$
6. (a) $S=\{(1, g),(0, g),(1, f),(0, f),(1, s),(0, s)\}$
(b) $A=\{(1, s),(0, s)\}$
(c) $B=\{(0, g),(0, f),(0, s)\}$
(d) $\{(1, s),(0, s),(1, g),(1, f)\}$
7. (a) 6^{15}
(b) $6^{15}-3^{15}$
(c) 4^{15}
8. (a) .8
(b) . 3
(c) 0
9. Choose a customer at random. Let A denote the event that this customer carries an American Express card and V the event that he or she carries a VISA card.

$$
P(A \cup V)=P(A)+P(V)-P(A V)=.24+.61-.11=.74
$$

Therefore, 74 percent of the establishment's customers carry at least one of the two types of credit cards that it accepts.
10. Let R and N denote the events, respectively, that the student wears a ring and wears a necklace.
(a) $P(R \cup N)=1-.6=.4$
(b) $.4=P(R \cup N)=P(R)+P(N)-P(R N)=.2+.3-P(R N)$ Thus, $P(R N)=.1$
11. Let A be the event that a randomly chosen person is a cigarette smoker and let B be the event that she or he is a cigar smoker.
(a) $1-P(A \cup B)=1-(.07+.28-.05)=.7$. Hence, 70 percent smoke neither.
(b) $P\left(A^{c} B\right)=P(B)-P(A B)=.07-.05=.02$. Hence, 2 percent smoke cigars but not cigarettes.
12. (a) $P(S \cup F \cup G)=(28+26+16-12-4-6+2) / 100=1 / 2$

The desired probability is $1-1 / 2=1 / 2$.
(b) Use the Venn diagram below to obtain the answer 32/100.

(c) Since 50 students are not taking any of the courses, the probability that neither one is taking a course is $\binom{50}{2} /\binom{100}{2}=49 / 198$ and so the probability that at least one is taking a course is $149 / 198$.
13.

(a) 20,000
(b) 12,000
(c) 11,000
(d) 68,000
(e) 10,000
14. $P(M)+P(W)+P(G)-P(M W)-P(M G)-P(W G)+P(M W G)=.312+.470+.525-.086-$ $.042-.147+.025=1.057$
15.
(a) $4\binom{13}{5} /\binom{52}{5}$
(b) $13\binom{4}{2}\binom{12}{3}\binom{4}{1}\binom{4}{1}\binom{4}{1} /\binom{52}{5}$
(c) $\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{44}{1} /\binom{52}{5}$
(d) $13\binom{4}{3}\binom{12}{2}\binom{4}{1}\binom{4}{1} /\binom{52}{5}$
(e) $13\binom{4}{4}\binom{48}{1} /\binom{52}{5}$
16.
(a) $\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{6^{5}}$
(d) $\frac{6 \cdot 5 \cdot 4\binom{5}{3}}{21}$
(b) $\frac{6\binom{5}{2} 5 \cdot 4 \cdot 3}{6^{5}}$
(c) $\frac{\binom{6}{2} 4\binom{5}{2}\binom{3}{2}}{6^{5}}$
(e) $\frac{6 \cdot 5\binom{5}{3}}{6^{5}}$
(f) $\frac{6 \cdot 5\binom{5}{4}}{6^{5}}$
(g) $\frac{6}{6^{5}}$
17. $\frac{\prod_{i=1}^{8} i^{2}}{64 \cdot 63 \cdots 58}$
18. $\frac{2 \cdot 4 \cdot 16}{52 \cdot 51}$
19. $4 / 36+4 / 36+1 / 36+1 / 36=5 / 18$
20. Let A be the event that you are dealt blackjack and let B be the event that the dealer is dealt blackjack. Then,

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A B) \\
& =\frac{4 \cdot 4 \cdot 16}{52 \cdot 51}+\frac{4 \cdot 4 \cdot 16 \cdot 3 \cdot 15}{52 \cdot 51 \cdot 50 \cdot 49} \\
& =.0983
\end{aligned}
$$

where the preceding used that $P(A)=P(B)=2 \times \frac{4 \cdot 16}{52 \cdot 51}$. Hence, the probability that neither is dealt blackjack is .9017 .
21. (a) $p_{1}=4 / 20, p_{2}=8 / 20, p_{3}=5 / 20, p_{4}=2 / 20, p_{5}=1 / 20$
(b) There are a total of $4 \cdot 1+8 \cdot 2+5 \cdot 3+2 \cdot 4+1 \cdot 5=48$ children. Hence,

$$
q_{1}=4 / 48, q_{2}=16 / 48, q_{3}=15 / 48, q_{4}=8 / 48, q_{5}=5 / 48
$$

22. The ordering will be unchanged if for some $k, 0 \leq k \leq n$, the first k coin tosses land heads and the last $n-k$ land tails. Hence, the desired probability is ($n+1 / 2^{n}$
23. The answer is $5 / 12$, which can be seen as follows:

$$
\begin{aligned}
1 & =P\{\text { first higher }\}+P\{\text { second higher }\}+p\{\text { same }\} \\
& =2 P\{\text { second higher }\}+p\{\text { same }\} \\
& =2 P\{\text { second higher }\}+1 / 6
\end{aligned}
$$

Another way of solving is to list all the outcomes for which the second is higher. There is 1 outcome when the second die lands on two, 2 when it lands on three, 3 when it lands on four, 4 when it lands on five, and 5 when it lands on six. Hence, the probability is $(1+2+3+4+5) / 36=5 / 12$.
25. $P\left(E_{n}\right)=\left(\frac{26}{36}\right)^{n-1} \frac{6}{36}, \quad \sum_{n=1}^{\infty} P\left(E_{n}\right)=\frac{2}{5}$
27. Imagine that all 10 balls are withdrawn
$P(A)=\frac{3 \cdot 9!+7 \cdot 6 \cdot 3 \cdot 7!+7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 5!+7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 3 \cdot 3!}{10!}$
28. $P\{$ same $\}=\frac{\binom{5}{3}+\binom{6}{3}+\binom{8}{3}}{\binom{19}{3}}$
$P\{$ different $\}=\binom{5}{1}\binom{6}{1}\binom{8}{1} /\binom{19}{3}$
If sampling is with replacement
$P\{$ same $\}=\frac{5^{3}+6^{3}+8^{3}}{(19)^{3}}$

$$
\begin{aligned}
P\{\text { different }\} & =P(R B G)+P\{B R G)+P(\mathrm{RGB})+\ldots+P(G B R) \\
& =\frac{6 \cdot 5 \cdot 6 \cdot 8}{(19)^{3}}
\end{aligned}
$$

29. (a) $\frac{n(n-1)+m(m-1)}{(n+m)(n+m-1)}$
(b) Putting all terms over the common denominator $(n+m)^{2}(n+m-1)$ shows that we must prove that

$$
n^{2}(n+m-1)+m^{2}(n+m-1) \geq n(n-1)(n+m)+m(m-1)(n+m)
$$

which is immediate upon multiplying through and simplifying.
30.
(a) $\frac{\binom{7}{3}\binom{8}{3} 3!}{\binom{8}{4}\binom{9}{4} 4!}=1 / 18$
(b) $\frac{\binom{7}{3}\binom{8}{3} 3!}{\binom{8}{4}\binom{9}{4} 4!}-1 / 18=1 / 6$
(c) $\frac{\binom{7}{3}\binom{8}{4}+\binom{7}{4}\binom{8}{3}}{\binom{8}{4}\binom{9}{4}}=1 / 2$
31. $\quad P(\{$ complete $\}=$

$$
P\{\text { same }\}=
$$

32. $\frac{g(b+g-1)!}{(b+g)!}=\frac{g}{b+g}$
33. $\frac{\binom{5}{2}\binom{15}{2}}{\binom{20}{4}}=\frac{70}{323}$
34. $\binom{32}{13} /\binom{52}{13}$
35.

(a) $\frac{\binom{12}{3}\binom{16}{2}\binom{18}{2}}{\binom{46}{7}}$
(b) $1-\frac{\binom{34}{7}}{\binom{46}{7}}-\frac{\binom{12}{1}\binom{34}{6}}{\binom{46}{7}}$
(c) $\frac{\binom{12}{7}+\binom{16}{7}+\binom{18}{7}}{\binom{46}{7}}$
(d) $P\left(R_{3} \cup B_{3}\right)=P\left(R_{3}\right)+P\left(B_{3}\right)-P\left(R_{3} B_{3}\right)=\frac{\binom{12}{3}\binom{34}{4}}{\binom{46}{7}}+\frac{\binom{16}{3}\binom{30}{4}}{\binom{46}{7}}-\frac{\binom{12}{3}\binom{16}{3}\binom{18}{1}}{\binom{46}{7}}$
36. (a) $\binom{4}{2} /\binom{52}{2} \approx .0045$,
(b) $13\binom{4}{2} /\binom{52}{2}=1 / 17 \approx .0588$
37.
(a) $\binom{7}{5} /\binom{10}{5}=1 / 12 \approx .0833$
(b) $\binom{7}{4}\binom{3}{1} /\binom{10}{5}+1 / 12=1 / 2$
38. $1 / 2=\binom{3}{2} /\binom{n}{2}$ or $n(n-1)=12$ or $n=4$.
39. $\frac{5 \cdot 4 \cdot 3}{5 \cdot 5 \cdot 5}=\frac{12}{25}$
40. $\quad P\{1\}=\frac{4}{44}=\frac{1}{64}$

$$
\begin{aligned}
& P\{2\}=\binom{4}{2}\left[4+\binom{4}{2}+4\right] / 4^{4}=\frac{84}{256} \\
& P\{3\}=\binom{4}{3}\binom{3}{1} \frac{4!}{2!} / 4^{4}=\frac{36}{64} \\
& P\{4\}=\frac{4!}{4^{4}}=\frac{6}{64}
\end{aligned}
$$

41. $1-\frac{5^{4}}{6^{4}}$
42. $1-\left(\frac{35}{36}\right)^{n}$
43. $\frac{2(n-1)(n-2)}{n!}=\frac{2}{n}$ in a line
$\frac{2 n(n-2)!}{n!}=\frac{2}{n-1}$ if in a circle, $n \geq 2$
44. (a) If A is first, then A can be in any one of 3 places and B 's place is determined, and the others can be arranged in any of 3 ! ways. As a similar result is true, when B is first, we see that the probability in this case is $2 \cdot 3 \cdot 3!/ 5!=3 / 10$
(b) $2 \cdot 2 \cdot 3!/ 5!=1 / 5$
(c) $2 \cdot 3!/ 5!=1 / 10$
45. $1 / n$ if discard, $\frac{(n-1)^{k-1}}{n^{k}}$ if do not discard
46. If n in the room,

$$
P\{\text { all different }\}=\frac{12 \cdot 11 \cdot}{12 \cdot 12 \cdot(13-n)}
$$

When $n=5$ this falls below $1 / 2$. (Its value when $n=5$ is .3819)
47. $12!/(12)^{12}$
48. $\quad\binom{12}{4}\binom{8}{4} \frac{(20)!}{(3!)^{4}(2!)^{4}} /(12)^{20}$
49. $\quad\binom{6}{3}\binom{6}{3} /\binom{12}{6}$
50. $\quad\binom{13}{5}\binom{39}{8}\binom{8}{8}\binom{31}{5} /\binom{52}{13}\binom{39}{13}$
51. $\quad\binom{n}{m}(n-1)^{n-m} / N^{n}$
52. (a) $\frac{20 \cdot 18 \cdot 16 \cdot 14 \cdot 12 \cdot 10 \cdot 8 \cdot 6}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}$
(b) $\frac{\binom{10}{1}\binom{9}{6} \frac{8!}{2!} 2^{6}}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13}$
53. Let A_{i} be the event that couple i sit next to each other. Then

$$
P\left(\cup_{i=1}^{4} A_{i}\right)=4 \frac{2 \cdot 7!}{8!}-6 \frac{2^{2} \cdot 6!}{8!}+4 \frac{2^{3} \cdot 5!}{8!}-\frac{2^{4} \cdot 4!}{8!}
$$

and the desired probability is 1 minus the preceding.
54. $P(S \cup H \cup D \cup C)=P(S)+P(H)+P(D)+P(\mathrm{C})-P(S H)-\ldots-P(S H D C)$

$$
\begin{aligned}
& =\frac{4\binom{39}{13}}{\binom{52}{13}}-\frac{6\binom{26}{13}}{\binom{52}{13}}+\frac{4\binom{13}{13}}{\binom{52}{13}} \\
& =\frac{4\binom{39}{13}-6\binom{26}{13}+4}{\binom{52}{13}}
\end{aligned}
$$

55. (a) $P(S \cup H \cup D \cup C)=P(S)+\ldots-P(S H D C)$

$$
\begin{gathered}
=\frac{4\binom{2}{2}}{\binom{52}{13}}-\frac{6\binom{2}{2}\binom{2}{2}\binom{48}{9}}{\binom{52}{13}}+\frac{4\binom{2}{2}^{3}\binom{46}{7}}{\binom{52}{13}}-\frac{\binom{2}{2}^{4}\binom{44}{5}}{\binom{52}{13}} \\
=\frac{4\binom{50}{11}-6\binom{48}{9}+4\binom{46}{7}-\binom{44}{5}}{\binom{52}{13}}
\end{gathered}
$$

(b) $P(1 \cup 2 \cup \ldots \cup 13)=\frac{13\binom{48}{9}}{\binom{52}{13}}-\frac{\binom{13}{2}\binom{44}{5}}{\binom{52}{13}}+\frac{\binom{13}{3}\binom{40}{1}}{\binom{52}{13}}$
56. Player B. If Player A chooses spinner (a) then B can choose spinner (c). If A chooses (b) then B chooses (a). If A chooses (c) then B chooses (b). In each case B wins probability 5/9.

Theoretical Exercises

5. $\quad F_{i}=E_{i}{ }_{j=1}^{i=1} E_{j}^{c}$
6. (a) $E F^{c} G^{c}$
(b) $E F^{c} G$
(c) $E \cup F \cup G$
(d) $E F \cup E G \cup F G$
(e) $E F G$
(f) $E^{c} F^{c} G^{c}$
(g) $E^{c} F^{c} G^{c} \cup E F^{c} G^{c} \cup E^{c} F G^{c} \cup E^{c} F^{c} G$
(h) $(E F G)^{c}$
(i) $E F G^{c} \cup E F^{c} G \cup E^{c} F G$
(j) S
7. The number of partitions that has $n+1$ and a fixed set of i of the elements $1,2, \ldots, n$ as a subset is T_{n-i}. Hence, (where $T_{0}=1$). Hence, as there are $\binom{n}{i}$ such subsets.

$$
T_{n+1}=\sum_{i=0}^{n}\binom{n}{i} T_{n-i}=1+\sum_{i=0}^{n-1}\binom{n}{i} T_{n-i}=1+\sum_{k=1}^{n}\binom{n}{k} T_{k} .
$$

11. $1 \geq P(E \cup F)=P(E)+P(F)-P(E F)$
12. $\quad P\left(E F^{c} \cup E^{c} F\right)=P\left(E F^{c}\right)+P\left(E^{c} F\right)$

$$
=P(E)-P(E F)+P(F)-P(E F)
$$

13. $E=E F \cup E F^{c}$
14. $\frac{\binom{M}{k}\binom{N}{r-k}}{\binom{M+N}{r}}$
15. $P\left(E_{1} \ldots E_{n}\right) \geq P\left(E_{1} \ldots E_{n-1}\right)+P\left(E_{n}\right)-1$ by Bonferonni's Ineq.

$$
\geq \sum_{1}^{n-1} P\left(E_{i}\right)-(n-2)+P\left(E_{n}\right)-1 \text { by induction hypothesis }
$$

19. $\frac{\binom{n}{r-1}\binom{m}{k-r}(n-r+1)}{\binom{n+m}{k-1}(n+m-k+1)}$
20. Let $y_{1}, y_{2}, \ldots, y_{k}$ denote the successive runs of losses and x_{1}, \ldots, x_{k} the successive runs of wins. There will be $2 k$ runs if the outcome is either of the form $y_{1}, x_{1}, \ldots, y_{k} x_{k}$ or $x_{1} y_{1}, \ldots x_{k}, y_{k}$ where all x_{i}, y_{i} are positive, with $x_{1}+\ldots+x_{k}=n, y_{1}+\ldots+y_{k}=m$. By Proposition 6.1 there are $2\binom{n-1}{k-1}\binom{m-1}{k-1}$ number of outcomes and so

$$
P\{2 k \text { runs }\}=2\binom{n-1}{k-1}\binom{m-1}{k-1} /\binom{m+n}{n} .
$$

There will be $2 k+1$ runs if the outcome is either of the form $x_{1}, y_{1}, \ldots, x_{k}, y_{k}, x_{k+1}$ or y_{1}, x_{1}, \ldots, $y_{k}, x_{k} y_{k+1}$ where all are positive and $\sum x_{i}=n, \sum y_{i}=m$. By Proposition 6.1 there are $\binom{n-1}{k}\binom{m-1}{k-1}$ outcomes of the first type and $\binom{n-1}{k-1}\binom{m-1}{k}$ of the second.

