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Chapter 1 Solutions

Solutions to Section 1.1

True-False Review:

(a): FALSE. A derivative must involve some derivative of the function y = f(x), not necessarily the first
derivative.

(b): FALSE. The order of a differential equation is the order of the highest, not the lowest, derivative
appearing in the differential equation.

(c): FALSE. This differential equation has order two, since the highest order derivative that appears in the
equation is the second order expression y′′.

(d): FALSE. The carrying capacity refers to the maximum population size that the environment can
support in the long run; it is not related to the initial population in any way.

(e): TRUE. The value y(0) is called an initial condition to the differential equation for y(t).

(f): TRUE. According to Newton’s Law of Cooling, the rate of cooling is proportional to the difference
between the object’s temperature and the medium’s temperature. Since that difference is greater for the
object at 100◦F than the object at 90◦F , the object whose temperature is 100◦F has a greater rate of
cooling.

(g): FALSE. The temperature of the object is given by T (t) = Tm + ce−kt, where Tm is the temperature
of the medium, and c and k are constants. Since e−kt �= 0, we see that T (t) �= Tm for all times t. The
temperature of the object approaches the temperature of the surrounding medium, but never equals it.

(h): TRUE. Since the temperature of the coffee is falling, the temperature difference between the coffee
and the room is higher initially, during the first hour, than it is later, when the temperature of the coffee
has already decreased.

(i): FALSE. The slopes of the two curves are negative reciprocals of each other.

(j): TRUE. If the original family of parallel lines have slopes k for k �= 0, then the family of orthogonal tra-
jectories are parallel lines with slope − 1

k . If the original family of parallel lines are vertical (resp. horizontal),
then the family of orthogonal trajectories are horizontal (resp. vertical) parallel lines.

(k): FALSE. The family of orthogonal trajectories for a family of circles centered at the origin is the family
of lines passing through the origin.

(l): TRUE. If v(t) denotes the velocity of the object at time t and a(t) denotes the velocity of the object
at time t, then we have a(t) = v′(t), which is a differential equation for the unknown function v(t).

(m): FALSE. The restoring force is directed in the direction opposite to the displacement from the equi-
librium position.

(n): TRUE. The allometric relationship B = B0m
3/4, where B0 is a constant, relates the metabolic rate

and total body mass for any species.

Problems:

1. The order is 2.

2. The order is 1.
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3. The order is 3.

4. The order is 2.

5. We compute the first three derivatives of y(t) = ln t:

dy

dt
=

1

t
,

d2y

dt2
= − 1

t2
,

d3y

dt3
=

2

t3
.

Therefore,

2

(
dy

dt

)3

=
2

t3
=

d3y

dt3
,

as required.

6. We compute the first two derivatives of y(x) = x/(x+ 1):

dy

dx
=

1

(x+ 1)2
and

d2y

dx2
= − 2

(x+ 1)3
.

Then

y +
d2y

dx2
=

x

x+ 1
− 2

(x+ 1)3
=

x3 + 2x2 + x− 2

(x+ 1)3
=

(x+ 1) + (x3 + 2x2 − 3)

(x+ 1)3
=

1

(x+ 1)2
+

x3 + 2x2 − 3

(1 + x)3
,

as required.

7. We compute the first two derivatives of y(x) = ex sinx:

dy

dx
= ex(sinx+ cosx) and

d2y

dx2
= 2ex cosx.

Then

2y cotx− d2y

dx2
= 2(ex sinx) cotx− 2ex cosx = 0,

as required.

8. (T − Tm)−1 dT

dt
= −k =⇒ d

dt
(ln |T − Tm|) = −k. The preceding equation can be integrated directly to

yield ln |T − Tm| = −kt + c1. Exponentiating both sides of this equation gives |T − Tm| = e−kt+c1 , which
can be written as

T − Tm = ce−kt,

where c = ±ec1 . Rearranging yields T (t) = Tm + ce−kt.

9. After 4 p.m. In the first two hours after noon, the water temperature increased from 50◦ F to 55◦

F, an increase of five degrees. Because the temperature of the water has grown closer to the ambient air
temperature, the temperature difference |T −Tm| is smaller, and thus, the rate of change of the temperature
of the water grows smaller, according to Newton’s Law of Cooling. Thus, it will take longer for the water
temperature to increase another five degrees. Therefore, the water temperature will reach 60◦ F more than
two hours later than 2 p.m., or after 4 p.m.

10. The object temperature cools a total of 40◦ F during the 40 minutes, but according to Newton’s Law of
Cooling, it cools faster in the beginning (since |T −Tm| is greater at first). Thus, the object cooled half-way

(c)2017 Pearson Education. Inc.
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from 70◦ F to 30◦ F in less than half the total cooling time. Therefore, it took less than 20 minutes for the
object to reach 50◦ F.

11. The given family of curves satisfies: x2 + 9y2 = c =⇒ 2x+ 18y
dy

dx
= 0 =⇒ dy

dx
= − x

9y
.

Orthogonal trajectories satisfy:

dy

dx
=

9y

x
=⇒ 1

y

dy

dx
=

9

x
=⇒ d

dx
(ln |y|) = 9

x
=⇒ ln |y| = 9 ln |x|+ c1 =⇒ y = kx9,where k = ±ec1

.

1.5-0.5

-0.4

1.0

x

y(x)

-0.8

0.4

0.5

0.8

-1.0-1.5

Figure 0.0.1: Figure for Problem 11

12. Given family of curves satisfies: y = cx2 =⇒ c =
y

x2
. Hence,

dy

dx
= 2cx = c

( y

x2

)
x =

2y

x
.

Orthogonal trajectories satisfy:

dy

dx
= − x

2y
=⇒ 2y

dy

dx
= −x =⇒ d

dx
(y2) = −x =⇒ y2 = −1

2
x2 + c1 =⇒ 2y2 + x2 = c2,

where c2 = 2c1.

13. Given a family of curves satisfies: y =
c

x
=⇒ x

dy

dx
+ y = 0 =⇒ dy

dx
= −y

x
.

Orthogonal trajectories satisfy:

dy

dx
=

x

y
=⇒ y

dy

dx
= x =⇒ d

dx

(
1

2
y2
)

= x =⇒ 1

2
y2 =

1

2
x2 + c1 =⇒ y2 − x2 = c2,where c2 = 2c1.

14. The given family of curves satisfies: y = cx5 =⇒ c =
y

x5
. Hence,

dy

dx
= 5cx4 = 5

( y

x5

)
x4 =

5y

x
.

(c)2017 Pearson Education. Inc.
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x

1

y(x)
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2

2.0

1.2

0.4

0.8

-1.2

-2
-0.4

-2.0

-1.6

-1

-0.8

Figure 0.0.2: Figure for Problem 12

-2

2

-4

y(x)

2

4

-4

x

-2 4

Figure 0.0.3: Figure for Problem 13

Orthogonal trajectories satisfy:

dy

dx
= − x

5y
=⇒ 5y

dy

dx
= −x =⇒ d

dx

(
5

2
y2
)

= −x =⇒ 5

2
y2 = −1

2
x2 + c1 =⇒ 5y2 + x2 = c2,

where c2 = 2c1.
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1.5

-0.4

1.0

y(x)

x

-0.8

0.4

0.8

-1.0-1.5

Figure 0.0.4: Figure for Problem 14

15. Given family of curves satisfies: y = cex =⇒ dy

dx
= cex = y. Orthogonal trajectories satisfy:

dy

dx
= −1

y
=⇒ y

dy

dx
= −1 =⇒ d

dx

(
1

2
y2
)

= −1 =⇒ 1

2
y2 = −x+ c1 =⇒ y2 = −2x+ c2.

2

1

y(x)

1

x

-1

-2

-1

Figure 0.0.5: Figure for Problem 15

16. Given family of curves satisfies: y2 = 2x+ c =⇒ dy

dx
=

1

y
.Orthogonal trajectories satisfy:

dy

dx
= −y =⇒ y−1 dy

dx
= −1 =⇒ d

dx
(ln |y|) = −1 =⇒ ln |y| = −x+ c1 =⇒ y = c2e

−x.
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1

1

3

-3

-2

2

-4

-1

2-1

4

3

y(x)

x

4

Figure 0.0.6: Figure for Problem 16

17. y = cxm =⇒ dy

dx
= cmxm−1, but c =

y

xm
so

dy

dx
=

my

x
. Orthogonal trajectories satisfy:

dy

dx
= − x

my
=⇒ y

dy

dx
= − x

m
=⇒ d

dx

(
1

2
y2
)

= − x

m
=⇒ 1

2
y2 = − 1

2m
x2 + c1 =⇒ y2 = − 1

m
x2 + c2.

18. y = mx+ c =⇒ dy

dx
= m.

Orthogonal trajectories satisfy:
dy

dx
= − 1

m
=⇒ y = − 1

m
x+ c1.

19. y2 = mx+ c =⇒ 2y
dy

dx
= m =⇒ dy

dx
=

m

2y
.

Orthogonal trajectories satisfy:

dy

dx
= −2y

m
=⇒ y−1 dy

dx
= − 2

m
=⇒ d

dx
(ln |y|) = − 2

m
=⇒ ln |y| = − 2

m
x+ c1 =⇒ y = c2e

− 2x
m .

20. y2 +mx2 = c =⇒ 2y
dy

dx
+ 2mx = 0 =⇒ dy

dx
= −mx

y
.

Orthogonal trajectories satisfy:

dy

dx
=

y

mx
=⇒ y−1 dy

dx
=

1

mx
=⇒ d

dx
(ln |y|) = 1

mx
=⇒ m ln |y| = ln |x|+ c1 =⇒ ym = c2x.

21. The given family of curves satisfies: x2 + y2 = 2cx =⇒ c =
x2 + y2

2x
. Hence,

2x+ 2y
dy

dx
= 2c =

x2 + y2

x
.

(c)2017 Pearson Education. Inc.
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Therefore,

2y
dy

dx
=

x2 + y2

x
− 2x =

y2 − x2

x
,

so that
dy

dx
=

y2 − x2

2xy
.

Orthogonal trajectories satisfy:
dy

dx
= − 2xy

y2 − x2
=

2xy

x2 − y2
.

22. u = x2 + 2y2 =⇒ 0 = 2x+ 4y
dy

dx
=⇒ dy

dx
= − x

2y
.

Orthogonal trajectories satisfy:

dy

dx
=

2y

x
=⇒ y−1 dy

dx
=

2

x
=⇒ d

dx
(ln |y|) = 2

x
=⇒ ln |y| = 2 ln |x|+ c1 =⇒ y = c2x

2.

x

1

y(x)

1.6

2

2.0

1.2

0.4

0.8

-1.2

-2
-0.4

-2.0

-1.6

-1

-0.8

Figure 0.0.7: Figure for Problem 22

23. m1 = tan (a1) = tan (a2 − a) =
tan (a2)− tan (a)

1 + tan (a2) tan (a)
=

m2 − tan (a)

1 +m2 tan (a)
.

24. d2y
dt2 = g =⇒ dy

dt = gt + c1 =⇒ y(t) = gt2

2 + c1t + c2. Now impose the initial conditions. y(0) = 0 =⇒
c2 = 0.dydt (0) =⇒ c1 = 0. Hence, the solution to the initial-value problem is: y(t) = gt2

2 . The object hits the

ground at time, t0, when y(t0) = 100. Hence 100 =
gt20
2 , so that t0 =

√
200
g ≈ 4.52 s, where we have taken

g = 9.8 ms−2.

(c)2017 Pearson Education. Inc.
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25. From
d2y

dt2
= g, we integrate twice to obtain the general equations for the velocity and the position of

the ball, respectively:
dy

dt
= gt+ c and y(t) =

1

2
gt2 + ct+ d, where c, d are constants of integration. Setting

y = 0 to be at the top of the boy’s head (and positive direction downward), we know that y(0) = 0. Since the
object hits the ground 8 seconds later, we have that y(8) = 5 (since the ground lies at the position y = 5).

From the values of y(0) and y(8), we find that d = 0 and 5 = 32g + 8c. Therefore, c =
5− 32g

8
.

(a). The ball reaches its maximum height at the moment when y′(t) = 0. That is, gt+ c = 0. Therefore,

t = − c

g
=

32g − 5

8g
≈ 3.98 s.

(b). To find the maximum height of the tennis ball, we compute

y(3.98) ≈ −253.51 feet.

So the ball is 253.51 feet above the top of the boy’s head, which is 258.51 feet above the ground.

26. From
d2y

dt2
= g, we integrate twice to obtain the general equations for the velocity and the position of

the rocket, respectively:
dy

dt
= gt+c and y(t) =

1

2
gt2+ct+d, where c, d are constants of integration. Setting

y = 0 to be at ground level, we know that y(0) = 0. Thus, d = 0.

(a). The rocket reaches maximum height at the moment when y′(t) = 0. That is, gt+ c = 0. Therefore, the

time that the rocket achieves its maximum height is t = − c

g
. At this time, y(t) = −90 (the negative sign

accounts for the fact that the positive direction is chosen to be downward). Hence,

−90 = y

(
− c

g

)
=

1

2
g

(
− c

g

)2

+ c

(
− c

g

)
=

c2

2g
− c2

g
= − c2

2g
.

Solving this for c, we find that c = ±√
180g. However, since c represents the initial velocity of the rocket,

and the initial velocity is negative (relative to the fact that the positive direction is downward), we choose
c = −√

180g ≈ −42.02 ms−1, and thus the initial speed at which the rocket must be launched for optimal
viewing is approximately 42.02 ms−1.

(b). The time that the rocket reaches its maximum height is t = − c

g
≈ −−42.02

9.81
= 4.28 s.

27. From
d2y

dt2
= g, we integrate twice to obtain the general equations for the velocity and the position of

the rocket, respectively:
dy

dt
= gt+c and y(t) =

1

2
gt2+ct+d, where c, d are constants of integration. Setting

y = 0 to be at the level of the platform (with positive direction downward), we know that y(0) = 0. Thus,
d = 0.

(a). The rocket reaches maximum height at the moment when y′(t) = 0. That is, gt+ c = 0. Therefore, the

time that the rocket achieves its maximum height is t = − c

g
. At this time, y(t) = −85 (this is 85 m above

the platform, or 90 m above the ground). Hence,

−85 = y

(
− c

g

)
=

1

2
g

(
− c

g

)2

+ c

(
− c

g

)
=

c2

2g
− c2

g
= − c2

2g
.

(c)2017 Pearson Education. Inc.
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Solving this for c, we find that c = ±√
170g. However, since c represents the initial velocity of the rocket,

and the initial velocity is negative (relative to the fact that the positive direction is downward), we choose
c = −√

170g ≈ −40.84 ms−1, and thus the initial speed at which the rocket must be launched for optimal
viewing is approximately 40.84 ms−1.

(b). The time that the rocket reaches its maximum height is t = − c

g
≈ −−40.84

9.81
= 4.16 s.

28. If y(t) denotes the displacement of the object from its initial position at time t, the motion of the object
can be described by the initial-value problem

d2y

dt2
= g, y(0) = 0,

dy

dt
(0) = −2.

We first integrate this differential equation:
d2y

dt2
= g =⇒ dy

dt
= gt + c1 =⇒ y(t) =

gt2

2
+ c1t + c2. Now

impose the initial conditions. y(0) = 0 =⇒ c2 = 0.
dy

dt
(0) = −2 =⇒ c1 = −2. Hence the solution to the

initial-value problem is y(t) =
gt2

2
− 2t. We are given that y(10) = h. Consequently, h =

g(10)2

2
− 2 · 10 =⇒

h = 10(5g − 2) ≈ 470 m where we have taken g = 9.8 ms−2.

29. If y(t) denotes the displacement of the object from its initial position at time t, the motion of the object
can be described by the initial-value problem

d2y

dt2
= g, y(0) = 0,

dy

dt
(0) = v0.

We first integrate the differential equation:
d2y

dt2
= g =⇒ dy

dt
= gt+ c1 =⇒ y(t) =

gt2

2
+ c1t+ c2. Now impose

the initial conditions. y(0) = 0 =⇒ c2 = 0.
dy

dt
(0) = v0 =⇒ c1 = v0. Hence the solution to the initial-value

problem is y(t) =
gt2

2
+v0t. We are given that y(t0) = h. Consequently, h = gt20+v0t0. Solving for v0 yields

v0 =
2h− gt20

2t0
.

30. From y(t) = A cos (ωt− φ), we obtain

dy

dt
= −Aω sin (ωt− φ) and

d2y

dt2
= −Aω2 cos (ωt− φ).

Hence,
d2y

dt2
+ ω2y = −Aω2 cos (ωt− φ) +Aω2 cos (ωt− φ) = 0.

Substituting y(0) = a, we obtain a = A cos(−φ) = A cos(φ). Also, from dy
dt (0) = 0, we obtain 0 =

−Aω sin(−φ) = Aω sin(φ). Since A �= 0 and ω �= 0 and |φ| < π, we have φ = 0. It follows that a = A.

31. y(t) = c1 cos (ωt) + c2 sin (ωt) =⇒ dy

dt
= −c1ω sin (ωt) + c2ω cos (ωt) =⇒ d2y

dt2
= −c1ω

2 cos (ωt) −

c2ω
2 sin (ωt) = −ω2[c1 cos (ωt) + c2 cos (ωt)] = −ω2y. Consequently,

d2y

dt2
+ ω2y = 0. To determine the

(c)2017 Pearson Education. Inc.
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amplitude of the motion we write the solution to the differential equation in the equivalent form:

y(t) =
√
c21 + c22

[
c1√

c21 + c22
cos (ωt) +

c2√
c21 + c22

sin (ωt)

]
.

We can now define an angle φ by

cosφ =
c1√

c21 + c22
and sinφ =

c2√
c21 + c22

.

Then the expression for the solution to the differential equation is

y(t) =
√

c21 + c22[cos (ωt) cosφ+ sin (ωt) sinφ] =
√

c21 + c22 cos (ωt+ φ).

Consequently the motion corresponds to an oscillation with amplitude A =
√
c21 + c22.

32. In this problem we have m0 = 3g, M = 2700g, a = 1.5. Substituting these values into Equation (1.1.26)
yields

m(t) = 2700

{
1−

[
1−

(
1

900

)1/4
]
e−1.5t/(4(2700)1/4)

}4

.

Therefore the mass of the heron after 30 days is

m(30) = 2700

{
1−

[
1−

(
1

900

)1/4
]
e−45/(4(2700)1/4)

}4

≈ 1271.18 g.

33. In this problem we have m0 = 8g, M = 280g, a = 0.25. Substituting these values into Equation (1.1.26)
yields

m(t) = 280

{
1−

[
1−

(
1

35

)1/4
]
e−t/(16(280)1/4)

}4

.

We need to find the time, t when the mass of the rat reaches 75% of its fully grown size. Therefore we need
to find t such that

75

100
· 280 = 280

{
1−

[
1−

(
1

35

)1/4
]
e−t/(16(280)1/4)

}4

.

Solving algebraically for t yields

t = 16 · (280)1/4 · ln
[

1− (1/35)
1/4

1− (75/100))
1/4

]
≈ 140 days.

Solutions to Section 1.2

True-False Review:

(a): TRUE. This is condition 1 in Definition 1.2.8.

(c)2017 Pearson Education. Inc.
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(b): TRUE. This is the content of Theorem 1.2.12.

(c): FALSE. There are solutions to y′′ + y = 0 that do not have the form c1 cosx + 5c2 cosx, such as
y(x) = sinx. Therefore, c1 cosx + 5c2 cosx does not meet the second requirement set forth in Definition
1.2.8 for the general solution.

(d): FALSE. There are solutions to y′′ + y = 0 that do not have the form c1 cosx + 5c1 sinx, such
as y(x) = cosx + sinx. Therefore, c1 cosx + 5c1 sinx does not meet the second requirement set form in
Definition 1.2.8 for the general solution.

(e): TRUE. Since the right-hand side of the differential equation is a function of x only, we can integrate
both sides n times to obtain the formula for the solution y(x).

Problems:

1. Linear.

2. Non-linear, because of the y2 expression on the right side of the equation.

3. Non-linear, because of the term yy′′ on tthe left side of the equation.

4. Non-linear, because of the expression tan y appearing on the left side of the equation.

5. Linear.

6. Non-linear, because of the expression
1

y′
on the left side of the equation.

7. y(x) = c1e
−5x + c2e

5x =⇒ y′ = −5c1e
−5x + 5c2e

5x =⇒ y′′ = 25c1e
−5x + 25c2e

5x =⇒ y′′ − 25y =
(25c1e

−5x + 25c2e
5x) − 25(c1e

−5x + c2e
5x) = 0. Thus y(x) = c1e

−5x + c2e
5x is a solution of the given

differential equation for all x ∈ R.

8. y(x) = c1 cos 2x + c2 sin 2x =⇒ y′ = −2c1 sin 2x + 2c2 cos 2x =⇒ y′′ = −4c1 cos 2x − 4c2 sin 2x =⇒
y′′ + 4y = (−4c1 cos 2x − 4c2 sin 2x) + 4(c1 cos 2x + c2 sin 2x) = 0. Thus y(x) = c1 cos 2x + c2 sin 2x is a
solution of the given differential equation for all x ∈ R.

9. y(x) = c1e
x + c2e

−2x =⇒ y′ = c1e
x − 2c2e

−2x =⇒ y′′ = c1e
x + 4c2e

−2x =⇒ y′′ + y′ − 2y = (c1e
x +

4c2e
−2x) + (c1e

x − 2c2e
−2x) − 2(c1e

x + c2e
−2x) = 0. Thus y(x) = c1e

x + c2e
−2x is a solution of the given

differential equation for all x ∈ R.

10. y(x) =
1

x+ 4
=⇒ y′ = − 1

(x+ 4)2
= −y2. Thus y(x) =

1

x+ 4
is a solution of the given differential

equation for x ∈ (−∞,−4) or x ∈ (−4,∞).

11. y(x) = c1
√
x =⇒ y′ =

c1
2
√
x
=

y

2x
. Thus y(x) = c1

√
x is a solution of the given differential equation for

all x ∈ {x : x > 0}.

12. y(x) = c1e
−x sin (2x) =⇒ y′ = 2c1e

−x cos (2x)−c1e
−x sin (2x) =⇒ y′′ = −3c1e

−x sin (2x)−4c1e
−x cos (2x) =⇒

y′′+2y′+5y = −3c1e
−x sin (2x)−4c1e

−x cos (2x)+2[2c1e
−x cos (2x)−c1e

−x sin (2x)]+5[c1e
−x sin (2x)] = 0.

Thus y(x) = c1e
−x sin (2x) is a solution to the given differential equation for all x ∈ R.

13. y(x) = c1 cosh (3x) + c2 sinh (3x) =⇒ y′ = 3c1 sinh (3x) + 3c2 cosh (3x) =⇒ y′′ = 9c1 cosh (3x) +
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9c2 sinh (3x) =⇒ y′′ − 9y = [9c1 cosh (3x) + 9c2 sinh (3x)] − 9[c1 cosh (3x) + c2 sinh (3x)] = 0. Thus y(x) =
c1 cosh (3x) + c2 sinh (3x) is a solution to the given differential equation for all x ∈ R.

14. y(x) =
c1
x3

+
c2
x

=⇒ y′ = −3c1
x4

− c2
x2

=⇒ y′′ =
12c1
x5

+
2c2
x3

=⇒ x2y′′ + 5xy′ + 3y = x2

(
12c1
x5

+
2c2
x3

)
+

5x

(
−3c1

x4
− c2

x2

)
+ 3

( c1
x3

+
c2
x

)
= 0. Thus y(x) =

c1
x3

+
c2
x

is a solution to the given differential equation

for all x ∈ (−∞, 0) or x ∈ (0,∞).

15. y(x) = c1x
2 lnx =⇒ y′ = c1(2x lnx+ x) =⇒ y′′ = c1(2 lnx+ 3) =⇒ x2y′′ − 3xy′ + 4y = x2 · c1(2 lnx+

3) − 3x · c1(2x lnx + x) + 4c1x
2 lnx = c1x

2 [(2 lnx+ 3)− 3(2x lnx+ 1) + 4 lnx] = 0. Thus y(x) = c1x
2 lnx

is a solution of the given differential equation for all x > 0.

16. y(x) = c1x
2 cos(3 lnx) =⇒ y′ = c1[2x cos(3 lnx)−3x sin(3 lnx)] =⇒ y′′ = c1[−7 cos(3 lnx)−6 sin(3 lnx)] =⇒

x2y′′−3xy′+13y = x2·c1[−7 cos(3 lnx)−9 sin(3 lnx)]−3x·c1[2x cos(3 lnx)−3x sin(3 lnx)]+13c1x
2 cos(3 lnx) =

c1x
2 {[−7 cos(3 lnx)− 9 sin(3 lnx)]− 3[2 cos(3 lnx)− 3 sin(3 lnx)] + 13 cos(3 lnx)} = 0. Thus y(x) = c1x

2 cos(3 lnx)
is a solution of the given differential equation for all x > 0.

17. y(x) = c1
√
x+3x2 =⇒ y′ =

c1
2
√
x
+6x =⇒ y′′ = − c1

4
√
x3

+6 =⇒ 2x2y′′−xy′+y = 2x2

(
− c1

4
√
x3

+ 6

)
−

x

(
c1

2
√
x
+ 6x

)
+(c1

√
x+3x2) = 9x2. Thus y(x) = c1

√
x+3x2 is a solution to the given differential equation

for all x ∈ {x : x > 0}.

18. y(x) = c1x
2 + c2x

3 −x2 sinx =⇒ y′ = 2c1x+3c2x
2 −x2 cosx− 2x sinx =⇒ y′′ = 2c1 +6c2x+x2 sinx−

2x cosx− 2x cos−2 sinx. Substituting these results into the given differential equation yields
x2y′′ − 4xy′ + 6y = x2(2c1 + 6c2x+ x2 sinx− 4x cosx− 2 sinx)− 4x(2c1x+ 3c2x

2 − x2 cosx− 2x sinx)

+ 6(c1x
2 + c2x

3 − x2 sinx)

= 2c1x
2 + 6c2x

3 + x4 sinx− 4x3 cosx− 2x2 sinx− 8c1x
2 − 12c2x

3 + 4x3 cosx+ 8x2 sinx

+ 6c1x
2 + 6c2x

3 − 6x2 sinx

= x4 sinx.

Hence, y(x) = c1x
2 + c2x

3 − x2 sinx is a solution to the differential equation for all x ∈ R.

19. y(x) = c1e
ax + c2e

bx =⇒ y′ = ac1e
ax + bc2e

bx =⇒ y′′ = a2c1e
ax + b2c2e

bx. Substituting these results
into the differential equation yields
y′′ − (a+ b)y′ + aby = a2c1e

ax + b2c2e
bx − (a+ b)(ac1e

ax + bc2e
bx) + ab(c1e

ax + c2e
bx)

= (a2c1 − a2c1 − abc1 + abc1)e
ax + (b2c2 − abc2 − b2c2 + abc2)e

bx

= 0.

Hence, y(x) = c1e
ax + c2e

bx is a solution to the given differential equation for all x ∈ R.

20. y(x) = eax(c1 + c2x) =⇒ y′ = eax(c2) + aeax(c1 + c2x) = eax(c2 + ac1 + ac2x) =⇒ y′′ = eaax(ac2) +
aeax(c2 + ac1 + ac2x) = aeax(2c2 + ac1 + ac2x). Substituting these into the differential equation yields
y′′ − 2ay′ + a2y = aeax(2c2 + ac1 + ac2x)− 2aeax(c2 + ac1 + ac2x) + a2eax(c1 + c2x)

= aeax(2c2 + ac1 + ac2x− 2c2 − 2ac1 − 2ac2x+ ac1 + ac2x)

= 0.
Thus, y(x) = eax(c1 + c2x) is a solution to the given differential eqaution for all x ∈ R.
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21. y(x) = eax(c1 cos bx+ c2 sin bx) so,
y′ = eax(−bc1 sin bx+ bc2 cos bx) + aeax(c1 cos bx+ c2 sin bx)

= eax[(bc2 + ac1) cos bx+ (ac2 − bc1) sin bx] so,

y′′ = eax[−b(bc2 + ac1) sin bx+ b(ac2 + bc1) cos bx] + aeax[(bc2 + ac1) cos bx+ (ac2 + bc1) sin bx]

= eax[(a2c1 − b2c1 + 2abc2) cos bx+ (a2c2 − b2c2 − abc1) sin bx].
Substituting these results into the differential equation yields
y′′ − 2ay′ + (a2 + b2)y = (eax[(a2c1 − b2c1 + 2abc2) cos bx+ (a2c2 − b2c2 − abc1) sin bx])

− 2a(eax[(bc2 + ac1) cos bx+ (ac2 − bc1) sin bx]) + (a2 + b2)(eax(c1 cos bx+ c2 sin bx))

= eax[(a2c1 − b2c1 + 2abc2 − 2abc2 − 2a2c1 + a2c1 + b2c1) cos bx

+ (a2c2 − b2c2 − 2abc1 + 2abc1 − 2a2c2 + a2c2 + b2c2) sin bx]

= 0

.

Thus, y(x) = eax(c1 cos bx+ c2 sin bx) is a solution to the given differential equation for all x ∈ R.

22. y(x) = erx =⇒ y′ = rerx =⇒ y′′ = r2erx. Substituting these results into the given differential equation
yields erx(r2 − r − 6) = 0, so that r must satisfy r2 − r − 6 = 0, or (r − 3)(r + 2) = 0. Consequently r = 3
and r = −2 are the only values of r for which y(x) = erx is a solution to the given differential equation. The
corresponding solutions are y(x) = e3x and y(x) = e−2x.

23. y(x) = erx =⇒ y′ = rerx =⇒ y′′ = r2erx. Substituting these results into the given differential equation
yields erx(r2 + 6r + 9) = 0, so that r must satisfy r2 + 6r + 9 = 0, or (r + 3)2 = 0. Consequently r = −3 is
the only value of r for which y(x) = erx is a solution to the given differential equation. The corresponding
solution are y(x) = e−3x.

24. y(x) = xr =⇒ y′ = rxr−1 =⇒ y′′ = r(r−1)xr−2. Substitution into the given differential equation yields
xr[r(r − 1) + r − 1] = 0, so that r must satisfy r2 − 1 = 0. Consequently r = −1 and r = 1 are the only
values of r for which y(x) = xr is a solution to the given differential equation. The corresponding solutions
are y(x) = x−1 and y(x) = x.

25. y(x) = xr =⇒ y′ = rxr−1 =⇒ y′′ = r(r−1)xr−2. Substitution into the given differential equation yields
xr[r(r − 1) + 5r + 4] = 0, so that r must satisfy r2 + 4r + 4 = 0, or equivalently (r + 2)2 = 0. Consequently
r = −2 is the only value of r for which y(x) = xr is a solution to the given differential equation. The
corresponding solution is y(x) = x−2.

26. y(x) = 1
2x(5x

2 − 3) = 1
2 (5x

3 − 3x) =⇒ y′ = 1
2 (15x

2 − 3) =⇒ y′′ = 15x. Substitution into the Legendre
equation with N = 3 yields (1 − x2)y′′ − 2xy′ + 12y = (1 − x2)(15x) + x(15x2 − 3) + 6x(5x2 − 3) = 0.
Consequently the given function is a solution to the Legendre equation with N = 3.

27. y(x) = a0+a1x+a2x
2 =⇒ y′ = a1+2a2x =⇒ y′′ = 4a2. Substitution into the given differential equation

yields (1−x2)(2a2)−x(a1+2a2x)+4(a0+a1x+a2x
2) = 0 =⇒ 3a1x+2a2+4a0 = 0. For this equation to hold

for all x we require 3a1 = 0, and 2a2 + 4a0 = 0. Consequently a1 = 0, and a2 = −2a0. The corresponding
solution to the differential equation is y(x) = a0(1 − 2x2). Imposing the normalization condition y(1) = 1
requires that a0 = −1. Hence, the required solution to the differential equation is y(x) = 2x2 − 1.

28. x sin y − ex = c =⇒ x cos y
dy

dx
+ sin y − ex = 0 =⇒ dy

dx
=

ex − sin y

x cos y
.
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29. xy2 + 2y − x = c =⇒ 2xy
dy

dx
+ y2 + 2

dy

dx
− 1 = 0 =⇒ dy

dx
=

1− y2

2(xy + 1)
.

30. exy + x = c =⇒ exy[x
dy

dx
+ y] − 1 = 0 =⇒ xexy

dy

dx
+ yexy = 1 =⇒ 1− yexy

xexy
. Given y(1) = 0 =⇒

e0(1) − 1 = c =⇒ c = 0. Therefore, exy − x = 0, so that y =
lnx

x
.

31. ey/x + xy2 − x = c =⇒ ey/x
x
dy

dx
− y

x2
+ 2xy

dy

dx
+ y2 − 1 = 0 =⇒ dy

dx
=

x2(1− y2) + yey/x

x(ey/x + 2x2y)
.

32. x2y2 − sinx = c =⇒ 2x2y
dy

dx
+ 2xy2 − cosx = 0 =⇒ dy

dx
=

cosx− 2xy2

2x2y
. Since y(π) =

1

π
, then

π2

(
1

π

)2

− sinπ = c =⇒ c = 1. Hence, x2y2 − sinx = 1 so that y2 =
1 + sinx

x2
. Since y(π) =

1

π
, take the

branch of y where x < 0 so y(x) =

√
1 + sinx

x
.

33.
dy

dx
= sinx =⇒ y(x) = − cosx+ c for all x ∈ R.

34.
dy

dx
= x−2/3 =⇒ y(x) = 3x1/3 + c for all x �= 0.

35.
d2y

dx2
= xex =⇒ dy

dx
= xex − ex + c1 =⇒ y(x) = xex − 2ex + c1x+ c2 for all x ∈ R.

36.
d2y

dx2
= xn, where n is an integer.

If n = −1 then
dy

dx
= ln |x|+ c1 =⇒ y(x) = x ln |x|+ c1x+ c2 for all x ∈ (−∞, 0) or x ∈ (0,∞).

If n = −2 then
dy

dx
= −x−1 + c1 =⇒ y(x) = c1x+ c2 − ln |x| for all x ∈ (−∞, 0) or x ∈ (0,∞).

If n �= −1 and n �= −2 then
dy

dx
=

xn+1

n+ 1
+ c1 =⇒ y =

xn+2

(n+ 1)(n+ 2)
+ c1x+ c2 for all x ∈ R.

37.
dy

dx
= x2 lnx =⇒ y(x) =

1

3
x3 lnx− 1

9
x3 + c1 =

1

9
x3(3 lnx− 1) + c1. y(1) = 2 =⇒ 2 =

1

9
(0− 1) + c1 =⇒

c1 =
19

9
. Therefore, y(x) =

1

9
x3(3 lnx− 1) +

19

9
=

1

9

[
x3(3 lnx− 1) + 19

]
.

38.
d2y

dx2
= cosx =⇒ dy

dx
= sinx+ c1 =⇒ y(x) = − cosx+ c1x+ c2.

Thus, y′(0) = 1 =⇒ c1 = 1, and y(0) = 2 =⇒ c2 = 3. Thus, y(x) = 3 + x− cosx.

39.
d3y

dx3
= 6x =⇒ d2y

dx2
= 3x2 + c1 =⇒ dy

dx
= x3 + c1x+ c2 =⇒ y = 1

4x
4 + 1

2c1x
2 + c2x+ c3.

Thus, y′′(0) = 4 =⇒ c1 = 4, and y′(0) = −1 =⇒ c2 = −1, and y(0) = 1 =⇒ c3 = 1. Thus, y(x) =
1
4x

4 + 2x2 − x+ 1.

40. y′′ = xex =⇒ y′ = xex − ex + c1 =⇒ y = xex − 2ex + c1x+ c2.
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Thus, y′(0) = 4 =⇒ c1 = 5, and y(0) = 3 =⇒ c2 = 5. Thus, y(x) = xex − 2ex + 5x+ 5.

41. Starting with y(x) = c1e
x + c2e

−x, we find that y′(x) = c1e
x − c2e

−x and y′′(x) = c1e
x + c2e

−x. Thus,
y′′ − y = 0, so y(x) = c1e

x + c2e
−x is a solution to the differential equation on (−∞,∞). Next we establish

that every solution to the differential equation has the form c1e
x + c2e

−x. Suppose that y = f(x) is any
solution to the differential equation. Then according to Theorem 1.2.12, y = f(x) is the unique solution to
the initial-value problem

y′′ − y = 0, y(0) = f(0), y′(0) = f ′(0).

However, consider the function

y(x) =
f(0) + f ′(0)

2
ex +

f(0)− f ′(0)
2

e−x.

This is of the form y(x) = c1e
x + c2e

−x, where c1 = f(0)+f ′(0)
2 and c2 = f(0)−f ′(0)

2 , and therefore solves the
differential equation y′′ − y = 0. Furthermore, evaluation this function at x = 0 yields

y(0) = f(0) and y′(0) = f ′(0).

Consequently, this function solves the initial-value problem above. However, by assumption, y(x) = f(x)
solves the same initial-value problem. Owing to the uniqueness of the solution to this initial-value problem,
it follows that these two solutions are the same:

f(x) = c1e
x + c2e

−x.

Consequently, every solution to the differential equation has the form y(x) = c1e
x + c2e

−x, and therefore
this is the general solution on any interval I.

42.
d2y

dx2
= e−x =⇒ dy

dx
= −e−x + c1 =⇒ y(x) = e−x + c1x + c2. Thus, y(0) = 1 =⇒ c2 = 0, and

y(1) = 0 =⇒ c1 = − 1
e . Hence, y(x) = e−x − 1

ex.

43.
d2y

dx2
= −6 − 4 lnx =⇒ dy

dx
= −2x − 4x lnx + c1 =⇒ y(x) = −2x2 lnx + c1x + c2. Since, y(1) = 0 =⇒

c1 + c2 = 0, and since, y(e) = 0 =⇒ ec1 + c2 = 2e2. Solving this system yields c1 =
2e2

e− 1
, c2 = − 2e2

e− 1
.

Thus, y(x) =
2e2

e− 1
(x− 1)− 2x2 lnx.

44. y(x) = c1 cosx+ c2 sinx

(a). y(0) = 0 =⇒ 0 = c1(1) + c2(0) =⇒ c1 = 0. y(π) = 1 =⇒ 1 = c2(0), which is impossible. No solutions.

(b). y(0) = 0 =⇒ 0 = c1(1) + c2(0) =⇒ c1 = 0. y(π) = 0 =⇒ 0 = c2(0), so c2 can be anything. Infinitely
many solutions.

45-50. Use some kind of technology to define each of the given functions. Then use the technology to
simplify the expression given on the left-hand side of each differential equation and verify that the result
corresponds to the expression on the right-hand side.

51. (a). Use some form of technology to substitute y(x) = a+ bx+ cx2+dx3+ex4+fx5 where a, b, c, d, e, f
are constants, into the given Legendre equation and set the coefficients of each power of x in the resulting
equation to zero. The result is:

e = 0, 20f + 18d = 0, e+ 2c = 0, 3d+ 14b = 0, c+ 15a = 0.
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Now solve for the constants to find: a = c = e = 0, d = − 14
3 b, f = − 9

10d = 21
5 b. Consequently the

corresponding solution to the Legendre equation is:

y(x) = bx

(
1− 14

3
x2 +

21

5
x4

)
.

Imposing the normalization condition y(1) = 1 requires 1 = b(1 − 14
3 + 21

5 ) =⇒ b = 15
8 . Consequently the

required solution is y(x) = 1
8x(15− 70x2 + 63x4).

52. (a). J0(x) =
∞∑
k=0

(−1)k

(k!)2

(x
2

)2k
= 1− 1

4x
2 + 1

64x
4 + ...

(b). A Maple plot of J(0, x, 4) is given in the accompanying figure.
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0.4

0.6

0.8

1

1 2 3 4
x

J(0, x, 4)

Approximation to the first 
positive zero of J0(x)

Figure 0.0.8: Figure for Problem 52(b)

(c). From this graph, an approximation to the first positive zero of J0(x) is 2.4. Using the Maple internal
function BesselJZeros gives the approximation 2.404825558.

(c) A Maple plot of the functions J0(x) and J(0, x, 4) on the interval [0,2] is given in the accompanying
figure. We see that to the printer resolution, these graphs are indistinguishable. On a larger interval, for
example, [0,3], the two graphs would begin to differ dramatically from one another.

(d). By trial and error, we find the smallest value of m to be m = 11. A plot of the functions J(0, x) and
J(0, x, 11) is given in the accompanying figure.

Solutions to Section 1.3

True-False Review:

(a): TRUE. This is precisely the remark after Theorem 1.3.2.

(b): FALSE. For instance, the differential equation in Example 1.3.7 has no equilibrium solutions.

(c): FALSE. This differential equation has equilibrium solutions y(x) = 2 and y(x) = −2.

(d): TRUE. For this differential equation, we have f(x, y) = x2 + y2. Therefore, any equation of the form
x2 + y2 = k is an isocline, by definition.
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J0(x), J(0, x, 4)

Figure 0.0.9: Figure for Problem 52(c)
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J(0, x), J(0, x, 11)

J(0, x, 11)
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Figure 0.0.10: Figure for Problem 52(d)

(e): TRUE. Equilibrium solutions are always horizontal lines. These are always parallel to each other.

(f): TRUE. The isoclines have the form x2+y2

2y = k, or x2+y2 = 2ky, or x2+(y−k)2 = k2, so the statement
is valid.

(g): TRUE. An equilibrium solution is a solution, and two solution curves to the differential equation
dy
dx = f(x, y) do not intersect.

Problems:

1. y = ce2x =⇒ c = ye−2x. Hence,
dy

dx
= 2ce2x = 2y.

2. y = ecx =⇒ ln y = cx =⇒ c =
ln y

x
, x �= 0. Hence,

dy

dx
= cecx =

y

x
ln y, x �= 0.
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3. y = cx2 =⇒ c =
y

x2
. Hence,

dy

dx
= 2cx = 2

y

x2
x =

2y

x
.

4. y = cx−1 =⇒ c = xy. Hence,
dy

dx
= −cx−2 = −(xy)x−2 = −y

x
.

5. y2 = cx =⇒ c =
y2

x
. Hence, 2y

dy

dx
= c, so that,

dy

dx
=

c

2y
=

y

2x
.

6. x2 + y2 = 2cx =⇒ x2 + y2

2x
= c. Hence, 2x + 2y

dy

dx
= 2c =

x2 + y2

x
, so that, y

dy

dx
=

x2 + y2

2x
− x.

Consequently,
dy

dx
=

y2 − x2

2xy
.

7. (x − c)2 + (y − c)2 = 2c2 =⇒ x2 − 2cx + y2 − 2cy = 0 =⇒ c =
x2 + y2

2(x+ y)
. Differentiating the given

equation yields 2(x − c) + 2(y − c)
dy

dx
= 0, so that 2

[
x− x2 + y2

2(x+ y)

]
+ 2

[
y − x2 + y2

2(x+ y)

]
dy

dx
= 0, that is

dy

dx
= −x2 + 2xy − y2

y2 + 2xy − x2
.

8. 2cy = x2 − c2 =⇒ c2 + 2cy − x2 = 0 =⇒ c =
−2y ±

√
4y2 + 4x2

2
= −y ±

√
x2 + y2. Hence, 2c dy

dx = 2x,

so that dy
dx = x

c = x

−y±
√

x2+y2
.

9. x2 + y2 = c =⇒ 2x+ 2y
dy

dx
= 0 =⇒ dy

dx
= −x

y
.

2.0

1

-1.2

2-2

1.2

-1

-0.8

-2.0

0.8

x

1.6

0.4

-1.6

-0.4

y(x)

Figure 0.0.11: Figure for Problem 9

10. y = cx3 =⇒ dy

dx
= 3cx2 = 3

y

x3
x2 =

3y

x
. The initial condition y(2) = 8 =⇒ 8 = c(2)3 =⇒ c = 1. Thus

the unique solution to the initial value problem is y = x3.
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(2, 8)

Figure 0.0.12: Figure for Problem 10

11. y2 = cx =⇒ 2y
dy

dx
= c =⇒ 2y

dy

dx
=

y2

x
=⇒ dy

dx
= y2x =⇒ 2x · dy − y · dx = 0. The initial condition

y(1) = 2 =⇒ c = 4, so that the unique solution to the initial value problem is y2 = 4x.

3

3

1

3 -1

-3

-1

y(x)

-2 21
x

(1, 2)

-

Figure 0.0.13: Figure for Problem 11
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12. (x− c)2 + y2 = c2 =⇒ x2 − 2cx+ c2 + y2 = c2, so that

x2 − 2cx+ y2 = 0. (0.0.1)

Differentiating with respect to x yields

2x− 2c+ 2y
dy

dx
= 0. (0.0.2)

But from (0.0.1), c =
x2 + y2

2x
which, when substituted into (0.0.2), yields 2x −

(
x2 + y2

x

)
+ 2y

dy

dx
= 0,

that is,
dy

dx
=

y2 − x2

2xy
. Imposing the initial condition y(2) = 2 =⇒ from (0.0.1) c = 2, so that the unique

solution to the initial value problem is y = +
√

x(4− x).

-2

y(x)

2

x
5

1

3

6

-1

2

-3

31 4

(2, 2)

Figure 0.0.14: Figure for Problem 12

13. Let f(x, y) = x sin (x+ y), which is continuous for all x, y ∈ R.
∂f

∂y
= x cos (x+ y), which is continuous for all x, y ∈ R.

By Theorem 1.3.2,
dy

dx
= x sin (x+ y), y(x0) = y0 has a unique solution for some interval I ∈ R.

14.
dy

dx
=

x

x2 + 1
(y2 − 9), y(0) = 3.

f(x, y) =
x

x2 + 1
(y2 − 9), which is continuous for all x, y ∈ R.

∂f

∂y
=

2xy

x2 + 1
, which is continuous for all x, y ∈ R.

So the initial value problem stated above has a unique solution on any interval containing (0, 3). By inspection
we see that y(x) = 3 is the unique solution.
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15. The initial-value problem does not necessarily have a unique solution since the hypothesis of the existence

and uniqueness theorem are not satisfied at (0,0). This follows since f(x, y) = xy1/2, so that
∂f

∂y
= 1

2xy
−1/2

which is not continuous at (0, 0).

16. (a). f(x, y) = −2xy2 =⇒ ∂f

∂y
= −4xy. Both of these functions are continuous for all (x, y), and

therefore the hypothesis of the uniqueness and existence theorem are satisfied for any (x0, y0).

(b). y(x) =
1

x2 + c
=⇒ y′ = − 2x

(x2 + c)2
= −2xy2.

(c). y(x) =
1

x2 + c
.

(i). y(0) = 1 =⇒ 1 =
1

c
=⇒ c = 1. Hence, y(x) =

1

x2 + 1
. The solution is valid on the interval (−∞,∞).

2

0.4

0.8

1.2

x
-2

y(x)

Figure 0.0.15: Figure for Problem 16c(i)

(ii). y(1) = 1 =⇒ 1 =
1

1 + c
=⇒ c = 0. Hence, y(x) =

1

x2
. This solution is valid on the interval (0,∞).

(iii). y(0) = −1 =⇒ −1 =
1

c
=⇒ c = −1. Hence, y(x) =

1

x2 − 1
. This solution is valid on the interval

(−1, 1).

(d). Since, by inspection, y(x) = 0 satisfies the given initial-value problem, it must be the unique solution
to the initial-value problem.

17. (a). Both f(x, y) = y(y − 1) and
∂f

∂y
= 2y − 1 are continuous at all points (x, y). Consequently, the

hypothesis of the existence and uniqueness theorem are satisfied by the given initial-value problem for any
x0, y0.

(b). Equilibrium solutions: y(x) = 0, y(x) = 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (2y − 1)

dy

dx
= (2y − 1)y(y − 1). Hence the

solution curves are concave up for 0 < y < 1
2 , and y > 1, and concave down for y < 0, and 1

2 < y < 1.

(d). The solutions will be bounded provided 0 ≤ y0 ≤ 1.

18. (a). Equilibrium solutions: y(x) = −2, y(x) = 1.
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5

y(x)

x

2
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6
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3
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41
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Figure 0.0.16: Figure for Problem 16c(ii)

x

y(x)

1.0-1.0

-3

-0.5 0.5

-1

-2

Figure 0.0.17: Figure for Problem 16c(iii)

(b).
dy

dx
= (y + 2)(y − 1) =⇒ the solutions are increasing when y < −2 and y > 1, and the solutions are
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–2

–1

0

1

2

y(x)

–2 –1 1 2
x

Figure 0.0.18: Figure for Problem 17(d)

decreasing when −2 < y < 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (2y+ 1)

dy

dx
= (2y+ 1)(y+ 2)(y− 1). Hence

the solution curves are concave up for −2 < y < − 1
2 , and y > 1, and concave down for y < −2, and

− 1
2 < y < 1.

19. (a). Equilibrium solution: y(x) = 2.

(b).
dy

dx
= (y − 2)2 =⇒ the solutions are increasing when y < 2 and y > 2.

(c). Differentiating the given differential equation yields
d2y

dx2
= 2(y− 2)

dy

dx
= 2(y− 2)3. Hence the solution

curves are concave up for y > 2, and concave down for y < 2.

20. (a). Equilibrium solutions: y(x) = 0, y(x) = 1.

(b).
dy

dx
= y2(y − 1) =⇒ the solutions are increasing when y < 1, and the solutions are decreasing when

y < 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (3y2−2y)

dy

dx
= y3(3y−2)(y−1). Hence the

solution curves are concave up for 0 < y < − 2
3 , and y > 1, and concave down for y < 0, and 2/3 < y < 1.

21. (a). Equilibrium solutions: y(x) = 0, y(x) = 1, y(x) = −1.

(b).
dy

dx
= (y+2)(y− 1) =⇒ the solutions are increasing when −1 < y < 0 and y > 1, and the solutions are

decreasing when y < −1, and 0 < y < 1.

(c). Differentiating the given differential equation yields
d2y

dx2
= (3y2 − 1)

dy

dx
= (3y2 − 1)y(y − 1)(y + 1).

Hence the solution curves are concave up for −1 < y < − 1√
3
, and 0 < y < 1√

3
, and y > 1, and concave down

for y < −1, and − 1√
3
< y < 0, and 1√

3
< y < 1.

22. y′ = 4x. There are no equilibrium solutions. The slope of the solution curves is positive for x > 0 and
is negative for x < 0. The isoclines are the lines x = k

4 .
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Slope of Solution Curve Equation of Isocline
-4 x = −1
-2 x = −1/2
0 x = 0
2 x = 1/2
4 x = 1

–1.5

–1

–0.5

0

0.5

1

1.5

y(x)

–1.5 –1 –0.5 0.5 1 1.5
x

Figure 0.0.19: Figure for Problem 22

23. y′ = 1
x . There are no equilibrium solutions. The slope of the solution curves is positive for x > 0 and

increases without bound as x → 0+. The slope of the curve is negative for x < 0 and decreases without
bound as x → 0−. The isoclines are the lines 1

x = k.

Slope of Solution Curve Equation of Isocline
±4 x = ±1/4
±2 x = ±1/2
±1/2 x = ±2
±1/4 x = ±4
±1/10 x = ±10

24. y′ = x+ y. There are no equilibrium solutions. The slope of the solution curves is positive for y > −x,
and negative for y < −x. The isoclines are the lines y + x = k.

Slope of Solution Curve Equation of Isocline
−2 y = −x− 2
−1 y = −x− 1
0 y = −x
1 y = −x+ 1
2 y = −x+ 2

Since the slope of the solution curve along the isocline y = −x − 1 coincides with the slope of the isocline,
it follows that y = −x − 1 is a solution to the differential equation. Differentiating the given differential
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Figure 0.0.20: Figure for Problem 23

equation yields: y′′ = 1 + y′ = 1 + x + y. Hence the solution curves are concave up for y > −x − 1, and
concave down for y < −x−1. Putting this information together leads to the slope field in the accompanying
figure.

y(x)

x
1 2 3

1

2

3

-1

-1

-2

-2

-3

-3

Figure 0.0.21: Figure for Problem 24

25. y′ = x
y . There are no equilibrium solutions. The slope of the solution curves is zero when x = 0. The

solution has a vertical tangent line at all points along the x-axis (except the origin). Differentiating the

differential equation yields: y′ =
1

y
− x

y2
y′ =

1

y
− x2

y3
=

1

y3
(y2 − x2). Hence the solution curves are concave

up for y > 0 and y2 > x2; y < 0 and y2 < x2 and concave down for y > 0 and y2 < x2; y < 0 and y2 > x2.
The isoclines are the lines x

y = k.
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Slope of Solution Curve Equation of Isocline
±2 y = ±x/2
±1 y = ±x
±1/2 y = ±2x
±1/4 y = ±4x
±1/10 y = ±10x

Note that y = ±x are solutions to the differential equation.

–2

–1

0

1

2

y(x)

–2 –1 1 2
x

Figure 0.0.22: Figure for Problem 25

26. y′ = − 4x
y . Slope is zero when x = 0 (y �= 0). The solutions have a vertical tangent line at all points

along the x-axis(except the origin). The isoclines are the lines − 4x
y = k. Some values are given in the table

below.

Slope of Solution Curve Equation of Isocline
±1 y = ±4x
±2 y = ±2x
±3 y = ±4x/3

Differentiating the given differential equation yields: y′ = −4

y
+

4xy′

y2
= −4

y
− 16x2

y3
= −4(y2 + 4x2)

y
.

Consequently the solution curves are concave up for y < 0, and concave down for y > 0. Putting this
information together leads to the slope field in the accompanying figure.

27. y′ = x2y. Equilibrium solution: y(x) = 0 =⇒ no solution curve can cross the x-axis. Slope: zero
when x = 0 or y = 0. Positive when y > 0 (x �= 0), negative when y < 0 (x �= 0). Differentiating the given

differential equation yields:
d2y

dx2
= 2xy+x2 dy

dx
= 2xy+x4y = xy(2+x3). So, when y > 0, the solution curves

are concave up for x ∈ (−∞, (−2)1/3), and for x > 0, and are concave down for x ∈ ((−2)1/3, 0). When
y < 0, the solution curves are concave up for x ∈ ((−2)1/3, 0), and concave down for x ∈ (−∞, (−2)1/3) and
for x > 0. The isoclines are the hyperbolas x2y = k.
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1 2-1-2

1

2

3

4

y(x)

x

Figure 0.0.23: Figure for Problem 26

Slope of Solution Curve Equation of Isocline
±2 y = ±2/x2

±1 y = ±1/x2

±1/2 y = ±1/(2x)2

±1/4 y = ±1/(4x)2

±1/10 y = ±1/(10x)2

0 y = 0

28. y′ = x2 cos y. The slope is zero when x = 0. There are equilibrium solutions when y = (2k + 1)π2 . The
slope field is best sketched using technology. The accompanying figure gives the slope field for −π

2 < y < 3π
2 .

29. y′ = x2 + y2. The slope of the solution curves is zero at the origin, and positive at all the other points.
There are no equilibrium solutions. The isoclines are the circles x2 + y2 = k.

Slope of Solution Curve Equation of Isocline
1 x = ±1/4
2 x = ±1/2
3 x = ±2
4 x = ±4
5 x = ±10

30. dT
dt = − 1

80 (T − 70). Equilibrium solution: T (t) = 70. The slope of the solution curves is positive for
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Figure 0.0.24: Figure for Problem 27
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Figure 0.0.25: Figure for Problem 28

T > 70, and negative for T < 70.
d2T

dt2
= − 1

80

dT

dt
=

1

6400
(T − 70). Hence the solution curves are concave

up for T > 70, and concave down for T < 70. The isoclines are the horizontal lines − 1
80 (T − 70) = k.

Slope of Solution Curve Equation of Isocline
−1/4 T = 90
1/5 T = 86
0 T = 70

1/5 T = 54
1/4 T = 50

31. y′ = −2xy.

32. y′ =
x sinx

1 + y2
.
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Figure 0.0.26: Figure for Problem 29

0
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T(t)
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t

Figure 0.0.27: Figure for Problem 30

33. y′ = 3x− y.

34. y′ = 2x2 sin y.

35. y′ =
2 + y2

3 + 0.5x2
.

36. y′ =
1− y2

2 + 0.5x2
.

37. (a). Slope field for the differential equation y′ = x−1(3 sinx− y).

(b). Slope field with solution curves included.

The figure suggests that the solution to the differential equation are unbounded as x → 0+.

(c). Slope field with solution curve corresponding to the initial condition y(π2 ) =
6
π .
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Figure 0.0.28: Figure for Problem 31
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Figure 0.0.29: Figure for Problem 32
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Figure 0.0.30: Figure for Problem 33

This solution curve is bounded as x → 0+.
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Figure 0.0.31: Figure for Problem 34
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Figure 0.0.32: Figure for Problem 35
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Figure 0.0.33: Figure for Problem 36

(d). In the accompanying figure we have sketched several solution curves on the interval (0,15].
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Figure 0.0.34: Figure for Problem 37(a)
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Figure 0.0.35: Figure for Problem 37(b)
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Figure 0.0.36: Figure for Problem 37(c)

The figure suggests that the solution curves approach the x-axis as x → ∞.
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Figure 0.0.37: Figure for Problem 37(d)

38. (a). Differentiating the given equation gives
dy

dx
= 2kx = 2

y

x
. Hence the differential equation of the

orthogonal trajectories is
dy

dx
= − x

2y
.

–4
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0
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4

y(x)

–4 –2 2 4
x

Figure 0.0.38: Figure for Problem 38(a)

(b). The orthogonal trajectories appear to be ellipses. This can be verified by integrating the differential
equation derived in (a).

39. If a > 0, then as illustrated in the following slope field (a = 0.5, b = 1), it appears that limt→∞ i(t) = b
a .

If a < 0, then as illustrated in the following slope field (a = −0.5, b = 1) it appears that i(t) diverges as
t → ∞.

If a = 0 and b �= 0, then once more i(t) diverges as t → ∞. The accompanying figure shows a represen-
tative case when b > 0. Here we see that limt→∞ i(t) = +∞. If b < 0, then limt→∞ i(t) = −∞.

If a = b = 0, then the general solution to the differential equation is i(t) = i0 where i0 is a constant.
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Figure 0.0.39: Figure for Problem 39 when a > 0
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Figure 0.0.40: Figure for Problem 39 when a < 0
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Figure 0.0.41: Figure for Problem 39 when a = 0

Solutions to Section 1.4
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True-False Review:

(a): TRUE. The differential equation dy
dx = f(x)g(y) can be written 1

g(y)
dy
dx = f(x), which is the proper

form, according to Definition 1.4.1, for a separable differential equation.

(b): TRUE. A separable differential equation is a first-order differential equation, so the general solution
contains one constant. The value of that constant can be determined from an initial condition, as usual.

(c): TRUE. Newton’s Law of Cooling is usually expressed as dT
dt = −k(T − Tm), and this can be rewritten

as
1

T − Tm

dT

dt
= −k,

and this form shows that the equation is separable.

(d): FALSE. The expression x2 + y2 cannot be separated in the form f(x)g(y), so the equation is not
separable.

(e): FALSE. The expression x sin(xy) cannot be separated in the form f(x)g(y), so the equation is not
separable.

(f): TRUE. We can write the given equation as e−y dy
dx = ex, which is the proper form for a separable

equation.

(g): TRUE. We can write the given equation as (1 + y2) dydx = 1
x2 , which is the proper form for a separable

equation.

(h): FALSE. The expression x+4y
4x+y cannot be separated in the form f(x)g(y), so the equation is not

separable.

(i): TRUE. We can write x3y+x2y2

x2+xy = xy, so we can write the given differential equation as 1
y
dy
dx = x, which

is the proper form for a separable equation.

Problems:

1. Separating the variables and integrating yields∫
dy

y
= 2

∫
xdx =⇒ ln |y| = x2 + c1 =⇒ y(x) = cex

2

.

2. Separating the variables and integrating yields∫
y−2dy =

∫
dx

x2 + 1
=⇒ y(x) = − 1

tan−1 x+ c
.

3. Separating the variables and integrating yields∫
eydy =

∫
e−xdx = 0 =⇒ ey + e−x = c =⇒ y(x) = ln (c− e−x).

4. Separating the variables and integrating yields∫
dy

y
=

∫
(lnx)−1

x
dx =⇒ y(x) = c lnx.
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5. Separating the variables and integrating yields∫
dx

x− 2
=

∫
dy

y
=⇒ ln |x− 2| − ln |y| = c1 =⇒ y(x) = c(x− 2).

6. Separating the variables and integrating yields∫
dy

y − 1
=

∫
2x

x2 + 3
dx =⇒ ln |y − 1| = ln |x2 + 3|+ c1 =⇒ y(x) = c(x2 + 3) + 1.

7. y − x
dy

dx
= 3− 2x2 dy

dx
=⇒ x(2x− 1)

dy

dx
= (3− y). Separating the variables and integrating yields

−
∫

dy

y − 3
=

∫
dx

x(2x− 1)
=⇒ − ln |y − 3| = −

∫
dx

x
+

∫
2

2x− 1
dx

=⇒ − ln |y − 3| = − ln |x|+ ln |2x− 1|+ c1

=⇒ x

(y − 3)(2x− 1)
= c2 =⇒ y(x) =

cx− 3

2x− 1
.

8.
dy

dx
=

cos (x− y)

sinx sin y
−1 =⇒ dy

dx
=

cosx cos y

sinx sin y
=⇒ ∫ sin y

cos y
dy =

∫ cosx

cos y
dx =⇒ − ln | cos y| = ln | sinx|+c1 =⇒

cos y = c cscx.

9.
dy

dx
=

x(y2 − 1)

2(x− 2)(x− 1)
=⇒ ∫ dy

(y + 1)(y − 1)
=

1

2

∫ xdx

(x− 2)(x− 1)
, y �= ±1. Thus,

−1

2

∫
dy

y + 1
+
1

2

∫
dy

y − 1
=

1

2

(
2

∫
dx

x− 2
−
∫

dx

x− 1

)
=⇒ − ln |y + 1|+ln |y − 1| = 2 ln |x− 2|−ln |x− 1|+c1

=⇒ y − 1

y + 1
= c

(x− 2)2

x− 1
=⇒ y(x) =

(x− 1) + c(x− 2)2

(x− 1)− c(x− 2)2
. By inspection we see that y(x) = 1, and y(x) = −1

are solutions of the given differential equation. The former is included in the above solution when c = 0.

10.
dy

dx
=

x2y − 32

16− x2
+ 2 =⇒ ∫ dy

y − 2
=
∫ x2

16− x2
dx =⇒ ln |y − 2| = − ∫ (1 + 16

x2 − 16

)
dx =⇒ ln |y − 2| =

−x − 16
∫ dx

x2 − 16
=⇒ ln |y − 2| = −x − 16

(
− 1

8

∫ dx

x+ 4
+ 1

8

∫ dx

x− 4

)
=⇒ ln |y − 2| = −x + 2 ln |x+ 4| −

2 ln |x− 4|+ c1 =⇒ y(x) = 2 + c

(
x+ 4

x− 4

)2

e−x.

11. (x−a)(x−b)
dy

dx
−(y−c) = 0 =⇒ ∫ dy

y − c
=
∫ dx

(x− a)(x− b)
=⇒ ∫ dy

y − c
=

1

a− b

∫ ( 1

x− a
− 1

x− b

)
dx =⇒

ln |y − c| = ln

[
c1

∣∣∣∣x− a

x− b

∣∣∣∣1/(a−b)
]

=⇒
∣∣∣∣∣(y − c)

(
x− b

x− a

)1/(a−b)
∣∣∣∣∣ = c1 =⇒ y − c = c2

(
x− a

x− b

)1/(a−b)

=⇒

y(x) = c+ c2

(
x− a

x− b

)1/(a−b)

.
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12. (x2 + 1)
dy

dx
+ y2 = −1 =⇒ ∫ dy

1 + y2
= − ∫ dx

1 + x2
=⇒ tan−1 y = tan−1 x+ c, but y(0) = 1 so c =

π

4
.

Thus, tan−1 y = tan−1 x+
π

4
or y(x) =

1− x

1 + x
.

13. (1− x2)
dy

dx
+ xy = ax =⇒ ∫ dy

a− y
= − 1

2

∫ − 2x

1− x2
dx =⇒ − ln |a− y| = − 1

2 ln |1− x2|+ c1 =⇒ y(x) =

a+ c
√
1− x2, but y(0) = 2a so c = a and therefore, y(x) = a(1 +

√
1− x2).

14.
dy

dx
= 1− sin (x+ y)

sinx sin y
=⇒ dy

dx
= − tanx cot y =⇒ − ∫ sin y

cos y
dy =

∫ sinx

cosx
dx =⇒ − ln | cosx cos y| = c, but

y(
π

4
) =

π

4
so c = ln (2). Hence, − ln | cosx cos y| = ln (2) =⇒ y(x) = cos−1

(
1
2 secx

)
.

15.
dy

dx
= y3 sinx =⇒ ∫ dy

y3
=
∫
sinxdx for y �= 0. Thus − 1

2y2
= − cosx+c. However, we cannot impose the

initial condition y(0) = 0 on the last equation since it is not defined at y = 0. But, by inspection, y(x) = 0
is a solution to the given differential equation and further, y(0) = 0; thus, the unique solution to the initial
value problem is y(x) = 0.

16.
dy

dx
= 2

3 (y − 1)1/2 =⇒ ∫ dy

(y − 1)1/2
= 2

3

∫
dx if y �= 1 =⇒ 2(y − 1)1/2 = 2

3x + c but y(1) = 1 so

c = − 2
3 =⇒ 2

√
y − 1 = 2

3x − 2
3 =⇒ √

y − 1 = 1
3 (x − 1). This does not contradict the Existence-Uniqueness

theorem because the hypothesis of the theorem is not satisfied when x = 1.

17. (a). m
dv

dt
= mg− kv2 =⇒ m

k [(mg/k)− v2]
dv = dt. If we let a =

√
mg
k then the preceding equation can

be written as
m

k

∫ 1

a2 − v2
dv =

∫
dt which can be integrated directly to obtain

m

2ak
ln

(
a+ v

a− v

)
= t+ c,

that is, upon exponentiating both sides,
a+ v

a− v
= c1e

2ak
m t.

Imposing the initial condition v(0) = 0, yields c = 0 so that

a+ v

a− v
= e

2ak
m t.

Therefore,

v(t) = a

(
e

2akt
m − 1

e
2akt
m + 1

)
which can be written in the equivalent form

v(t) = a tanh

(
gt

a

)
.

(b). No. As t → ∞, v → a and as t → 0+, v → 0.

(c)2017 Pearson Education. Inc.



38

(c). v(t) = a tanh
(
gt
a

)
=⇒ dy

dt
= a tanh

(
gt
a

)
=⇒ a

∫
tanh

(
gt
a

)
dt =⇒ y(t) =

a2

g
ln(cosh ( gta )) + c1 and if

y(0) = 0 then y(t) =
a2

g
ln
[
cosh ( gta )

]
.

18. The required curve is the solution curve to the initial-value problem
dy

dx
= − x

4y
, y(0) = 1

2 . Separating

the variables in the differential equation yields 4y−1dy = −1dx, which can be integrated directly to obtain

2y2 = −x2

2
+ c. Imposing the initial condition we obtain c = 1

2 , so that the solution curve has the equation

2y2 = −x2 + 1
2 , or equivalently, 4y

2 + 2x2 = 1.

19. The required curve is the solution curve to the initial-value problem
dy

dx
= ex−y, y(3) = 1. Separating

the variables in the differential equation yields eydy = exdx, which can be integrated directly to obtain
ey = ex + c. Imposing the initial condition we obtain c = e− e3, so that the solution curve has the equation
ey = ex + e− e3, or equivalently, y = ln(ex + e− e3).

20. The required curve is the solution curve to the initial-value problem
dy

dx
= x2y2, y(−1) = 1. Separating

the variables in the differential equation yields 1
y2 dy = x2dx, which can be integrated directly to obtain

− 1
y = 1

3x
3 + c. Imposing the initial condition we obtain c = − 2

3 , so that the solution curve has the equation

y = − 1
1
3x

3− 2
3

, or equivalently, y = 3
2−x3 .

21. (a). Separating the variables in the given differential equation yields
1

1 + v2
dv = −dt. Integrating we

obtain tan−1 (v) = −t + c. The initial condition v(0) = v0 implies that c = tan−1 (v0), so that tan−1 (v) =
−t+tan−1 (v0). The object will come to rest if there is time t, at which the velocity is zero. To determine tr,
we set v = 0 in the previous equation which yields tan−1 (0) = tr+tan−1 (v0). Consequently, tr = tan−1 (v0).

The object does not remain at rest since we see from the given differential equation that
dv

dt
< 0 at t = tr,

and so v is decreasing with time. Consequently v passes through zero and becomes negative for t < tr.

(b). From the chain rule we have
dv

dt
=

dx

dt
. Then

dv

dx
= v

dv

dx
. Substituting this result into the differential

equation (1.4.22) yields v
dv

dx
= −(1 + v2). We now separate the variables:

v

1 + v2
dv = −dx. Integrating we

obtain ln (1 + v2) = −2x+ c. Imposing the initial condition v(0) = v0, x(0) = 0 implies that c = ln (1 + v20),
so that ln (1 + v2) = −2x+ ln (1 + v20). When the object comes to rest the distance travelled by the object
is x = 1

2 ln (1 + v20).

22. (a).
dv

dt
= −kvn =⇒ v−ndv = −kdt.

n �= 1 :=⇒ 1

1− n
v1−n = −kt + c. Imposing the initial condition v(0) + v0 yields c =

1

1− n
v1−n
0 , so that

v = [v1−n
0 + (n − 1)kt]1/(1−n). The object comes to rest in a finite time if there is a positive value of t for

which v = 0.
n = 1 :=⇒ Integratingv−ndv = −kdt and imposing the initial conditions yields v = v0e

−kt, and the object
does not come to rest in a finite amount of time.

(b). If n �= 1, 2, then
dx

dt
= [v1−n

0 + (n − 1)kt]1/(1−n), where x(t) denotes the distanced travelled by the
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object. Consequently, x(t) = − 1

k(2− n)
[v1−n

0 + (n − 1)kt](2−n)/(1−n) + c. Imposing the initial condition

x(0) = 0 yields c =
1

k(2− n)
v2−n
0 , so that x(t) = − 1

k(2− n)
[v1−n

o + n(n− 1)kt](2−n)/(1−n) +
1

k(2− n)
v2−n
0 .

For 1 < n < 2, we have
2− n

1− n
< 0, so that limt→∞ x(t) =

1

k(2− n)
. Hence the maximum distance that the

object can travel in a finite time is less than
1

k(2− n)
.

If n = 1, then we can integrate to obtain x(t) =
v0
k
(1− e−kt), where we have imposed the initial condition

x(0) = 0. Consequently, limt→∞ x(t) =
v0
k
. Thus in this case the maximum distance that the object can

travel in a finite time is less than
v0
k
.

(c). If n > 2, then x(t) = − 1

k(2− n)
[v1−n

o + n(n− 1)kt](2−n)/(1−n) +
1

k(2− n)
v2−n
0 is still valid. However,

in this case
2− n

1− n
> 0, and so limt→∞ x(t) = +∞. Consequently, there is no limit to the distance that the

object can travel.

If n = 2, then we return to v = [v1−n
0 + (n − 1)kt]1/(1−n). In this case

dx

dt
= (v−1

0 + kt)−1, which can

be integrated directly to obtain x(t) =
1

k
ln (1 + v0kt), where we have imposed the initial condition that

x(0) = 0. Once more we see that limt→∞ x(t) = +∞, so that there is no limit to the distance that the object
can travel.

23. Solving p = p0(
ρ

ρ0
)1/γ . Consequently the given differential equation can be written as dp = −gρ0(

p

p0
)1/γdy,

or equivalently, p−1/γdp = − gρ0

p
1/γ
0

dy. This can be integrated directly to obtain
γp(γ−1)/γ

γ − 1
= −gρ0y

p
1/γ
0

+ c. At

the center of the Earth we have p = p0. Imposing this initial condition on the preceding solution gives

c =
γp

(γ−1)/γ
0

γ − 1
. Substituting this value of c into the general solution to the differential equation we find,

after some simplification, p(γ−1)/γ = p
(γ−1)/γ
0

[
1− (γ − 1)ρ0gy

γp0

]
, so that p = p0

[
1− (γ − 1)ρ0gy

γp0

](γ−1)/γ

.

24.
dT

dt
= −k(T − Tm) =⇒ dT

dt
= −k(T − 75) =⇒ dT

T − 75
= −kdt =⇒ ln |T − 75| = −kt + c1 =⇒ T (t) =

75 + ce−kt. T (0) = 135 =⇒ c = 60 so T = 75 + 60e−kt. T (1) = 95 =⇒ 95 = 75 + 60e−k =⇒ k = ln 3 =⇒
T (t) = 75 + 60e−t ln 3. Now if T (t) = 615 then 615 = 75+ 60−t ln 3 =⇒ t = −2h. Thus the object was placed
in the room at 2p.m.

25.
dT

dt
= −k(T − 450) =⇒ T (t) = 450 + Ce−kt.T (0) = 50 =⇒ C = −400 so T (t) = 450 − 400e−kt and

T (20) = 150 =⇒ k =
1

20
ln 4

3 ; hence, T (t) = 450− 400( 34 )
t/20.

(i) T (40) = 450− 400( 34 )
2 = 225◦F.

(ii) T (t) = 350 = 450− 400( 34 )
t/20 =⇒ ( 34 )

t/20 = 1
4 =⇒ t =

20 ln 4

ln(4/3)
≈ 96.4 minutes.
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26.
dT

dt
= −k(T − 34) =⇒ dT

T − 34
= −kdt =⇒ T (t) = 34 + ce−kt. T (0) = 38 =⇒ c = 4 so that

T (t) = 34 + 4e−kt.T (1) = 36 =⇒ k = ln 2; hence, T (t) = 34 + 4e−t ln 2. Now T (t) = 98 =⇒ T (t) =
34 + 4e−kt = 98 =⇒ 2−t = 16 =⇒ t = −4h. Thus T (−4) = 98 and Holmes was right, the time of death was
10 a.m.

27. T (t) = 75 + ce−kt. T (10) = 415 =⇒ 75 + ce−10k = 415 =⇒ 340 = ce−10k and T (20) = 347 =⇒
75 + ce−20k = 347 =⇒ 272 = ce−20k. Solving these two equations yields k = 1

10 ln
5
4 and c = 425; hence,

T = 75 + 425( 45 )
t/10

(a) Furnace temperature: T (0) = 500◦F.

(b) If T (t) = 100 then 100 = 75 + 425( 45 )
t/10 =⇒ t =

10 ln 17

ln 5
4

≈ 126.96 minutes. Thus the temperature of

the coal was 100◦F at 6:07 p.m.

28.
dT

dt
= −k(T − 72) =⇒ dT

T − 72
= −kdt =⇒ T (t) = 72 + ce−kt. Since

dT

dt
= −20,−k(T − 72) = −20 or

k = 10
39 . Since T (1) = 150 =⇒ 150 = 72+ ce−10/39 =⇒ c = 78e10/39; consequently, T (t) = 72+ 78e10(1−t)/39.

(i). Initial temperature of the object: t = 0 =⇒ T (t) = 72 + 78e10/30 ≈ 173◦F

(ii). Rate of change of the temperature after 10 minutes: T (10) = 72 + 78e−30/13 so after 10 minutes,
dT

dt
= −10

39
(72 + 78e−30/13 − 72) =⇒ dT

dt
= −260

13
e−30/13 ≈ 2◦F per minute.

29. Substituting a = 0.5, M = 2000 g, and m0 = 4 g into the initial-value problem (1.4.17) yields

dm

dt
= 0.5m3/4

[
1−

( m

2000

)1/4]
, m(0) = 4.

Separating the variables in the preceding differential equation gives

1

m3/4

[
1−

( m

2000

)1/4]dm = 0.5 dt

so that ∫
1

m3/4

[
1−

( m

2000

)1/4]dm = 0.5t+ c.

To evaluate the integral on the left-hand-side of the preceding equation, we make the change of variable

w =
( m

2000

)1/4
, dw =

1

4
· 1

2000

( m

2000

)−3/4

dm

and simplify to obtain

4 · (2000)1/4
∫

1

1− w
dw = 0.5t+ c

which can be integrated directly to obtain

−4 · (2000)1/4 ln(1− w) = 0.5t+ c.

Exponentiating both sides of the preceding equation, and solving for w yields

w = 1− c1e
−0.125t/(2000)1/4
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or equivalently, ( m

2000

)1/4
= 1− c1e

−0.125t/(2000)1/4 .

Consequently,

m(t) = 2000
[
1− c1e

−0.125t/(2000)1/4
]4

. (0.0.3)

Imposing the initial condition m(0) = 4 yields

4 = 2000 (1− c1)
4

so that

c1 = 1−
(

1

500

)1/4

≈ 0.7885.

Inserting this expression for c1 into Equation (0.0.3) gives

m(t) = 2000
[
1− 0.7885e−0.125t/(2000)1/4

]4
.

Consequently,

m(100) = 2000
[
1− 0.7885e−12.5/(2000)1/4

]4
≈ 1190.5 g.

30. Substituting a = 0.10, M = 0.15 g, and m0 = 0.008 g into the initial-value problem (1.4.17) yields

dm

dt
= 0.1m3/4

[
1−

( m

0.15

)1/4]
, m(0) = 0.008.

Separating the variables in the preceding differential equation gives

1

m3/4

[
1−

( m

0.15

)1/4]dm = 0.1 dt

so that ∫
1

m3/4

[
1−

( m

0.15

)1/4]dm = 0.1t+ c.

To evaluate the integral on the left-hand-side of the preceding equation, we make the change of variable

w =
( m

0.15

)1/4
, dw =

1

4
· 1

0.15

( m

0.15

)−3/4

dm

and simplify to obtain

4 · (0.15)1/4
∫

1

1− w
dw = 0.1t+ c

which can be integrated directly to obtain

−4 · (0.15)1/4 ln(1− w) = 0.1t+ c.
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