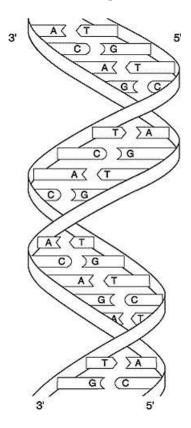
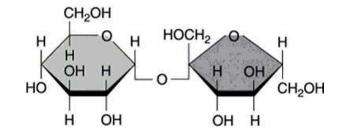
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.




Figure 2.1

produced from t A) 5'ACAGAG B) 3'TGTCTC C) 5'UGUCUG D) 3'ACAGAG	0	sequences accurately d DNA shown in Fig		. that would be	1)
2) Based upon a se	quence of 15 nucle	otides in a strand of	DNA, what is the m	aximum amount of	2)
amino acids pro	duced?				
A) 50	B) 3	C) 2	D) 5	E) 7	
 3) What interaction together? A) disulfide b B) hydrogen b C) van der Wa D) covalent bo E) ionic bonda 	ridges bonds aals forces onds	nentary bases holds	the two strands of a	DNA molecule	3)
	NA strand togethe	phate and the carbo r?	hydrate of a nucleo	ide holds the	4)

- B) ionic bonds
- C) disulfide bridges
- D) covalent bonds
- E) van der Waals forces

5) Which of the following is NOT a monosaccharide?

- A) fructose
- B) galactose
- C) lactose
- D) glucose
- E) deoxyribose

5) _____

6) What type of molecule is shown in Figure 2.2?					6)
A) disaccharide					
B) monosacchar	ide				
C) fatty acid					
D) amino acid					
E) phospholipid					
7) The presence of	chemical gro	ups makes carbohy	drates		7)
A) hydroxyl : no	npolar				
B) amino : polar					
C) hydroxyl : po	lar				
D) amino : acidio	2				
E) carboxyl : pol	ar and acidic				
8) Which of the follow	ving molecules is a c	lisaccharide?			8)
-	B) galactose	C) fructose	D) glucose	E) lactose	,
9) Which of the follow	ving correctly descri	bes glycogen?			9)
A) It forms the re	egulatory molecules	known as enzymes	S.		
B) It serves as a s	structural componer	nt of human cells.			
	e genetic information				
	tant storage polysac		imal tissues.		
· · · · ·	otect vital organs fro				
10) Which of the follow	ving is an example o	f a pentose sugar?			10)
A) lactose	ving is un exumple o	i a pentose sugar.			10)
B) glucose					
C) sucrose					
C) Buciobe					

D) fructose

 11) is a polysaccharide found in animal cells, whereas in plants that can be degraded by humans. A) Lactose : starch B) Glycogen : cellulose C) Galactose : starch D) Galactose : cellulose E) Glycogen : starch 	is a polysaccharide found	11)
 12) Which of the following molecules will dissolve readily in water? A) NaCl B) triglyceride C) cholesterol D) fatty acid E) C₆H₁₄ 		12)
13) Which of the following statements concerning hydrogen bonds isA) They are strong attractive forces between hydrogen atoms aB) They are responsible for many of the unique properties of wC) They can occur within a single molecule.D) They can form between neighboring molecules.E) They are important forces for tertiary structure of proteins.	and negatively charged atoms. water.	13)
 14) are molecules that contain primarily carbons and hydrononpolar covalent bonds. A) Carbohydrates B) Nucleotides C) Lipids D) Polysaccharides E) Proteins 	ogens linked together by	14)
 15) are molecules composed of a glycerol and three fatty as A) Triglycerides B) Phospholipids C) Steroids D) Eicosanoids E) Saturated fatty acids 	cids.	15)
 16) A fatty acid that contains three double bonds in its carbon chain A) hypersaturated. B) saturated. C) monounsaturated. D) polysaturated. E) polyunsaturated. 	is said to be	16)
 17) are molecules that form the bilayer of cell membranes a A) Phospholipids B) Eicosanoids C) Triglycerides D) Steroids 	and micelles.	17)

E) Saturated fatty acids

18) The amphipathic property of phospholipids can be described as aA) nonpolar region that dissolves in water and a polar region that face one another.B) single nonpolar region that is not miscible in aqueous solution.C) single polar region that is miscible in aqueous solution.D) polar region that dissolves in water and a nonpolar region that repels water.E) nonpolar region facing the outside and a polar region facing the inside of a cell.	18)
 19) are modified fatty acids that function in intercellular communication and include prostaglandins and thromboxanes. A) Phospholipids B) Triglycerides C) Steroids D) Saturated fatty acids E) Eicosanoids 	19)
20) act(s) as the precursor to steroid molecules, many of which function as hormones.A) Saturated fatty acids	20)

- B) Unsaturated fatty acids C) Eicosanoids
- D) Phospholipids
- E) Cholesterol

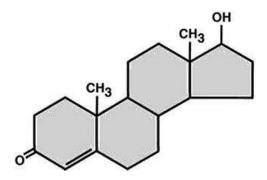


Figure 2.3

21) Based on Figure 2.3, what type of molecule is this?

- A) phospholipid
- B) nucleotide
- C) amino acid
- D) fatty acid
- E) steroid

22) ______ are molecules whose general structure includes a central carbon with a carboxyl group, 22) _____ an amine group, a hydrogen molecule, and a residual (R) group.

- A) Nucleotides
- B) Carbohydrates
- C) Proteins
- D) Lipids
- E) Amino acids

23) Alpha-helixes and β -pleated sheets are examples of ______ structures of a protein.

21) _____

23) ____

- A) primaryB) secondaryC) tertiaryD) quaternaryE) quinary

24) Formation of peptide bonds occu	urs by condensation r	reactions between the	group of	24)
one amino acid and the				
A) fatty acid : glycerol		B) glucose : glucose		
C) carboxyl : amino acid amino	10]	D) amino acid : amino acid		
25) The most common elements four	nd in biomolecules ar	re carbon, hydrogen, nitroge	en, and	25)
A) phosphorous.				
B) oxygen.				
C) calcium.				
D) chlorine.				
E) potassium.				
26) Each amino acid differs from oth	ners only by the			26)
A) characteristic of its R group				,
B) size of its amino group.				
C) number of peptide bonds ir	n the molecule.			
D) number of its carboxyl grou				
E) number of central carbon at	-			
27) Hydrogen bonding between the	amino hydrogen of o	one amino acid and the carb	oxvl oxvgen of	27)
another is responsible for which			- J - J - J -	,
A) holding the two strands of l	•	e law of complementary bas	e pairing	
B) twisting the DNA into a hel		1 5	1 0	
C) primary protein structure				
D) secondary protein structure	e			
E) tertiary protein structure				
28) An acid is a molecule that acts as	s a(n)			28)
A) proton acceptor.	⁵ u(II)			20)
B) hydrogen acceptor.				
C) proton donor.				
D) electron donor.				
E) hydroxide donor.				
29) Ketoacids (a carboxylic acid grou	in attached to a kotor	a) are often produced duri	ng facting and	29)
uncontrolled diabetes mellitus. V	-	-		29)
A) burning ketone bodies	vilat potential outcol	the of this would be of great	est concern:	
B) ketoacidosis				
C) disoriented thinking				
D) acetone breath				
E) weight loss				
20) The	ain is formed by the	n modul (D) mount of th	amina ari J	20)
30) The structure of a prote				30)
backbone by a number of different		ons, dependent upon the ha	inte or the	
residual groups interacting.				
A) primary				

B) secondary C) tertiary D) quaternary E) quinary	
 31) Which of the following is an example of a fibrous protein? A) insulin B) hemoglobin C) collagen D) growth hormone E) Na⁺/K⁺ pumps 	31)
 32) are molecules that are composed of one or more phosphate groups, a 5-carbon sugar, and a nitrogenous base. A) Lipids B) Nucleotides C) Amino acids D) Phospholipids E) Glycoproteins 	32)
 33) Why are nucleotides (and their polymers) called nucleic acids when they contain nitrogenous bases? A) Acids ending in "-ic" are the ionized versions of those molecules ending in "-ate." B) Phosphoric acid groups (becoming phosphates) are much stronger than nitrogen acts as a base. C) Nitrogenous base is really a misnomer. D) There are more acids on the molecule than bases. E) Acids always win out over a base. 	33)
 34) When the body needs to make the eicosanoid thromboxane for wound repair, what component of the plasma membrane does it use for their synthesis? A) transmembrane glycoprotein B) fatty acid from phospholipid C) glycolipid D) ATP E) cholesterol 	34)
 35) Which of the following is/are found in DNA but not RNA? A) uracil B) ribose C) adenine D) both adenine and thymine E) both thymine and deoxyribose 	35)
 36) All of the following are basic components of proteins EXCEPT A) hydrogen. B) potassium. C) nitrogen. D) carbon. E) oxygen. 	36)
37) Which of the following molecule types is NOT a polymer?	37)

	A) glycogen	B) protein	C) RNA	D) DNA	E) fatty acid	
38) M	hich of the following	ng is NOT a base in I	RNIA2			38)
	A) cytosine	B) adenine	C) guanine	D) uracil	E) thymine	56)
	A) Cytosine	D) adennie	C) guainne	D) ulacli	L) utynine	
20) M	high of the following	ng descriptions of a	nolumor is EAI SE2			39)
			polymer is FALSE?			39)
	A) ATP is a polymB) Glycogen is a polymeration					
		olymer of amino aci	de			
	D) Starch is a poly	•	us.			
	E) DNA is a polyn	•				
	L) DIVA IS a poly	ner of flucieotides.				
40) W	hich of the following	ng is NOT a functior	of nucleotides?			40)
		of the energy for ce				40)
		trates for the citric a	-			
	C) storing the gene		ciù cycic			
		rons to the electron t	transport chain			
	E) expressing the g					
	L) expressing the g	genetic code				
41) In	eukarvotes which	of the following pro	operties is TRUE for	both DNA and RNA	?	41)
		of complementary ba			•	
		es uracil and thymin				
	C) double-stranded	-				
		cough semi-conserva	ative replication			
	E) involved in trar	•	anve reprication			
	2) involved in tid					
42)	is compose	d of a nucleotide, wl	here the phosphate i	s bound to two spots	on the ribose	42)
	gar.					·
	A) ADP	B) mRNA	C) tRNA	D) DNA	E) cAMP	
43) Th	ne presence of	in the plasma r	nembrane can inhibi	t crystallization.		43)
	A) phospholipids					
	B) cholesterol					
	C) peripheral mem	nbrane proteins				
	D) glycoproteins					
	E) integral membr	ane proteins				
		ng is NOT found in j	plasma membranes?			44)
	A) proteins					
	B) chromatin					
	C) phospholipids					
	D) carbohydrates					
	D) carbohydrates E) cholesterol			forma inc. de ser 1 2		45)
45) W	D) carbohydratesE) cholesterolhich of the following	• •	e plasma membrane	forms ion channels?		45)
45) W	D) carbohydratesE) cholesterolhich of the followinA) transmembrane	proteins	e plasma membrane	e forms ion channels?	,	45)
45) W	 D) carbohydrates E) cholesterol hich of the followin A) transmembrane B) transmembrane 	proteins	e plasma membrane	e forms ion channels?		45)
45) W	 D) carbohydrates E) cholesterol hich of the followin A) transmembrane B) transmembrane C) cholesterol 	proteins	e plasma membrane	e forms ion channels?		45)
45) W	 D) carbohydrates E) cholesterol hich of the followin A) transmembrane B) transmembrane C) cholesterol D) phospholipids 	e proteins e glycolipids	e plasma membrane	e forms ion channels?		45)
45) W	 D) carbohydrates E) cholesterol hich of the followin A) transmembrane B) transmembrane C) cholesterol 	e proteins e glycolipids	e plasma membrane	e forms ion channels?		45)

46) Which of the following is NOT an integral membrane protein?

A) actin	
B) occludins	
C) carrier proteins for mediated transport	
D) connexons	
E) channels for ion diffusion across membranes	
47) Which of the following is an amphipathic molecule?	47)
A) integral membrane protein	
B) glycogen	
C) triglyceride	
D) glucose	
E) peripheral membrane protein	
48) Which of the following is NOT an amphipathic molecule?	48)
A) glycolipid	
B) integral membrane protein	
C) connexon	
D) phospholipid	
E) glucose	
49) What is the layer of carbohydrates on the external surface of a cell called?A) glycolysis	49)
B) glycocalyx	
C) desmosome	
D) inclusion	
E) glycogen	
50) The is the site of ribosomal RNA production.	50)
A) lysosome	
B) mitochondria	
C) nucleolus	
D) nucleus	
E) cytosol	
51) Where is the genetic code stored?	51)
A) brain B) cytoplasm C) heart D) nucleus E) vaults	- ,
52) Where inside a cell is glycogen stored?	52)
A) mitochondria	
B) smooth endoplasmic reticulum	
C) lysosomes	
D) cytosol	
E) Golgi apparatus	
53) Lipophobic molecules that are to be released by cells are stored in membrane-bound structures called	53)
A) excretory vesicles.	
B) secretory vesicles.	
C) inclusions.	
D) the endoplasmic reticulum.	
E) the Golgi apparatus.	

 54) Continuous with the outer portion of the nuclear pore, what membrane-bound structure functions in the synthesis of secretory proteins, integral membrane proteins, or proteins bound for other organelles? A) nucleolus B) smooth endoplasmic reticulum C) mitochondria D) lysosome E) rough endoplasmic reticulum 	54)
 55) The is the site where lipids, triglycerides, and steroids are synthesized, as well as where calcium is stored within the cell. A) smooth endoplasmic reticulum B) rough endoplasmic reticulum C) lysosome D) mitochondria E) nucleolus 	55)
 56) What is the site where steroids are stored in the cell? A) smooth endoplasmic reticulum B) secretory vesicles C) lysosome D) Golgi apparatus 	56)
 E) Steroids are lipid and will slide right through membranes; they cannot be stored in the cell. 57) What organelle packages and directs proteins to their proper destination? A) smooth endoplasmic reticulum B) Golgi apparatus C) rough endoplasmic reticulum D) lysosomes 	57)
 E) ribosomes 58) Which of the following is NOT a property of smooth endoplasmic reticulum? A) stores steroid hormones B) In liver cells, it contains detoxifying enzymes. C) steroid hormone synthesis D) forms transport vesicles to move proteins to the Golgi apparatus 	58)
 59) Hydrolytic reactions are when A) the bond between two molecules is broken through the splitting of a water molecule, thereby creating two new bonds with the H and OH of that water in its place. B) the bond between two molecules is broken, resulting in the removal of a water molecule. C) two molecules are joined together, resulting in the removal of a water molecule. 	59)
 D) water is removed from the cell. E) two molecules are joined together by adding a water molecule. 60) Which of the following descriptions of the function of the organelle is FALSE? A) Packaging of secretory products into vesicles occurs in the Golgi apparatus. B) Calcium is stored in the smooth endoplasmic reticulum. C) Oxidative phosphorylation occurs in the mitochondria. D) Peptide hormone synthesis occurs in the rough endoplasmic reticulum. 	60)

E) Breakdown of phagocytosed bacteria occurs in the peroxisomes.

 61) Detoxifying enzymes may be localized in what organelle? A) rough endoplasmic reticulum B) peroxisomes C) lysosomes D) mitochondria E) Golgi apparatus 	61)
 62) In Tay-Sachs Disease, which organelle contains the impaired enzymes? A) lysosome B) mitochondria C) centriole D) rough endoplasmic reticulum E) Golgi apparatus 	62)
 63) What organelle synthesizes most of the ATP used by cells? A) ribosomes B) mitochondria C) lysosomes D) peroxisomes E) Golgi apparatus 	63)
 64) are membrane-bound organelles containing enzymes that degrade cellular and extracellular debris. A) Lysosomes B) Ribosomes C) Vaults D) Peroxisomes E) Mitochondria 	64)
 65) are membrane-bound organelles that contain enzymes like catalase, which catalyzes the breakdown of H₂O₂ to H₂O and O₂. A) Mitochondria B) Vaults C) Peroxisomes D) Lysosomes E) Ribosomes 	65)
 66) Which of the following characteristics concerning ribosomes is FALSE? A) contain ribosomal RNA B) can be located in the Golgi apparatus C) are the site of protein synthesis D) can remain free in the cytosol E) contain protein 	66)
 67) Which of the following organelles contains its own DNA? A) smooth endoplasmic reticulum B) lysosomes C) rough endoplasmic reticulum D) Golgi apparatus E) mitochondria 	67)

 68) Which of the following is NOT a function of the cytoskeleton? A) suspension of organelles B) mechanical support C) contraction D) cellular catabolism E) cellular movement 					
69) Which cytoskeletal p A) microtubules B) tight junctions C) centrioles D) microfilaments E) intermediate fil	-	e structural support f	or microvilli?		69)
 70) Keratin is an example A) microtubules B) centrioles C) tight junctions D) microfilaments E) intermediate fill 		cytoskeletal protein?			70)
 71) Which of the followi A) microfilaments B) intermediate fil C) microtubules o D) microfilaments E) microfilaments 	only laments only nly	-	la?		71)
 72) Which microtubular division? A) spindle fibers B) keratin C) myosin D) tubulin E) actin 	proteins are respor	nsible for the distribu	ation of chromosome	es during cell	72)
73) The protein past one another.	-	generating force as r C) dynein	-		73)
A) actin 74) are protein A) Occludins	B) myosin s that fuse adjacent B) Tubulins		D) keratin m a nearly imperme D) Dyneins	E) tubulin able barrier. E) Cadherins	74)
75) are protein					75)
mechanical stresses. A) Dyneins	B) Occludins	C) Connexins	D) Cadherins	E) Tubulins	
76) are protein diffuse directly from	one cell to the othe	er.	-		76)
A) Dyneins	B) Connexins	C) Occludins	D) Cadherins	E) Tubulins	
77) In some cases, signal	s originating within	n one cell can diffuse	e directly to a neighb	oring cell	through

77)

A) desmosomes.

B) gap junctions.					
C) occludins.					
D) tight junctions.					
E) cadherins.					
78) In the digestive tract, a surface. What type of p circumnavigated? A) desmosomes	-	•	-		78)
B) tight junctions C) microvilli					
D) gap junctions					
E) carrier proteins					
 79) Intercellular communition to a specific A) phagosome B) clathrin-coated v C) receptor D) organelle E) nucleus 	on another cell.	through the bindir	ng of a chemical relea	sed from one cell	79)
80) Which of the following	r does NOT desci	ribe a part of post-	transcriptional proces	ssing?	80)
A) formation of bon	-			ssing:	80)
B) addition of a poly	-		u sugui		
C) capping of the 5'					
D) splicing of nuclei					
E) removal of the in	•	rand			
,					
81) The process whereby a		mRNA is produce	ed from a DNA temp	ate is called	81)
A) post-translationa	l modification.				
B) transoperon.					
C) translation.					
D) transcription.					
E) transcytosis.					
2) During translation	in order the one				97)
82) During translation,	•	ized in the	·		82)
A) protein : cytoplasB) protein : nucleus					
C) RNA : cytoplasm					
D) DNA : nucleus	L				
E) RNA : nucleus					
L) RIVIT. Hucicus					
83) Based upon the triplet		-	of four possible base	s, how many	83)
possible amino acids n	0	5	D) 129	E) 16	
A) 32	B) 64	C) 8	D) 128	E) 16	
84) The initiator codon is a	composed of the	sequence			84)
A) CCC.	B) CCG.	C) AAC.	D) UUG.	E) AUG.	,

A) B) C) D)	nitiator codon, ti tyrosine. leucine. arginine. methionine. proline.	hat originates trai	nslation, codes for	the amino acid		85)
,	strand of mRN. 5'GGUA	A would be trans B) 3'UUAC	cribed from the fo C) 3'TTAC	llowing strand of DN D) 5'UUGT	A: 5'AATG? E) 5'TTUC	86)
A) B) C) D)	The promoter set A single codon is The tRNA antice the gene's DNA A single gene co	equence is found may code for mor odon is complem triplet.	e nucleotides that	trand of DNA.		87)
A) B) C) D)	trand of DNA th promoter seque intron strand. exon strand. template strand ribophorin.	nce.	ed to mRNA is cal	led the		88)
in any A) B) C) D)	rding to the law y strand of DNA A + G = C + T G + C = T + A A = C and T = G A = G and C = T A = G	.?	y base pairing, wh	nich of the following	would be expected	89)
A) B) C) D)	RNA is synthes DNA is synthes protein is synthe	ized from DNA in ized from DNA in ized from DNA in	n the nucleus. n the nucleus. in the cytoplasm.			90)
A) B) C) D)	is the portion o gene promoter seque triplet codon nucleotide		for a particular p	rotein?		91)
woul	d be adenine?		-	of DNA, what percen		92)
A)		B) 29	C) 35	D) 21	E) 11	
93) What	causes DNA to	uncoil during tra	nscription?			93)

 A) binding of DNA polymerase to the leader sequence B) binding of ubiquitin to the DNA C) binding of RNA polymerase to the promoter sequence D) binding of helicase to the DNA E) binding of tRNA to the initiator codon 	
94) An anticodon is	94)
A) the code for a particular amino acid.	
B) the complement to the complement of the gene.	
C) the strand of DNA used to create mRNA.	
D) a three-nucleotide series on tRNA that is complementary to the mRNA to which it bi	nds.
E) the stop signal that does not code for an amino acid.	
95) Which of the following statements about the genetic code is FALSE?	95)
A) mRNA is read 3 bases at a time and these units are called codons.	
B) There are 3 termination codons that do not code for amino acids.	
C) Each codon is specific for only one amino acid.	
D) Each amino acid is coded for by only one codon.	
E) There is one initiator codon and it codes for an amino acid.	
96) Where does RNA polymerase bind to initiate transcription?	96)
A) leader sequence	
B) hormone response element	
C) initiation factor	
D) promoter sequence	
E) P subunit of the ribosome	
97) The codon is	97)
A) DNA language coding for a particular amino acid.	
B) the triplet of nucleotides found in a gene's sequence.	
C) mRNA language coding for a particular amino acid.	
D) the portion of mRNA that is retained after processing.	
E) the genetic code.	
98) The promoter sequence of the gene is recognized by, which initiates transcription	n. 98)
A) ligase	
B) helicase	
C) gyrase	
D) RNA polymerase	
E) DNA polymerase	
99) What is the base sequence of the tRNA molecule that recognizes the complementary mRN	A 99)
molecule?	
A) codon	
B) sense	
C) initiator codon	
D) anticodon	
E) nonsense	
100) What is the correct order for the following list of steps for initiating translation?	3. g of
1. Binding of initiator tRNA to mRNA	Bsmall
2. Binding of large ribosomal subunit to mRNA	indinriboso

	100)					
mal subunit	100)					
						—
to mRNA						
4.						
4. Bindi						
ng of a 2nd						
2nd tRNA						
with its						
amino						
acid to						
the A site	3					
5.	-					
Form						
ation of						
covalent						
bond						
between						
methioni						
ne and						
second						
amino						
acid						
	A) 3, 1, 2, 4, 5	B) 3, 2, 1, 4, 5	C) 2, 3, 1, 4, 5	D) 1, 2, 3, 4, 5	E) 1, 3, 2, 4, 5	
101)	chain. B) It causes the r C) It has the binc	RNA with the most r ibosome to attach to ling site for mRNA.	ecent amino acid tha		the polypeptide	101)
			zes formation of a p		1 .	
	E) It holds the th	INA with the next a	mino acid to be adde	ed to the polypeptide	e chain.	
102) Post-transcriptional	l processing adds a(n) to the 5'	end of the mRNA m	olecule	102)
,	A) exon	B) intron	C) cap	D) poly C tail	E) poly A tail	
	,	,				
103)) Post-transcriptiona A) poly A tail	l processing adds a(B) cap	n) to the 3' C) exon	end of the mRNA m D) poly C tail	olecule. E) intron	103)
104)		•	on of the initiation fa	actors associated wit	h translation of	104)
	protein from mRNA					
		omplex with charge the cap group at the				
		the cap group at the				
	-	omplex with small 1	ibosomal subunits			
	C) They form a c	omplex with small 1 e first tRNA with the		ne.		
	C) They form a c D) They align the	e first tRNA with the	tibosomal subunits. e A site on a ribosom ribosomal subunit to			
	C) They form a c D) They align the	e first tRNA with the	e A site on a ribosom			
105)	C) They form a c D) They align the E) They trigger b) The leader sequence	e first tRNA with the binding of the small e of any protein tha	e A site on a ribosom ribosomal subunit to t has just been transl	o AUG.		105)
105)	C) They form a c D) They align the E) They trigger b) The leader sequenc A) initiate degrae	e first tRNA with the binding of the small e of any protein tha dation of an incomp	e A site on a ribosom ribosomal subunit to t has just been transl lete protein.	o AUG.		105)
105)	 C) They form a c D) They align the E) They trigger b The leader sequence A) initiate degrade B) determine the 	e first tRNA with the binding of the small e of any protein tha	e A site on a ribosom ribosomal subunit to t has just been transl lete protein.	o AUG.		105)

C) stimulate translation of a protein.

D) keep the protein in the cytosol.	
E) end translation of a protein.	
106) Which of the following processes is NOT a post-translational modification that occurs in the	106)
endoplasmic reticulum or Golgi apparatus to make proteins functional?	,
A) the addition of carbohydrates	
B) the removal of the leader sequence	
C) the addition of lipids	
D) the cleavage of excess amino acids	
E) the addition of more amino acids	
107) What is the outcome of having only the head of the sperm entering the oocyte?	107)
A) Paternal lineage is more easily traced.	
B) Genetic abnormalities are reduced by one-half.	
C) Flagella is free to move the fertilized egg to the uterus.	
D) Mitochondrial DNA is only of maternal inheritance.	
E) Genealogy lines become less conclusive.	
108) Which of the following is NOT a possible destination for proteins that are completely	108)
synthesized on ribosomes free in the cytosol?	
A) peroxisome	
B) nucleus	
C) remains in cytosol	
D) secreted from the cell	
E) mitochondrion	
109) When proteins are synthesized by ribosomes on the rough endoplasmic reticulum, where does	109)
the translation begin?	
A) cytosol	
B) nucleus	
C) rough endoplasmic reticulum	
D) smooth endoplasmic reticulum	
E) Golgi apparatus	
110) Which of the following are NOT embedded in the lipid bilayer at all?	110)
A) transmembrane proteins	
B) connexons	
C) cadherins	
D) peripheral proteins	
E) integral proteins	
111) Where is the leader sequence of preproinsulin removed?	111)
A) surface of rough endoplasmic reticulum	
B) lumen of rough endoplasmic reticulum	
C) at the proteasome	
D) secretory vesicles of the Golgi apparatus	
E) cis face of the Golgi apparatus	
112) Ubiquitin tags proteins for what purpose?	112)
A) for the protein to be secreted by exocytosis	

- B) for the protein to enter the nucleus and alter transcription
- C) to protect from degradation by proteasomes

D) for synthesis to E) to mark for degr		e rough endoplasmic oteasomes	reticulum		
 113) What enzyme catalyz during replication? A) RNA polymeras B) histone C) DNA polymeras D) helicase E) chromatin 	Se .	whereby nucleotide	s are added to the p	olynucleotide chain	113)
 114) Aspirin and ibuprofer found in the phospho A) bile salts B) prostaglandins C) surfactant D) leukotrienes E) sterols 			enase from changin	g arachidonic acid,	114)
 115) During replication, w original DNA? A) beginning strand B) trailing strand C) ending strand D) lagging strand E) leading strand 		the new DNA is synt	thesized from the 5'	to 3' strand of	115)
C) small sections of D) small sections of	ts released fro f nonsense cod f newly formed f DNA that do	m a proteasome. le found between ger d DNA, built on the l not code for protein A, built on the leading	agging (5' to 3') tem found within a gene	2.	116)
117) During what phase of directly in cell divisio	5	is the cell carrying ou	ıt its normal activity	and NOT involved	117)
A) G_0	B) G ₁	C) G ₂	D) S	E) mitosis	
118) During what phase of A) G ₀	f the cell cycle B) G ₁	does cellular replicat C) G ₂	ion of DNA occur? D) S	E) mitosis	118)
119) During what phase of double its size?	f the cell cycle	does rapid protein sy	onthesis occur as the	e cell grows to	119)
A) G ₀	B) G ₁	C) G ₂	D) S	E) mitosis	
120) Which of the followinA) prophaseB) metaphaseC) anaphaseD) meiosisE) telophase	ig is NOT a ph	ase of mitosis?			120)

 121) During what phase of cell division do chromosomes align along the midline? A) interphase B) anaphase C) metaphase D) prophase E) telophase 	121)
 122) During what phase of cell division do two new nuclear envelopes begin to redevelop? A) interphase B) telophase C) prophase D) anaphase E) metaphase 	122)
 123) What links sister chromatids together? A) histones B) dyneins C) chromatins D) actins E) centromeres 	123)
 124) What is the correct level of structure for proteins containing more than one polypeptide chain? A) primary B) secondary C) tertiary D) quaternary E) quinary 	124)
 125) What is the level of structure that corresponds to the sequence and number of amino acids in the polypeptide chain? A) primary B) secondary C) tertiary D) quaternary E) quinary 	125)
 126) What is the level of structure that corresponds to the chemical interactions between R groups within the same polypeptide chain? A) primary B) secondary C) tertiary D) quaternary E) quinary 	126)
 127) What level of structure is caused when the hydrogen bonds between the amino hydrogen of one amino acid and the carboxyl oxygen of another amino acid is formed? A) primary B) secondary C) tertiary D) quaternary E) quinary 	127)

128)	The junctions created by intermediate filaments which penetrate the membranes between two cells at the site of protein plaques, thereby forming strong linkage between the two cells, are also	128)
	known as	
	A) basal lamina.	
	B) hemidesmosomes.	
	C) gap junctions.	
	D) tight junctions.	
	E) desmosomes.	
129)	What junctions are found in epithelial tissue where they prevent paracellular movement of molecules?	129)
	A) tight junctions	
	B) hemidesmosomes	
	C) gap junctions	
	D) basal lamina	
	E) desmosomes	
130)	What junctions allow the passage of small molecules and ions from the cytosol of one cell to that	130)
	of a neighboring cell?	
	A) gap junctions	
	B) desmosomes	
	C) basal lamina	
	D) tight junctions	
	E) hemidesmosomes	
131)	Which of the following packages proteins into secretory vesicles?	131)
	A) smooth endoplasmic reticulum	
	B) lysosomes	
	C) mitochondria	
	D) Golgi apparatus	
	E) peroxisomes	
132)	Which of the following packages proteins into transport vesicles?	132)
	A) smooth endoplasmic reticulum	
	B) lysosomes	
	C) mitochondria	
	D) Golgi apparatus	
	E) peroxisomes	
133)	The enzyme catalase is located where?	133)
	A) smooth endoplasmic reticulum	
	B) lysosomes	
	C) mitochondria	
	D) Golgi apparatus	
	E) peroxisomes	
134)	Endocytotic vesicles fuse with what organelle?	134)
	A) smooth endoplasmic reticulum	
	B) lysosomes	
	C) mitochondria	
	D) Golgi apparatus	
	E) peroxisomes	

 135) The bulk of ATP pro A) smooth endop B) lysosomes C) mitochondria D) Golgi apparatu E) peroxisomes 	lasmic reticulum	d where?			135)
 136) Lipids synthesis is p A) smooth endop B) lysosomes C) mitochondria D) Golgi apparatu E) peroxisomes 	lasmic reticulum				136)
137) Which cellular prote	ein is found in gap ju	nctions?			137)
A) tubulin	B) cadherins	C) dynein	D) connexons	E) occludins	
138) Which cellular protein is found in tight junctions?					138)
A) dynein	B) tubulin	C) occludins	D) connexons	E) cadherins	
139) Which cellular protein is found in desmosomes?					139)
A) tubulin B) occludins C) dynein D) connexons E) cadherins					

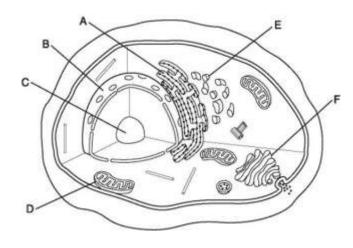



Figure 2.4

140) Identify the organelle referred to as "A" in Figure 2.4 and select the function of that organelle.	140)
A) smooth endoplasmic reticulum—site of lipid synthesis and storage of calcium	
B) rough endoplasmic reticulum—synthesis of proteins to be packaged into vesicles	
C) nucleus—contains the cell's DNA	
D) mitochondria—production of cellular energy in the form of ATP	
E) nucleolus—site within the nucleus for the synthesis of rRNA	
141) Identify the organelle referred to as "B" in Figure 2.4 and select the function of that organelle.	141)

- A) mitochondria-production of cellular energy in the form of ATP
- B) nucleolus—site within the nucleus for the synthesis of rRNA
- C) smooth endoplasmic reticulum site of lipid synthesis and storage of calcium
- D) nucleus—contains the cell's DNA

E) rough endoplasmic reticulum – synthesis of proteins to be packaged into vesicles

 142) Identify the organelle referred to as "C" in Figure 2.4 and select the function of that organelle. A) rough endoplasmic reticulum—synthesis of proteins to be packaged into vesicles B) nucleus—contains the cell's DNA C) mitochondria—production of cellular energy in the form of ATP D) nucleolus—site within the nucleus for the synthesis of rRNA E) smooth endoplasmic reticulum—site of lipid synthesis and storage of calcium 	142)
 143) Identify the organelle referred to as "D" in Figure 2.4 and select the function of that organelle. A) mitochondria – production of cellular energy in the form of ATP B) smooth endoplasmic reticulum – site of lipid synthesis and storage of calcium C) nucleolus – site within the nucleus for the synthesis of rRNA D) rough endoplasmic reticulum – synthesis of proteins to be packaged into vesicles E) nucleus – contains the cell's DNA 	143)
 144) Identify the organelle referred to as "E" in Figure 2.4 and select the function of that organelle. A) nucleolus—site within the nucleus for the synthesis of rRNA B) nucleus—contains the cell's DNA C) smooth endoplasmic reticulum—site of lipid synthesis and storage of calcium D) mitochondria—production of cellular energy in the form of ATP E) rough endoplasmic reticulum—synthesis of proteins to be packaged into vesicles 	144)
 145) Identify the organelle referred to as "F" in Figure 2.4 and select the function of that organelle. A) rough endoplasmic reticulum—synthesis of proteins to be packaged into vesicles B) mitochondria—production of cellular energy in the form of ATP C) nucleus—contains the cell's DNA D) nucleolus—site within the nucleus for the synthesis of rRNA E) Golgi apparatus—processes and packages peptides, directs them to their ultimate location 	145)
 146) What is a glycerol with 3 fatty acids attached? A) saturated fat B) eicosanoid C) glycerolipid D) triglyceride E) phospholipid 	146)
147) What is the extensively branched polymer of hexose found in animals?	147)

C) glycogen

D) starch

A) lactose

B) rRNA

E) glucose

 148) In Figure 2.5, what is this structure and what type of molecule makes up its composition? A) micelle, composed of phospholipids. B) desmosome, composed of cadherins C) cilia, composed of microtubules and dynein D) sperm, composed of haploid DNA and microtubules E) peroxisome, composed of peroxidase enzymes and fatty acids 	148)
 149) What two structural characteristics of proteins are formed by hydrogen bonds between the carboxyl O and the amino H of amino acids within the same protein? A) flexibility : shear resistance B) strength : resilience C) double helix : folded sheets D) α-helices : β-pleated sheets E) fibrous : globular 	149)
 150) What spherical structures are involved in the transport of nonpolar molecules through the aqueous environment and are composed of a phospholipid monolayer? A) peroxisomes B) micelles C) vacuoles D) proteasomes E) lysosomes 	150)
 151) What are the three components of a nucleotide? A) deoxyribonucleic acid, base pairs, phosphate/sugar backbone B) pentose, nitrogenous base, phosphorus C) pentose sugar, 5-carbon carbohydrate, phosphate D) 5-carbon carbohydrate, phosphate, nitrogenous base E) ribonucleic acid, base pairs, phosphate backbone 	151)
 152) Of the five bases found in nucleic acids, which are purines and which are pyrimidines? A) Pyrimidines = thymine and uracil : Purines = cytosine, adenine and guanosine B) Pyrimidines = adenine and guanosine: Purines = cytosine, thymine, and uracil C) Pyrimidines = cytosine and uracil : Purines = adenine, thymine and guanosine D) Pyrimidines = cytosine, adenine and guanosine: Purines = thymine, and uracil E) Pyrimidines = cytosine, thymine and uracil : Purines = adenine and guanosine 	152)
 153) What type of integral membrane protein spans the membrane, thereby allowing part of it to face the cytosol and another part to face the extracellular fluid? A) peripheral membrane protein B) transmembrane protein C) paramembrane protein D) steroid receptor E) glycoprotein 	153)
 154) What structure separates the nucleus from the cytosol? A) nuclear envelope B) nucleolus C) matrix D) plasma membrane 	154)

E) nuclear pore

 155) Through what structure in the nucleus can mRNA pass through to get into the cytosol? A) matrix B) nuclear pore C) nucleolus D) plasma membrane E) nuclear envelope 	155)
 156) What are masses of glycogen in the cytosol of some cells called? A) Lewy bodies B) Heinz bodies C) inclusions D) stipplings E) granules 	156)
 157) The membrane of the rough endoplasmic reticulum is continuous with what other membrane(s)? A) matrix B) plasma membrane C) smooth endoplasmic reticulum and nuclear envelope D) Golgi apparatus E) nucleolus and nuclear pore 	157)
 158) What is the innermost chamber of a mitochondrion called? A) matrix B) nucleolus C) nuclear envelope D) nuclear pore E) plasma membrane 	158)
 159) Components of the electron transport chain are found in what region of a mitochondrion? A) matrix B) intermembrane space C) inner mitochondrial membrane D) outer membrane E) cristae 	159)
 160) What organelle contains alcohol dehydrogenase, used in the liver to metabolize alcohol? A) lysosomes B) desmosomes C) peroxisomes D) proteasomes E) liposomes 	160)
 161) What two types of molecules make up ribosomes? A) proteins and phospholipids B) rRNA and proteins C) rRNA and tRNA D) mRNA and tRNA E) phospholipids and RNA 	161)
162) Myosin is composed of what type of molecule?	162)

A) globular protein B) microtubule	
C) microfilament	
D) integral protein	
E) intermediate filament	
163) Certain epithelial cells have a decided polarity where the membrane faces the lumen of	163)
a hollow tube, whereas the membrane faces the extracellular fluid.	
A) upper : lower	
B) luminal : extracellular	
C) positively charged : negatively charged	
D) apical : basolateral	
E) apical : basement	
164) The CAP region of mRNA is necessary for of translation.	164)
A) propagation	
B) termination	
C) initiation	
D) accuracy	
E) transcription	
165) What are the tRNA binding sites on the ribosome called?	165)
A) A and P sites	
B) T and R sites	
C) translation sites	
D) proteogenic sites	
E) nucleotide complement sites	
166) What modifications made to mRNA function to prevent its degradation in the cytoplasm by	166)
exonucleases?	
A) CAP and poly A tail	
B) promoter regions	
C) introns	
D) exons	
E) protein coat	
167) Proteins tagged with the polypeptide are targeted for degradation by a protein	167)
complex called a proteasome.	
A) apoptosin B) amyloid C) degratin D) cachectin E) ubiquitin	
168) Within the nucleus, chromosomes are coiled around which proteins?	168)
A) histones	
B) introns	
C) chromatids	
D) histamines	
E) proteasomes	
169) What is the proper order of the five phases of mitosis?	169)
A) prophase, interphase, metaphase, anaphase, telophase	
B) interphase, prophase, prometaphase, metaphase, telophase	
C) prophase, metaphase, anaphase, protelophase, telophase	

D) prophase, prometaphase, metaphase, anaphase, telophase

	E) prophase, prometaphase, anaphase, metaphase, telophase	
TRUE/FA	LSE. Write 'T' if the statement is true and 'F' if the statement is false.	
	Sucrose is a disaccharide composed of a glucose and a lactose molecule.	170)
	Disulfide bridges contribute to the tertiary structure of proteins by covalent bonds between the sulfhydryl groups on two cysteine amino acids.	171)
172)	Cholesterol is the precursor molecule for all steroids in the body.	172)
173)	Glycoproteins have a glycogen molecule covalently bound to a protein.	173)
	Cyclic nucleotides form ring structures due to the covalent bonding between an oxygen of the phosphate group and a carbon of the carbohydrate.	174)
175)	Thymine is a pyrimidine.	175)
176)	Guanine and cytosine are held together by two hydrogen bonds.	176)
177)	Inclusions are intracellular stores of glycogen or triglycerides.	177)
178)	The innermost compartment of a mitochondrion is called the matrix.	178)
179)	Vaults direct the development of the mitotic spindle during cell division.	179)
180)	The cytoskeleton suspends the organelles within the cytoplasm.	180)
181)	Movement between cells in an epithelium is called transepithelial transport.	181)
182)	Anabolism describes the breakdown of large molecules to smaller molecules.	182)
183)	Every adenine nucleotide of DNA will be transcribed into a thymine on the mRNA.	183)
-	The exon is cut from the original mRNA sequence, leaving the intron as the portion of mRNA that leaves the nucleus to be translated into a protein.	184)
	The mRNA codon UUU codes for the amino acid phenylalanine. Therefore, no other codon can code for phenylalanine.	185)
186)	Each strand of mRNA is translated by one ribosome at a time.	186)
187)	The Golgi apparatus sorts and packages proteins into vesicles targeted for their final destination.	187)
188)	The anticodon is complementary to the triplet coding for a particular amino acid.	188)
-	The hormone insulin is a peptide hormone consisting of two polypeptides held together by disulfide bridges.	189)
	The semiconservative nature of the replication of DNA means that a new strand is coupled to an old strand.	190)
	When insulin is first translated by ribosomes, the initial inactive polypeptide that is formed is called preinsulin.	191)

192) Bonding between Okazaki fragments forms the lagging strand of DNA.	192)
193) Helicase catalyzes the unwinding of DNA during transcription.	193)
194) Proteases break peptide bonds.	194)
195) Microtubules are dynamic structures in that they may form and disassemble repeatedly in a cell.	195)
196) The mitotic spindle forms from the centrosome during cell division.	196)

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

- 197) Carbohydrates and lipids are important biomolecules that store energy for the body to use later. Describe the structures and properties of carbohydrates and lipids, including the different forms of these biomolecules that are present within the body.
- 198) Define and describe the structure of proteins, including the forces that determine the three-dimensional structure of these molecules.
- 199) Describe the structure and function of nucleotides and nucleic acids.
- 200) The membrane of a cell is an important structure that isolates the cell's cytosol from the external environment. The components of membranes are important determinants of their function. What are the components of a membrane and how do those components function?
- 201) List the membranous organelles that are present within the cell and describe their function.
- 202) All of the organelles present within a cell are not bound by membranes. Describe the non-membrane-bound organelles that are found in cells.
- 203) Describe the three types of proteins that comprise the cytoskeleton.
- 204) In order for tissues to maintain their structure and function, there must be some way for cells to adhere to their neighbors. Describe the adhesion proteins that function in coupling one cell to the next.
- 205) Describe the process of gene transcription, including how that process is regulated.
- 206) In general, describe the process whereby mRNA that has exited the nucleus is used to synthesize a functional protein.

1) C 2) D 3) B 4) D 5) C 6) A 7) C 8) E 9) D 10) E 11) E 12) A 13) A 14) C 15) A 16) E 17) A 18) D 19) E 20) E 21) E 22) E 23) B 24) C 25) B 26) A 27) D 28) C 29) B 30) C 31) C 32) B 33) B 34) B 35) E 36) B 37) E 38) E 39) A 40) B 41) A 42) E 43) B 44) B 45) A 46) A 47) A 48) E 49) B 50) C 51) D

52) D 53) B 54) E 55) A 56) E 57) B 58) A 59) E 60) E 61) B 62) A 63) B 64) A 65) C 66) B 67) E 68) D 69) D 70) E 71) C 72) A 73) C 74) A 75) D 76) B 77) B 78) B 79) C 80) A 81) D 82) A 83) B 84) E 85) D 86) B 87) E 88) D 89) A 90) B 91) A 92) D 93) C 94) D 95) D 96) D 97) C 98) D 99) D 100) A 101) A 102) C 103) A

104) D 105) B 106) E 107) D 108) D 109) A 110) D 111) B 112) E 113) C 114) B 115) D 116) C 117) A 118) D 119) C 120) D 121) C 122) B 123) E 124) D 125) A 126) C 127) B 128) E 129) A 130) A 131) D 132) A 133) E 134) B 135) C 136) C 137) D 138) C 139) E 140) B 141) D 142) D 143) A 144) C 145) E 146) D 147) C 148) A 149) D 150) B 151) D 152) E 153) B 154) A 155) B

156) C 157) C 158) A 159) C 160) C 161) B 162) E 163) D 164) C 165) A 166) A 167) E 168) A 169) D 170) FALSE 171) TRUE 172) TRUE 173) FALSE 174) FALSE 175) TRUE 176) FALSE 177) TRUE 178) TRUE 179) FALSE 180) TRUE 181) FALSE 182) FALSE 183) FALSE 184) FALSE 185) FALSE 186) FALSE 187) TRUE 188) TRUE 189) TRUE 190) TRUE 191) FALSE 192) TRUE

- 193) TRUE
- 194) TRUE
- 195) TRUE
- 196) FALSE

197) Carbohydrates have the general structure of $C_nH_{2n}O_n$. They are polar molecules that readily dissolve in water.

They are described based on their size as mono-, di-, and polysaccharides. Monosaccharides are simple sugars composed of six carbons, including glucose, fructose, and galactose, or five carbons, as with ribose and deoxyribose. Disaccharides are combinations of simple sugars covalently bound together, as with sucrose (glucose and fructose) and lactose (glucose and galactose). Polysaccharides are formed by many simple sugars bound together covalently, including glycogen and starch.

Lipids are a diverse group of molecules primarily containing carbons and hydrogens bound by nonpolar covalent bonds. Some contain oxygen, while others contain phosphate groups that polarize the molecule. Triglycerides are a form of lipid typically referred to as a fat composed of one glycerol with three fatty acids bound to it. Fatty acids are long carbon chain molecules with a carboxyl group at the end. Saturated fatty acids have no double bonds between the carbons, whereas unsaturated fatty acids have at least one (monounsaturated) or more (polyunsaturated) doub een carbons on the fatty acid. Triglycerides and fatty acids are both nonpolar and do not readily dissolve in water.

le Phospholipids are similar to triglycerides except one of the fatty acids attached to glycerol is replaced with a

- bond phosphate group. Therefore, the molecule is amphipathic with a polar (phosphate) and nonpolar (fatty acids) s region. Eicosanoids are fatty acid derivatives that function in cellular communication. Finally, steroids are
- betw produced from the precursor cholesterol and act as hormones to communicate between cells.
 - 198) Proteins are chains of amino acids bound by peptide bonds formed by the condensation reaction of the amine group on one amino acid with the carboxyl group on the other amino acid. The difference between peptides and proteins is the number of amino acids; peptides are composed of fewer than 50 amino acids, whereas proteins have more than 50. Once formed, there are many chemical interactions involved in the creation of this three-dimensional structure that can be described at different levels. Primary structure refers to the sequence of amino acids that comprise a particular peptide or protein. Secondary structure involves the folding of that primary structure, produced by hydrogen bonds between amine groups with the oxygen on the carboxyl group of another amino acid. This forms proteins into *α*-helices and β-pleated sheets. Tertiary structure is formed by the interaction between residual groups (R groups) on particular amino acids. Hydrogen bonds can form between polar R groups. Ionic bonds can form between the warped electron field of one molecule being slightly more negative, with the warped electron field of another molecule being slightly more positive, whereas covalent bonds can form disulfide bridges between sulfhydryl groups on cysteine residues. Quaternary structure exists only in proteins with more than one polypeptide chain, like hemoglobin, which contains four separate polypeptide chains.
 - 199) Nucleotides are composed of one or more phosphate groups, a five-carbon sugar (ribose or deoxyribose), and a nitrogenous base. The nitrogenous bases in nucleotides can be from one of two classes: purines (a double carbon-nitrogen ring for adenine and guanine) or pyrimidines (a single carbon-nitrogen ring for cytosine, thymine, and uracil). Nucleotides can function in the exchange of cellular energy in molecules like adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD⁺) and flavin adenine dinucleotide (FAD). Cyclic nucleotides function as intracellular second messengers, like cyclic guanosine monophosphate (cGMP) and cyclic adenine monophosphate (cAMP). Nucleotide polymers function in the storage of genetic information, like deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). The polymeric strands of DNA and RNA are identified by the 3' and 5' end, with the 3' being the carboxyl end (from the carbohydrate) and the 5' end containing the phosphate group. The Law of Complementary Base Pairing ensures that double-stranded DNA will have matching information on both strands. Cytosine is always paired with guanine, whereas adenine is always paired with thymine. In RNA, the thymine is replaced with uracil. DNA stores the genetic code whereas RNA is necessary for expression of the code.
 - 200) Cell membranes are composed of phospholipids, cholesterol, integral proteins, peripheral proteins, and carbohydrates. Phospholipids are the major constituent of membranes. They are amphipathic molecules with polar (hydrophilic) and nonpolar (hydrophobic) regions. The phospholipids form a bilayer with the hydrophilic region exposed to the outside and inside of the cell, and the nonpolar region associated with itself within the core of the phospholipid bilayer. As a consequence, the membrane is a fluid structure with no strong bonds between its components. Cholesterol can also be present within the membrane, which acts to interfere with hydrophobic interactions lining up the molecules within the membrane, thereby decreasing viscosity and increasing membrane fluidity. Integral membrane proteins are intimately associated with the lipid bilayer multiple times. These transmembrane proteins can function as ion channels and transporters to move ions across the membrane. Other integral membrane proteins are located on the cytosolic or interstitial side of the membrane. Peripheral membrane proteins are located on the cytosolic or interstitial side of the membrane. Nots are located on the cytosolic or interstitial side of the membrane. Carbohydrates are often located on the cytosolic side of the membrane and can be associated with the cytoskeleton. Carbohydrates are often located on the extracellular side of the membrane and can act as a protective layer (glycocalyx) or be involved in cell recognition.
 - 201) The endoplasmic reticulum is composed of two structures that are smooth and rough in character. The rough portion contains ribosomes that are involved in the translation of proteins. Those proteins can be secreted from the cell (hormones), incorporated into the cell membrane (receptors and ion channels), or incorporated into lysosomes. The smooth portion of the endoplasmic reticulum is the site of lipid synthesis and the storage of calcium. The Golgi apparatus is closely associated with the endoplasmic reticulum, processing molecules that were synthesized in the endoplasmic reticulum and packaging them into vesicles for delivery to their site of action. Mitochondria are

struc an inner and outer membrane. The innermost compartment contains the enzymes of the Krebs cycle. The inner tures membrane contains the components of the electron transport chain. The lysosome is a membrane-bound vesicle that that contains lytic enzymes, which can degrade debris (intra or extracellular). Old organelles can be degraded in this conta manner. Peroxisomes are vesicles, usually smaller than lysosomes, which contain enzymes that degrade amino in acids, alcohols and fatty acids. A byproduct of this degradation is hydrogen peroxide, which is toxic to cells.

- both However, they also contain catalase, an enzyme that degrades hydrogen peroxide.
- 202) Ribosomes are dense granules composed of rRNA and protein, some of which are associated with the rough endoplasmic reticulum. These structures play an important role in protein synthesis. The ribosomes that are free within the cytosol synthesize proteins that remain in the cytosol, or can enter the mitochondria, the nucleus, or the peroxisome. Proteins synthesized within the rough endoplasmic reticulum will cross the membrane (be secreted) or become associated with membranes, such as a plasma membrane or an organelle. The other non-membranous structures of the cell are vaults. These recently discovered organelles are barrel-shaped and three times larger than ribosomes, but their function is not yet clearly understood. They may be involved in the transport of molecules between the nucleus and cytoplasm. They have received considerable attention of late for their role in the development of resistance to chemotherapies.
- 203) Microfilaments are the smallest of the cytoskeletal proteins. The functions of microfilaments, such as actin, include contraction, amoeboid-like movement of cells, and separation of the cytoplasm during cell division. Other microfilaments provide the structural support for the microvilli of cells within the small intestines and hair cells of the cochlea. Intermediate filaments tend to be stronger and more stable than microfilaments, and include proteins like keratin (located in the skin) and myosin. The largest of the cytoskeletal proteins are microtubules, which are composed of proteins called tubulin. Microtubules form the spindle fibers that are involved in the distribution of chromosomes during cell division. Microtubules are also the primary component of cilia and flagella—hair-like protrusions involved in motility. Cilia are composed of ten pairs of microtubules in a nine pair surrounding one pair configuration, connected by the protein dynein that generates the force necessary to cause the microtubules to slide past one another, thereby moving the cilia. Flagella are similar in structure, except they are longer than cilia.
- 204) Tight junctions are composed of integral membrane proteins called occludins that fuse neighboring cells, creating an impermeable barrier. Because of this barrier, most polar solutes must pass through the cell itself by transepithelial transport, rather than by moving between cells (paracellular transport). These tight junctions are commonly found between epithelial cells that line hollow organs in order to maintain separation between fluid compartments. The extent to which fluid compartments are separated is determined by the expression of occludin proteins. Desmosomes are strong filamentous junctions that provide the structural support for cell attachment. Proteins called cadherins are involved in creating these connections between cells. Gap junctions are protein channels formed by connexin proteins. Gap junctions allow for communication between neighboring cells. Molecules, some relatively large (cAMP), can diffuse from one cell to the next when these channels are open.
- 205) The section of DNA that contains a gene is identified by the promoter that is upstream from the gene. There is a specific promoter sequence that is recognized by an RNA polymerase causing that enzyme to bind and uncoil the DNA. Free nucleotides align with the sense strand of DNA based upon the Law of Complementary Base Pairing. The RNA polymerase will catalyze the formation of bonds between the free nucleotides, thereby forming a single-stranded mRNA. As it is being synthesized, segments of the mRNA called introns are spliced from the mRNA strand until all that is left are the exons, which are joined together. A cap is added to the 5' end, which is necessary for the initiation of translation. At the same time, many adenine molecules (the poly A tail) are added to the other end (the 3' region) of the mRNA molecule, which along with the CAP, serves to protect the mRNA from degradation once it is in the cytosol. The regulation of mRNA concentration in the cytosol can occur through a number of mechanisms. The mRNA can be bound to a protein, thereby inactivating that mRNA. In addition, both stability and synthesis rates of mRNA are an important determinant of the amount of mRNA coding for a particular protein that is present. This process of transcription can be regulated by DNA binding proteins, whose binding to the promoter region of the gene can either enhance or inhibit binding of the RNA polymerase to the gene, thereby altering expression of the gene.
- 206) mRNA is read in triplets, from the initiator codon (AUG), which codes for the amino acid methionine, to a termination codon. Translation is started by initiation factors that bind to the cap group on the mRNA, while other factors form a complex with small ribosomal subunits and a charged tRNA (containing an amino acid). The tRNA with an anticodon will bind to the codon on the mRNA by the Law of Complementary Base Pairs. The large

ribos on the ribosome. An enzyme within the ribosome then catalyzes the formation of a peptide bond between amino omal acids, and the first tRNA will be released from the amino acid. The ribosome will then move three bases down to subu the next codon. As the first tRNA leaves the P site, the second tRNA will move from the A to the P site. Then, a new charged tRNA will bind to the A site; the tRNA with the anticodon that matches the mRNA. This process will nit then continue until the termination codon is reached. The leader sequence will determine whether the protein will bind remain in the cytosol or attach to the endoplasmic reticulum. Post-translational modification is required in order to make the protein functional, and this process can occur anywhere from the rough endoplasmic reticulum to the s, causi Golgi apparatus. The leader sequence must first be cleaved as well as any other excess amino acids that are present on the protein. Thereafter, other molecules can be added to proteins, like carbohydrates (glycoprotein), or lipids ng initia (lipoproteins), in order to make the protein functional. tion facto rs to disso ciate, there by align ing the first tRN А with the P site of the ribos ome. А seco nd char ged tRN А with the appr opria te antic odon will attac h itself to the А site