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Notes to the Instructor

One goal in our writing has been to create flexible texts that afford the instructor a variety

of topics and make available to the student an abundance of practice problems and projects.

We recommend that the instructor read the discussion given in the preface in order to gain

an overview of the prerequisites, topics of emphasis, and general philosophy of the text.

Supplements

Student’s Solutions Manual: Contains complete, worked-out solutions to most odd-numbered

exercises, providing students with an excellent study tool.

Companion Web site:

Instructor’s MAPLE/MATLAB/MATHEMATICA manuals: By Thomas W. Po-

laski (Winthrop University), Bruno Welfert (Arizona State University), and Maurino Bautista

(Rochester Institute of Technology). A collection of worksheets and projects to aid instructors

in integrating computer algebra systems into their courses. Available in the Pearson Instructor

Resource Center at www.pearsonhighered.com/irc.

MATLAB Manual ISBN: 0321977238/9780321977236

MAPLE Manual ISBN: 0321977149/9780321977144

MATHEMATICA Manual ISBN: 0321977750/9780321977755

Computer Labs

Projects

Although the projects that appear at the end of the chapters in the text can be worked out

by the conscientious student working alone, making them group projects may add a social

element that encourages discussion and interactions that simulate a professional work place

atmosphere. Group sizes of 3 or 4 seem to be optimal. Moreover, requiring that each individual

student separately write up the group’s solution as a formal technical report for grading by

the instructor also contributes to the professional flavor.

Typically, our students each work on 3 or 4 projects per semester. If class time permits, oral

presentations can be scheduled and help to improve the communication skills of the students.
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2 Notes to the Instructor

The role of the instructor is, of course, to help the students solve these elaborate problems on

their own and to recommend additional reference material when appropriate.

Some additional Group Projects are presented in this guide (see page 10).

Technical Writing Exercises

The technical writing exercises at the end of most chapters invite students to make documented

responses to questions dealing with the concepts in the chapter. This not only gives students

an opportunity to improve their writing skills, but it helps them organize their thoughts and

better understand the new concepts. Moreover, many questions deal with critical thinking

skills that will be useful in their careers as engineers, scientists, or mathematicians.

Since most students have little experience with technical writing, it may be necessary to return

ungraded the first few technical writing assignments with comments and have the students redo

the the exercise. This has worked well in our classes and is much appreciated by the students.

Handing out a “model” technical writing response is also helpful for the students.

Student Presentations

It is not uncommon for an instructor to have students go to the board and present a solution

to a problem. Differential equations is so rich in theory and applications that it is an excellent

course to allow (require) a student to give a presentation on a special application (e.g., almost

any topic from Chapters 3 and 5), on a new technique not covered in class (e.g., material

from Section 2.6, the Projects), or on additional theory (e.g., material from Chapter 6 which

generalizes the results in Chapter 4). In addition to improving students’ communication skills,

these “special” topics are long remembered by the students. Working in groups of 3 or 4 and

sharing the presentation responsibilities can add substantially to the interest and quality of the

presentation. Students should also be encouraged to enliven their communication by building

physical models, preparing part of their lectures with the aid of video technology, and utilizing

appropriate internet web sites.

Homework Assignments

We would like to share with you an obvious, non-original, but effective method to encourage

students to do homework problems.

An essential feature is that it requires little extra work on the part of the instructor or grader.

Copyright c© 2018 Pearson Education, Inc.



Notes to the Instructor 3

We assign homework problems (about 5 of them) after each lecture. At the end of the week

(Fridays), students are asked to turn in their homework (typically, 3 sets) for that week. We

then choose at random one problem from each assignment (typically, a total of 3) that will

be graded. (The point is that the student does not know in advance which problems will be

chosen.) Full credit is given for any of the chosen problems for which there is evidence that the

student has made an honest attempt at solving. The homework problem sets are returned to

the students at the next meeting (Mondays) with grades like 0/3, 1/3, 2/3, or 3/3 indicating

the proportion of problems for which the student received credit. The homework grades are

tallied at the end of the semester and count as one test grade. Certainly, there are variations

on this theme. The point is that students are motivated to do their homework.

Syllabus Suggestions

To serve as a guide in constructing a syllabus for a one-semester or two-semester course,

the prefaces to the texts list sample outlines that emphasize methods, applications, theory,

partial differential equations, phase plane analysis, computation, or combinations of these. As

a further guide in making a choice of subject matter, we provide (starting on the next page)

a listing of text material dealing with some common areas of emphasis.

Numerical, Graphical, and Qualitative Methods

The sections and projects dealing with numerical, graphical, and qualitative techniques of

solving differential equations include:

Section 1.3: Direction Fields

Section 1.4: The Approximation Method of Euler

Project A for Chapter 1: Picard’s Method

Project B for Chapter 1: The Phase Line

Project D for Chapter 1: Taylor Series Method

Section 3.6: Improved Euler’s Method, which includes step-by-step outlines of the im-

proved Euler’s method subroutine and improved Euler’s method with tolerance. These

outlines are easy for the student to translate into a computer program (pp. 127–128).
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4 Notes to the Instructor

Section 3.7: Higher-Order Numerical Methods : Taylor and Runge-Kutta, which includes

outlines for the Fourth Order Runge-Kutta subroutine and algorithm with tolerance (see

pp. 135–136).

Project F for Chapter 3: Stability of Numerical Methods

Project G for Chapter 3: Period Doubling and Chaos

Section 4.8: Qualitative Considerations for Variable Coefficient and Non-linear Equa-

tions, which discusses the energy integral lemma, as well as the Airy, Bessel, Duffing,

and van der Pol equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which describes

the vectorized forms of Euler’s method and the Fourth Order Runge-Kutta method, and

discusses an application to population dynamics.

Section 5.4: Introduction to the Phase Plane, which introduces the study of trajectories

of autonomous systems, critical points, and stability.

Section 5.8: Dynamical Systems, Poincaré Maps, and Chaos, which discusses the use of

numerical methods to approximate the Poincarè map and how to interpret the results.

Project A for Chapter 6: Computer Algebra Systems and Exponential Shift

Project D for Chapter 6: Higher-Order Difference Equations

Project A for Chapter 8: Alphabetization Algorithms

Project D for Chapter 10: Numerical Method for Δu = f on a Rectangle

Project D for Chapter 11: Shooting Method

Project E for Chapter 11: Finite-Difference Method for Boundary Value Problems

Section 12.8: Neurons and the FitzHugh-Nagumo Equations, which uses direction fields

to establish the onset of action potentials on axons.

Project C for Chapter 12: Computing Phase Plane Diagrams

Project D for Chapter 12: Ecosystem of Planet GLIA-2
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Notes to the Instructor 5

Section 13.1: Introduction: Successive Approximations

Appendix B: Newton’s Method

Appendix C: Simpson’s Rule

Appendix E: Method of Least Squares

Appendix F: Runge-Kutta Procedure for Equations

Appendix G: Software for Analyzing Differential Equations

The instructor who wishes to emphasize numerical methods should also note that the text

contains an extensive chapter on series solutions of differential equations (Chapter 8).

Engineering/Physics Applications

Since Laplace transforms is a subject vital to engineering, we have included a detailed chapter

on this topic – see Chapter 7. Stability is also an important subject for engineers, so we have

included an introduction to the subject in Section 5.4 along with an extensive discussion in

Chapter 12. Further material dealing with engineering/physics applications include:

Project A for Chapter 2: Oil Spill in a Canal

Project C for Chapter 2: Torricelli’s Law of Fluid Flow.

Project I for Chapter 2: Designing a Solar Collector.

Section 3.1: Mathematical Modeling.

Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and of population models.

Section 3.3: Heating and Cooling off Buildings, which discusses temperature variations

in the presence of air conditioning or furnace heating.

Section 3.4: Newtonian Mechanics.

Section 3.5: Electrical Circuits.

Project C for Chapter 3: Curve of Pursuit.
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6 Notes to the Instructor

Project D for Chapter 3: Aircraft Guidance in a Crosswind.

Section 4.1: Introduction: The Mass-Spring Oscillator.

Section 4.8: Qualitative Considerations for Variable-Coefficient and Non-linear Equa-

tions.

Section 4.9: A Closer Look at Free Mechanical Vibrations.

Section 4.10: A Closer Look at Forced Mechanical Vibrations.

Project B for Chapter 4: Apollo Re-entry

Project C for Chapter 4: Simple Pendulum

Project H for Chapter 4: Gravity Train

Section 5.1: Interconnected Fluid Tanks.

Section 5.4: Introduction to the Phase PLane.

Section 5.6: Coupled Mass-Spring Systems.

Section 5.7: Electrical Systems.

Section 5.8: Dynamical Systems, Poincaré Maps, and Chaos .

Project A for Chapter 5: Designing a Landing System for Interplanetary Travel.

Project C for Chapter 5: Things that Bob.

Project D for Chapter 5: Hamiltonian Systems.

Project G for Chapter 5: Phase-Locked Loops

Project C for Chapter 6: Transverse Vibrations of a Beam.

Chapter 7: Laplace Transforms, which in addition to basic material includes discussions

of transfer functions, the Dirac delta function, and frequency response modelling.

Project B for Chapter 8, Spherically Symmetric Solutions to Schrödinger’s Equation for

the Hydrogen Atom
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Notes to the Instructor 7

Project D for Chapter 8, Buckling of a Tower

Project E for Chapter 8, Aging Spring and Bessel Functions

Section 9.6: Complex Eigenvalues, includes discussion of normal (natural) frequencies.

Project B for Chapter 9: Matrix Laplace Transform Method.

Project C for Chapter 9: Undamped Second-Order Systems.

Chapter 10: Partial Differential Equations, which includes sections on Fourier series, the

heat equation, wave equation, and Laplace’s equation.

Project A for Chapter 10: Steady-State Temperature Distribution in a Circular Cylinder.

Project B for Chapter 10: A Laplace Transform Solution of the Wave Equation.

Project E for Chapter 10: The Telegrapher’s Equation and the Cable Equation

Project A for Chapter 11: Hermite Polynomials and the Harmonic Oscillator.

Section 12.4: Energy Methods, which addresses both conservative and non-conservative

autonomous mechanical systems.

Project A for Chapter 12: Solitons and Korteweg-de Vries Equation.

Project B for Chapter 12: Burger’s Equation.

Students of engineering and physics would also find Chapter 8 on series solutions particularly

useful, especially Section 8.8 on special functions.

Biology/Ecology Applications

Project C for Chapter 1: The Phase Plane, which discusses the logistic population model

and bifurcation diagrams for population control.

Problem 40 in Exercises 2.3, which discusses the Hodgkins-Huxley model for axon ac-

tivity

Project A for Chapter 2: Oil Spill in a Canal.

Copyright c© 2018 Pearson Education, Inc.



8 Notes to the Instructor

Project B for Chapter 2: Differential Equations in Clinical Medicine.

Section 3.1: Mathematical Modelling.

Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and population models.

Project A for Chapter 3: Dynamics of HIV Infection.

Project B for Chapter 3: Aquaculture, which deals with a model of raising and harvesting

catfish.

Section 5.1: Interconnected Fluid Tanks, which introduces systems of equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which contains

an application to population dynamics.

Section 5.5: Applications to Biomathematics: Epidemic and Tumor Growth Models.

Project B for Chapter 5: Spread of Staph Infections in Hospitals – Part I.

Project E for Chapter 5: Cleaning Up the Great Lakes

Project F for Chapter 5: The 2014-2015 Ebola Epidemic.

Problem 19 in Exercises 10.5 , which involves chemical diffusion through a thin layer.

Section 12.8: Neurons and the Fitz-Nagumo Equations

Project D for Chapter 12: Ecosystem on Planet GLIA-2

Project E for Chapter 12: Spread of Staph Infections in Hospitals – Part II.

Economics Applications

Project C for Chapter 1: Applications to Economics

Project H for Chapter 2: Utility Functions and Risk Aversion

Project E for Chapter 3: Market Equilibrium: Stability and Time Paths
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Notes to the Instructor 9

The basic content of the remainder of this instructor’s manual consists of supplemental

projects, answers to the even-numbered problems, and detailed solutions to most of them.

These answers are not available any place else since the text and the Student’s Solutions

Manual only provide answers and solutions to odd-numbered problems.

We would appreciate any comments you may have concerning the answers in this manual.

These comments can be sent to the authors’ email addresses below. We also would encourage

sharing with us (the authors and users of the texts) any of your favorite projects.

E. B. Saff A. D. Snider

Edward.B.Saff@Vanderbilt.edu snider@.usf.edu
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Projects for Chapter 3

Delay Differential Equations

In our discussion of mixing problems in Section 3.2, we encountered the initial value

problem

x′(t) = 6− 3

500
x (t− t0) , (0.1)

x(t) = 0 for x ∈ [−t0, 0] ,

where t0 is a positive constant. The equation in (0.1) is an example of a delay differ-

ential equation. These equations differ from the usual differential equations by the

presence of the shift (t− t0) in the argument of the unknown function x(t). In general,

these equations are more difficult to work with than are regular differential equations,

but quite a bit is known about them.1

(a) Show that the simple linear delay differential equation

x′ = ax(t− b), (0.2)

where a, b are constants, has a solution of the form x(t) = Cest for any constant

C, provided s satisfies the transcendental equation s = ae−bs.

(b) A solution to (0.2) for t > 0 can also be found using the method of steps. Assume

that x(t) = f(t) for −b ≤ t ≤ 0. For 0 ≤ t ≤ b, equation (0.2) becomes

x′(t) = ax(t− b) = af(t− b),

and so

x(t) =

t∫

0

af(ν − b)dν + x(0).

Now that we know x(t) on [0, b], we can repeat this procedure to obtain

x(t) =

t∫

b

ax(ν − b)dν + x(b)

for b ≤ x ≤ 2b. This process can be continued indefinitely.

1See, for example, Differential–Difference Equations, by R. Bellman and K. L. Cooke, Academic Press, New

York, 1963, or Ordinary and Delay Differential Equations, by R. D. Driver, Springer–Verlag, New York, 1977

10 Copyright c© 2018 Pearson Education, Inc.



Projects for Chapter 3 11

Use the method of steps to show that the solution to the initial value problem

x′(t) = −x(t− 1), x(t) = 1 on [−1, 0],

is given by

x(t) =
n∑

k=0

(−1)k
[t− (k − 1)]k

k!
, for n− 1 ≤ t ≤ n ,

where n is a nonnegative integer. (This problem can also be solved using the

Laplace transform method of Chapter 7.)

(c) Use the method of steps to compute the solution to the initial value problem given

in (0.1) on the interval 0 ≤ t ≤ 15 for t0 = 3.

Extrapolation

When precise information about the form of the error in an approximation is known, a

technique called extrapolation can be used to improve the rate of convergence.

Suppose the approximation method converges with rate O (hp) as h→ 0 (cf. Section 3.6).

From theoretical considerations, assume we know, more precisely, that

y(x; h) = φ(x) + hpap(x) + O
(
hp+1

)
, (0.3)

where y(x; h) is the approximation to φ(x) using step size h and ap(x) is some function

that is independent of h (typically, we do not know a formula for ap(x), only that it

exists). Our goal is to obtain approximations that converge at the faster rate than

O (hp+1).

We start by replacing h by h/2 in (0.3) to get

y

(
x;
h

2

)
= φ(x) +

hp

2p
ap(x) + O

(
hp+1

)
.

If we multiply both sides by 2p and subtract equation (0.3), we find

2py

(
x;
h

2

)
− y(x; h) = (2p − 1)φ(x) + O

(
hp+1

)
.

Solving for φ(x) yields

φ(x) =
2py (x; h/2)− y(x; h)

2p − 1
+ O

(
hp+1

)
.
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12 Projects for Chapter 3

Hence,

y∗
(
x;
h

2

)
:=

2py (x; h/2)− y(x; h)

2p − 1

has a rate of convergence of O (hp+1).

(a) Assuming

y∗
(
x;
h

2

)
= φ(x) + hp+1ap+1(x) + O

(
hp+2

)
,

show that

y∗∗
(
x;
h

4

)
:=

2p+1y∗ (x; h/4)− y∗(x; h/2)

2p+1 − 1

has a rate of convergence of O (hp+2).

(b) Assuming

y∗∗
(
x;
h

4

)
= φ(x) + hp+2ap+2(x) + O

(
hp+3

)
,

show that

y∗∗∗
(
x;
h

8

)
:=

2p+2y∗∗ (x; h/8)− y∗∗(x; h/4)

2p+2 − 1

has a rate of convergence of O (hp+3).

(c) The results of using Euler’s method (with h = 1, 1/2, 1/4, 1/8) to approximate the

solution to the initial value problem

y′ = y, y(0) = 1

at x = 1 are given in Table 1.2, page 26. For Euler’s method, the extrapolation

procedure applies with p = 1. Use the results in Table 1.2 to find an approximation

to e = y(1) by computing y∗∗∗(1; 1/8). [Hint: Compute y∗ (1; 1/2), y∗ (1; 1/4), and

y∗ (1; 1/8); then compute y∗∗ (1; 1/4) and y∗∗ (1; 1/8).]

(d) Table 1.2 also contains Euler’s approximation for y(1) when h = 1/16. Use this

additional information to compute the next step in the extrapolation procedure;

that is, compute y∗∗∗∗(1; 1/16).
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Feedback and the Op Amp

The operational amplier (op amp) depicted in Figure 0.1(a) is a nonlinear device. Thanks

to internal power sources, concatenated transistors, etc., it delivers a huge negative volt-

age at the output terminal O whenever the voltage at its inverting terminal (−) exceeds

that at its noninverting terminal (+), and a huge positive voltage when the situation is

reversed. One could express Eout ≈ G(E+
in−E−

in) with a large gain G (sometimes 1000 or

more), but the approximation would be too unreliable for many applications. Engineers

have come up with a way to tame this unruly device by employing negative feedback, as

illustrated in Figure 0.1(b). By connecting the output to the inverting input terminal,

the op amp acts like a policeman, preventing any unbalance between the inverting and

noninverting input voltages. With such a connection, then, the inverting and noninvert-

ing voltages are maintained at the same value: 0 V (electrical ground), for the situation

depicted.

Furthermore, the input terminals of the op amp do not draw any current; whatever

currentis fed to the inverting terminal is immediately redirected to the feedback path.

As a result the current drawn from the indicated source E(t) is governed by the equivalent

circuit shown in Figure 0.1(c):

E(t) =
1

C

∫
I(t)dt or I(t) = C

dE

dt
,

R

(a)

C
O−

+

(b)

Eout

E−
in

E+
in

E(t)
−

+

(c)

C I

E(t)

0 V

0 V

(d)

R
I

Eout

Figure 0.1: Op amp differentiator
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14 Projects for Chapter 3

C

EoutE(t)
−

+

0 V

R

Figure 0.2: Op amp integrator

and this current I flows through the resistor R in Figure 0.1(d), causing a voltage drop

from 0 to −RI. In other words, the output voltage Eout = −RI = −RC(dE/dt) is a

scaled and inverted replica of the derivative of the source voltage. The circuit is an op

amp differentiator.

(a) Mimic this analysis to show that the circuit in Figure 0.2 is an op amp integrator

with

Eout = − 1

RC

∫
E(t)dt,

up to a constant that depends on the initial charge on the capacitor.

(b) Design op amp integrators and differentiators using negative feedback but with

inductors instead of capacitors. (In most situations, capacitors are less expensive

than inductors, so the previous designs are preferred.)

Bang-Bang Controls

In Example 3 of Section 3.3 (page 93), it was assumed that the amount of heating or

cooling supplied by a furnace or air conditioner is proportional to the difference between

the actual temperature and the desired temperature; recall the equation

U(t) = KU [TD − T (t)].

In many homes the heating/cooling mechanisms deliver a constant rate of heat flow, say,

U(t) =

{
K1, if T (t) > TD,

K2, if T (t) < TD

(with K1 < 0).
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(a) Modify the differential equation (9) in Example 3 on page 93 so that it describes

the temperature of a home employing this “bang-bang” control law.

(b) Suppose the initial temperature T (0) is greater than TD. Modify the constants in

the solution (12), page 94, so that the formula is valid as long as T (t) > TD.

(c) If the initial temperature T (0) is less than TD, what values should the constants in

(12) take to make the formula valid for T (t) < TD?

(d) How does one piece the solutions in (b) and (c) to obtain a complete time description

of the temperature T(t)?
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Effects of Hunting on Predator–Prey Systems

As discussed in Section 5.3 (p. 191), cyclic variations in the population of predators and

their prey have been studied using the Volterra-Lotka predator–prey model

dx

dt
= Ax− Bxy , (0.4)

dy

dt
= −Cy +Dxy , (0.5)

where A, B, C, and D are positive constants, x(t) is the population of prey at time

t, and y(t) is the population of predators. It can be shown that such a system has

a periodic solution. That is, there exists some constant T such that x(t) = x(t + T )

and y(t) = y(t + T ) for all t. The periodic or cyclic variation in the population has

been observed in various systems such as sharks–food fish, lynx–rabbits, and ladybird

beetles–cottony cushion scale. Because of this periodic behavior, it is useful to consider

the average population x and y defined by

x :=
1

T

t∫

0

x(t)dt , y :=
1

T

t∫

0

y(t)dt .

(a) Show that x = C/D and y = A/B. [Hint: Use equation (0.4) and the fact that

x(0) = x(T ) to show that

T∫

0

[A− By(t)] dt =

T∫

0

x′(t)

x(t)
dt = 0 .

(b) To determine the effect of indiscriminate hunting on the population, assume hunting

reduces the rate of change in a population by a constant times the population. Then

the predator–prey system satisfies the new set of equations

dx

dt
= Ax−Bxy − εx = (A− ε)x− Bxy , (0.6)

dy

dt
= −Cy +Dxy − δy = −(C + δ)y +Dxy , (0.7)

where ε and δ are positive constants with ε < A. What effect does this have on the

average population of prey? On the average population of predators?
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(c) Assume the hunting was done selectively, as in shooting only rabbits (or shooting

only lynx). Then we have ε > 0 and δ = 0 (or ε = 0 and δ > 0) in (0.6)–(0.7).

What effect does this have on the average populations of predator and prey?

(d) In a rural county, foxes prey mainly on rabbits but occasionally include a chicken

in their diet. The farmers decide to put a stop to the chicken killing by hunting

the foxes. What do you predict will happen? What will happen to the farmers’

gardens?

Limit Cycles

In the study of triode vacuum tubes, one encounters the van der Pol equation2

y′′ − μ
(
1− y2

)
y′ + y = 0 ,

where the constant μ is regarded as a parameter. In Section 4.8, we used the mass-spring

oscillator analogy to argue that the non-zero solutions to the van der Pol equation with

μ = 1 should approach a periodic limit cycle. The same argument applies for any positive

value of μ.

(a) Recast the van der Pol equation as a system in normal form and use software to

plot some typical trajectories for μ = 0.1, 1, and 10. Re-scale the plots if necessary

until you can discern the limit cycle trajectory; find trajectories that spiral in, and

ones that spiral out, to the limit cycle.

(b) Now let μ = −0.1, −1, and −10. Try to predict the nature of the solutions using

the mass-spring analogy. Then use the software to check your predictions. Are

there limit cycles? Do the neighboring trajectories spiral into, or spiral out from,

the limit cycles?

(c) Repeat parts (a) and (b) for the Rayleigh equation

y′′ − μ
[
1− (y′)

2
]
y′ + y = 0 .

2Historical Footnote: Experimental research by E. V. Appleton and B. van der Pol in 1921 on the

oscillation of an electrical circuit containing a triode generator (vacuum tube) led to the non-linear equation

now called 0 van der Pol’s equation. Methods of solution were developed by van der Pol in 1926–1927.

Mary L. Cartwright continued research into non-linear oscillation theory and together with J. E. Little-

wood obtained existence results for forced oscillations in non-linear systems in 1945.
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A Growth Model for Phytoplankton—Part I

Courtesy of Dr. Olivier Bernard and Dr. Jean-Luc Gouzé, INRIA

A chemostat is a stirred tank in which phytoplankton grow by consuming a nutrient (e.g.,

nitrate). The nutrient is supplied to the tank at a given rate, and a solution containing

the phytoplankton and remaining nutrient is removed at an equal rate (cf. Figure 0.3).

The chemostat reproduces in vitro the conditions of the growth of phytoplankton in the

ocean; the phytoplankton is the first element of the marine food chain.

: microorganisms
: nutrients

Inflow

Outflow

Figure 0.3: Chemostat
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Figure 0.4: Nutrient/biovolume data

Let S denote the concentration (in μmol/liter) of the nutrient and X the biovolume
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(which is to be taken as an estimation of the biomass) of phytoplankton (in mm3 of cells

per liter of solution). A classical model (J. Monod, La technique de culture continue:

théorie et applications. Annales de I’Institut Pasteur, 79, 1950) of the behavior of the

chemostat is the following:

⎧⎪⎪⎨
⎪⎪⎩

DX

dt
= ρ

SX

S + k
− αX

dS

dt
= α(si − S)− ρ

y

SX

S +K
.

(0.8)

The unit for time is the day; the dilution rate α and the growth rate ρ are in day−1; and

the input concentration si and the constant k have the same units as S. Experimental

(smoothed) data, obtained from the Station Zoologique of Villefrance-sur-Mer in France,

are displayed in Figure 0.4.

(i) When t < 2.5, the dilution rate α is zero (“batch culture”). It is known that k is

in the range 0.1 ≤ k ≤ 1.

(a) What are the units for the yield factor y?

(b) Write a linear approximation of the system (0.8) for S >> k (i.e., S is much

larger than k).

(c) Solve the approximated system in part (b) and use the solution for X and the

experimental data in Figure 0.4 to obtain a numerical value for ρ. [Hint : Plot

the logarithm of X against the time, and estimate the slope.] Use the equation

for S and the data to obtain an estimation of y.

(d) Take k = 0.5 and the values for ρ and y obtained in (c). Using a computer

software package and the initial conditions X(0) = 0.15, S(0) = 45.84, draw the

numerical solutions X(t), S(t) for the system (0.8) and for the approximated

system of part (b). Is the approximation of part (b) a reasonable one?

(ii) For t > 2.5, the dilution rate is α = 1.06 day−1. After a delay, the growth rate

ρ of the phytoplankton changes because the cells adapt themselves to their new

environment.

(e) Estimate the time T when the growth rate changes and obtain the new value

for ρ. (As above, take k = 0.5.)
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A Growth Model for Phytoplankton—Part II

Courtesy of Dr. Olivier Bernard and Dr. Jean-Luc Gouzé, INRIA, Sophia-Antipolis

In the first part of this project (Chapter 5), we used experimental data to identify the

parameters of the following model for the chemostat:

⎧⎪⎪⎨
⎪⎪⎩

dX

dt
= ρ

SX

S + k
− αX,

dS

dt
= α(si − S)− ρ

y

SX

S +K
.

(0.9)

Suppose ρ > α, as in the experiments.

(a) Compute the two equilibria (critical points) of the system.

(b) Determine the corresponding linear systems for the two equilibria. Study their

stability and show that there is one saddle point and one stable node.

(c) Show that S + X/y obeys a simple equation. Write the analytical solution and

show that

lim
t→∞

(S +X/y) = Si. (0.10)

What does it mean on the phase diagram?

(d) For t > 4, re-plot the experimental data (Figure 0.4) in the (X,S)-plane.

(e) Using (c) and the fact that at the experimental equilibrium S is very small (cf.

Figure 0.4), estimate si from the data and equation (0.10) (take y = 0.13).

(f) In the phase plane, draw the isoclines dS/DX = 0 and dX/dS = 0 corresponding

to the estimated parameters ρ = 2, k = 0.5, y = 0.13, α = 1.06, and the value of Si

obtained in (e). Compare with (d).

(g) Sketch a phase diagram for the system (0.9).

(h) Do you think that (0.9) is a reasonable model?
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David Stapleton, University of Central Oklahoma

Satellite Altitude Stability

In this problem, we determine the orientation at which a satellite in a circular orbit of

radius r can maintain a relatively constant facing with respect to a spherical primary

(e.g., a planet) of mass M . The torque of gravity on the asymmetric satellite maintains

the orientation.

Suppose (x, y, z) and (x, y, z) refer to coordinates in two systems that have a common

origin at the satellite’s center of mass. Fix the xyz-axes in the satellite as principal axes;

then let the z-axis point toward the primary and let the x-axis point in the direction of

the satellite’s velocity. The xyz-axes may be rotated to coincide with the xyz-axes by

a rotation φ about the x-axis (roll), followed by a rotation θ about the resulting y-axis

(pitch), and a rotation ψ about the final z-axis (yaw). Euler’s equations from physics

(with high terms omitted3 to obtain approximate solutions valid near (φ, θ, ψ) = (0, 0, 0))

show that the equations for the rotational motion due to gravity acting on the satellite

are

Ixφ
′′ = −4ω2

0 (Iz − Iy)φ− ω0 (Iy − Iz − Ix)ψ
′

Iyθ
′′ = −3ω2

0 (Ix − Iz) θ

Izψ
′′ = −4ω2

0 (Iy − Ix)ψ + ω0 (Iy − Iz − Ix)φ
′ ,

where ω0 =
√

(GM)/r3 is the angular frequency of the orbit and the positive constants

Ix, Iy, Iz are the moments of inertia of the satellite about the x, y, and z-axes.

(a) Find constants c1, . . . , c5 such that these equations can be written as two systems

d

dt

⎡
⎢⎢⎢⎢⎣

φ

ψ

φ′

θ′

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

c1 0 0 c2

0 c3 c4 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

φ

ψ

φ′

ψ′

⎤
⎥⎥⎥⎥⎦

and
d

dt

[
θ

θ′

]
=

[
0 1

c5 0

][
θ

θ′

]
.

3The derivation of these equations is found in Attitude Stabilization and Control of Earth Satellites, by

O. H. Gerlach, Space Science Reviews, #4 (1965), 541–566.
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(b) Show that the origin is asymptotically stable for the first system in (a) if

(c2c4 + c3 + c1)
2 − 4c1c3 > 0 ,

c1c3 > 0 ,

c2c4 + c3 + c1 > 0

and hence deduce that Iy > Ix > Iz yields an asymptotically stable origin. Are

there other conditions on the moments of inertia by which the origin is stable?

(c) Show that, for the asymptotically stable configuration in (b), the second system

in (a) becomes a harmonic oscillator problem, and find the frequency of oscillation

in terms of Ix, Iy, Iz, and ω0 . Phobos maintains Iy > Ix > Iz in its orientation

with respect to Mars, and has angular frequency of orbit ω0 = 0.82 rad/hr. If

(Ix − Iz) /Iy = 0.23, show that the period of the libration for Phobos (the period

with which the side of Phobos facing Mars shakes back and forth) is about 9 hours.
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CHAPTER 1: Introduction

EXERCISES 1.1: Background

2. This equation is an ODE because it contains no partial derivatives. Since the highest

order derivative is d2y/dx2, the equation is a second order equation. This same term

also shows us that the independent variable is x and the dependent variable is y. This

equation is linear.

4. This equation is a PDE of the second order because it contains second partial derivatives.

x and y are independent variables, and u is the dependent variable.

6. This equation is an ODE of the first order with the independent variable t and the

dependent variable x. It is nonlinear.

8. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.

10. ODE of the fourth order with the independent variable x and the dependent variable y,

linear.

12. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.

14. The velocity at time t is the rate of change of the position function x(t), i.e., x′. Thus,

dx

dt
= kx4,

where k is the proportionality constant.

16. The equation is
dA

dt
= kA2,

where k is the proportionality constant.
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EXERCISES 1.2: Solutions and Initial Value Problems

2. (a) Writing the given equation in the form y2 = 3 − x, we see that it defines two

functions of x on x ≤ 3, y = ±
√
3− x. Differentiation yields

dy

dx
=

d

dx

(
±
√
3− x

)
= ± d

dx

[
(3− x)1/2

]

= ±1

2
(3− x)−1/2(−1) = − 1

±2
√
3− x

= − 1

2y
.

(b) Solving for y yields

y3(x− x sin x) = 1 ⇒ y3 =
1

x(1 − sin x)

⇒ y =
1

3
√
x(1− sin x)

= [x(1− sin x)]−1/3 .

The domain of this function is x 	= 0 and

sin x 	= 1 ⇒ x 	= π

2
+ 2kπ, k = 0,±1,±2, . . . .

For 0 < x < π/2, one has

dy

dx
=

d

dx

{
[x(1− sin x)]−1/3

}
= −1

3
[x(1 − sin x)]−1/3−1 d

dx
[x(1 − sin x)]

= −1

3
[x(1− sin x)]−1[x(1 − sin x)]−1/3[(1− sin x) + x(− cos x)]

=
(x cosx+ sin x− 1)y

3x(1− sin x)
.

We also remark that the given relation is an implicit solution on any interval not

containing points x = 0, π/2 + 2kπ, k = 0,±1,±2, . . . .

4. Differentiating the function x = 2 cos t− 3 sin t twice, we obtain

x′ = −2 sin t− 3 cos t, x′′ = −2 cos t + 3 sin t.

Thus,

x′′ + x = (−2 cos t+ 3 sin t) + (2 cos t− 3 sin t) = 0

for any t on (−∞,∞). Thus, the answer is “Yes”.

6. Substituting x = cos 2t and x′ = −2 sin 2t into the given equation yields

(−2 sin 2t) + t cos 2t = sin 2t ⇔ t cos 2t = 3 sin 2t .

Clearly, this is not an identity and, therefore, the function x = cos 2t is not a solution.
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