Patton and Thibodeau: Anatomy & Physiology, 7th Edition

Chapter 2: The Chemical Basis of Life

Test Bank

TRUE/FALSE

1. Biochemistry deals with the chemical makeup of living organisms and the underlying process of life activities.

ANS:	Т	DIF:	Memorization	RJ	EF:	Page 34
TOP:	Introduction					

2. The number of protons in the nucleus of an atom determines its atomic mass.

ANS:	F DIF:	Memorization	REF:	Page 36
TOP:	Atomic Number and	Atomic Weight		

3. The positively charged electrons are found in clouds outside the nucleus of an atom.

ANS:	F DIF:	Memorization	REF: 1	Page 36
TOP:	Atomic Structure			

4. Two shared pairs of electrons represent a single covalent bond.

ANS: F DIF: Application REF: Page 39 TOP: Covalent Bonds

5. The digestion of food is an example of a decomposition reaction.

ANS: T DIF: Application REF: Page 40 TOP: Chemical Reactions

6. The number and arrangement of electrons orbiting in an atom's outer shell determine its chemical activity.

ANS: T DIF: Application REF: Page 37 TOP: Energy Levels

7. An atom is chemically inert if its outermost shell has two pairs of electrons.

ANS: F DIF: Application REF: Page 37 TOP: Energy Levels

8.	An isotope of an element contains the same number of neutrons but different
	numbers of protons.

		F Isotopes	DIF:	Memorization	1		REF:	Page 37
9.	Electro	ovalent and ion	ic bond	s are the same.				
	ANS: TOP:	T Ionic Bonds	DIF:	Memorization	1		REF:	Page 38
10.	Radiat	ion results from	n the br	eaking apart of	the nuc	cleus of an ator	n.	
	ANS: TOP:	T Radioactivity	DIF:	Memorization	1		REF:	Page 38
11.	Radioa	activity can cau	ise an at	tom of one eler	nent to	change to that	of anoth	ner element.
	ANS: TOP:	T Radioactivity	DIF:	Memorization	1		REF:	Page 38
12.	Ionizir	ng radiation car	n be can	cer-producing.				
	ANS: TOP:	T Radioactivity	DIF:	Memorization	1		REF:	Page 38
13.	A subs <i>buffer</i> .		sts chan	ges in pH when	n acids	or bases are ad	ded is c	alled a
	ANS:	Т	DIF:	Application	REF:	Page 45	TOP:	Buffers
14.	The ch	emical reaction	n of an a	acid with a bas	e alway	s produces a sa	lt and v	vater.
	ANS:	Т	DIF:	Application	REF:	Page 45	TOP:	Salts
15.	Water	is the universa	l solven	ıt.				
	ANS: TOP:	T Water	DIF:	Memorization	1		REF:	Page 43
16.	Electro	olytes include a	icids, ba	ases, and salts.				
	ANS: TOP:	T Electrolytes	DIF:	Memorization	1		REF:	Page 44

17. All inorganic substances are free from carbon.

	ANS: TOP:	F Organic and I		Memorization c Compounds	REF:	Page 42
18.	Electro	olytes are chara	acterized	d by having either a positive or a neg	ative ch	arge.
	ANS: TOP:	T Electrolytes	DIF:	Memorization	REF:	Page 44
19.	Acids	are electrolytes	s that pr	oduce OH ⁺ ions.		
		F Acids	DIF:	Memorization	REF:	Page 44
20.	pH sta	nds for the neg	ative lo	garithm of the hydrogen ion concent	ration.	
		T The pH Scale	DIF:	Memorization	REF:	Page 44
21.	Protein	ns are the most	abunda	nt of the carbon-containing compour	nds in th	e body.
		T Proteins	DIF:	Memorization	REF:	Page 52
22.	Glyco	gen and starch	are both	n examples of polysaccharides.		
	ANS: TOP:	T Disaccharides		Memorization lysaccharides	REF:	Page 48
23.	There	are a total of 20	0 essent	ial amino acids.		
	ANS: TOP:	F Amino Acids	DIF:	Memorization	REF:	Page 52
24.	Steroi	ds are often cal	led <i>tissi</i>	ie hormones.		
	ANS:	F	DIF:	Synthesis REF: Page 50	TOP:	Steroids
25.	DNA	molecules are t	he large	est molecules in the body.		
	ANS: TOP:	T Nucleic Acids	DIF:	Memorization	REF:	Page 57
26.	Adeni	ne and thymine	e are ref	erred to as purine bases, which are in	nportant	-

26. Adenine and thymine are referred to as purine bases, which are important constituents of a DNA molecule.

		F Nucleic Acids		Memorization	1		REF:	Page 57
27.	Metab	olism includes	the pro	cesses of both	anabolis	sm and catabol	ism.	
	ANS: TOP:	T Metabolism	DIF:	Memorization	1		REF:	Page 41
28.	The ab	oility of protein	s to per	form their fund	ction dej	pends on their	shape.	
	ANS: TOP:	T Levels of Pro		Application ucture	REF:	Page 56		
29.	Enzyn	nes are proteins	s that fu	nction by the le	ock-and	-key theory.		
	ANS: TOP:	T Levels of Pro	DIF: tein Stru	Synthesis ucture	REF:	Page 56		
30.	ATP is	s broken down	in an ar	nabolic reaction	1.			
	ANS:	F Catabolism	DIF:	Application	REF:	Page 41	TOP:	
31.	Catabo	blism and anab	olism aı	e major types	of meta	bolic activity.		
	ANS: TOP:	T Metabolism	DIF:	Memorization	1		REF:	Page 41
32.	Sodiur	n chloride is ar	n examp	ble of an ionic	oond.			
	ANS: Bonds		DIF:	Application	REF:	Page 38	TOP:	Ionic
33.	The di	gestion of food	l is an e	xample of a sy	nthesis	reaction.		
	ANS: TOP:	F Chemical Rea	DIF: actions	Synthesis	REF:	Page 40 Pag	e 41	
34.	The pl	H scale indicate	es the de	egree of acidity	v or alka	llinity of a solu	tion.	
	ANS: TOP:	T Acids and Ba	DIF: ses	Memorization	1		REF:	Page 44
35.	Litmus	s paper will tur	n red in	the presence of	of a base	.		
	ANS:	F	DIF:	Memorization	1		REF:	Page 44

TOP: Acids and Bases

36. High-density lipoprotein (HDL) is also called the "bad" cholesterol.

ANS: F DIF: Application REF: Page 51 (Box 2-2) TOP: Blood Lipoproteins

37. The nonessential amino acids cannot be produced from the other amino acids or from simple organic molecules.

ANS: FDIF:MemorizationREF:Page 52TOP:Amino Acids

38. The atomic weight of an atom is equal to the number of protons plus the number of neutrons.

ANS: TDIF: MemorizationREF: Page 36TOP: Atomic Number and Atomic Weight

39. The mass of a proton is almost exactly equal to the mass of an electron.

ANS:	F D	IF:	Memorization	REF:	Page 33
TOP:	Atomic Number	and	Atomic Weight		

40. Hydrogen will react with other atoms to get 8 electrons in its outer energy level.

ANS: F	DIF:	Application	REF:	Page 37	TOP:	Energy
Levels						

41. A double covalent bond involves the sharing of 2 electrons.

ANS: F DIF: Application REF: Page 39 TOP: Covalent Bonds

42. Synthesis reactions release energy for use by the cell.

ANS: FDIF:MemorizationREF:Page 40TOP:Chemical Reactions

43. Electrolytes dissociate to form ions.

ANS: T DIF: Application REF: Page 44 TOP: Electrolytes

44. As the hydrogen ion concentration increases, the pH value increases.

	ANS: Bases	F	DIF:	Application	REF:	Page 44	TOP:	Acids and
45.	Sugars	s and starches a	are both	considered to l	be carbo	ohydrates.		
	ANS: TOP:	T Carbohydrate		Memorization	1		REF:	Page 46
46.	Gluco	se is a hexose a	and ribo	se is a pentose.				
	ANS: TOP:	T Carbohydrate		Memorization	1		REF:	Page 46
47.	Nones body.	sential amino a	acids are	rarely used in	the ma	king of protein	s in the	human
	ANS: Acids	F	DIF:	Application	REF:	Page 52	TOP:	Amino
48.	Fats, s	teroids, and pro	ostaglan	dins are all con	nsidered	l lipids.		
	ANS: TOP:	T Lipids	DIF:	Memorization	1		REF:	Page 48
49.	Fats a	e composed of	three fa	atty acids joine	d to a n	nolecule of glyo	cerol.	
	ANS: TOP:	T Triglycerides	DIF: or Fats	Memorization	1		REF:	Page 48
50.	Satura	ted fats are mo	re likely	/ than unsatura	ted fats	to be liquids at	t room t	emperature.
	ANS: TOP:	F Triglycerides		Memorization	1		REF:	Page 49
51.	Phosp	holipids have a	fat-solu	able end and a	water-s	oluble end.		
	ANS: TOP:	T Phospholipids	DIF: s	Memorization	1		REF:	Page 50
52.	Prosta wome	-	sociated	l with the prost	ate glar	nd and therefore	e are no	t found in
	ANS:	F Prostaglandin		Application	REF:	Page 51	TOP:	

53. Chemistry can be defined as the science that deals with the structure, arrangement, and composition of substances and the reactions they undergo.

ANS: TDIF:MemorizationREF:Page 34TOP:Introduction

54. The nucleus of the atom will always have a positive charge.

ANS: T DIF: Application REF: Page 36 TOP: Atomic Structure

55. If an atom has an atomic number of 12 and an atomic weight of 25, it must have 13 neutrons.

ANS: T DIF: Application REF: Page 36 TOP: Atomic Number and Atomic Weight

56. Consider an atom that has an atomic mass of 18. For it to be electrically neutral, it must have 18 electrons.

ANS: F DIF: Application REF: Page 36 TOP: Atomic Structure, Atomic Number and Atomic Weight

57. Atoms become positively charged by gaining protons.

ANS: FDIF:MemorizationREF:Page 38TOP:Ionic Bonds

- 58. Inorganic compounds do not play an important role in living systems.
 - ANS: FDIF: ApplicationREF: Page 42TOP: Organic and Inorganic Compounds
- 59. Acids release protons in solution.

ANS:	Т	DIF:	Memorization	REF:	Page 44
TOP:	Acids				

60. A denatured protein has lost its functional shape.

ANS:	Т	DIF:	Memorization	REF:	Page 56
TOP:	Proteins				

- 61. RNA never exists in a double-stranded form.
 - ANS: F DIF: Memorization REF: Page 58

TOP: DNA and RNA

62. Glycoproteins contain both a fat molecule and a protein molecule.

		F Combined Fo		Memorization	1		REF:	Page 60
63.	The ter	rms <i>molecule</i> a	nd com	<i>pound</i> mean th	ie same	thing.		
	ANS: TOP:	F Interaction Be		Memorization Atoms	1		REF:	Page 38
64.	Four elements are considered to be the major elements in the body.							
	ANS: TOP:	F Elements and		Memorization ounds	1		REF:	Page 35
65.	Dalton	named the ato	m after	the Greek wor	d for in	visible.		
	ANS: TOP:	F Atoms	DIF:	Memorization	1		REF:	Page 36
66.	A neut	ral atom that h	as 22 pi	rotons must ha	ve 22 el	ectrons.		
	ANS:	Т	DIF:	Application	REF:	Page 36	TOP:	Atoms
67.	A neut	ral atom that h	as 22 pi	rotons must ha	ve 22 ne	eutrons.		
	ANS:	F	DIF:	Application	REF:	Page 36	TOP:	Atoms
68.	A neut	ral atom that h	as 22 pi	rotons could ha	ave 25 n	eutrons.		
	ANS:	Т	DIF:	Application	REF:	Page 36	TOP:	Atoms
69.	Oxyge	n has 8 electro	ns, but	only 6 of them	are in i	ts outermost en	ergy le	vel.
	ANS: Levels		DIF:	Application	REF:	Page 37	TOP:	Energy
70.	Hydrog	gen bonds betv	veen ato	oms do not forr	n molec	cules or compo	unds.	
	ANS: TOP:	T Attraction Be	DIF: tween N	Memorization Aolecules	1		REF:	Page 39
= 1			1.0				0	

71. According to the general formula, in synthesis reactions, the number of reactants is usually greater than the number of products.

ANS: T DIF: Application REF: Page 40 TOP: Chemical Reactions

72. According to the general formula, in decomposition reactions, the number of reactants is usually greater than the number of products.

ANS: F DIF: Application REF: Page 40 | Page 41 TOP: Chemical Reactions

73. According to the general formula, in exchange reactions, the number of reactants and the number of products are usually equal.

ANS: T DIF: Application REF: Page 41 TOP: Chemical Reactions

74. A solution with a pH of 6 has 100 times more hydrogen ions than a solution with a pH of 4.

ANS: F DIF: Application REF: Page 44 TOP: The pH Scale

75. A solution with a pH of 3 has 100 times more hydrogen ions than a solution with a pH of 5.

ANS: T DIF: Application REF: Page 44 TOP: The pH Scale

76. A sucrose molecule is formed by the synthesis reaction between glucose and fructose.

ANS: T DIF: Application REF: Page 48 TOP: Disaccharides and Polysaccharides

77. The quaternary structure of a protein contains more than one polypeptide chain.

ANS: T DIF: Application REF: Page 55 TOP: Levels of Protein Structure

78. Both phospholipids and steroids are found in cell membranes.

ANS: TDIF: MemorizationREF: Page 50TOP: Phospholipids and Steroids

79. Steroids are the only lipid that contains a ring structure.

		F Prostaglandin		Memorization	1		REF:	Page 50
80.	Nucleo	otides are only	used to	make RNA or	DNA n	nolecules.		
	ANS: TOP:	F Nucleotides a		Memorization ted Molecules	1		REF:	Page 58
81.			-	gar-phosphate and one pyrimidi		es in a DNA m ecule.	olecule	is equal to
	ANS: Acids	Т	DIF:	Application	REF:	Page 57	TOP:	Nucleic
82.	When	ATP is in shor	t supply	, muscles can	use crea	tine phosphate	for ext	ra energy.
	ANS: TOP:	T Nucleotides a	DIF: and Rela	Memorization ted Molecules	1		REF:	Page 59
83.	Because oxygen has 8 electrons, it has achieved its octet and will not react with other elements.							
	ANS: Levels		DIF:	Application	REF:	Page 37	TOP:	Energy
84.	Both t	riglycerides an	d prosta	glandins can c	ontain a	a saturated fat.		
	ANS: TOP:	T Triglycerides	DIF: and Pro		REF:	Page 49 Pag	e 50	
	MUL	TIPLE CHOI	CE					
1.	 Which of the following represents a trace element in the body? A. Sulfur B. Chlorine C. Iron D. Phosphorus 							
	ANS: TOP:	C Basic Chemis		Memorization	1		REF:	Page 35
2	T 1 1 ·	1 C 1	• • •	• • • •	1	C		

- 2. The kind of element is determined by the number of:
 - A. proton.
 - B. neutrons.
 - C. mesotrons.
 - D. electrons.

ANS: A DIF: Application REF: Page 36 TOP: Atomic Number and Atomic Weight

- 3. Atomic weight is determined by the number of:
 - A. protons and electrons.
 - B. neutrons and electrons.
 - C. neutrons, protons, and electrons.
 - D. protons and neutrons.

ANS: D DIF: Application REF: Page 36 TOP: Atomic Number and Atomic Weight

- 4. Carbon has an atomic number of 6. The number of electrons found in the first shell is:
 - A. 2.
 - B. 4.
 - C. 6.
 - D. 8.
 - ANS: A DIF: Application REF: Page 37 (Figure 2-6)
 - TOP: Energy Levels
- 5. The atomic number of carbon is 6. How many unpaired electrons are in its outer shell?
 - A. 2
 - B. 3
 - C. 4
 - D. 5

ANS: C DIF: Application REF: Page 37 (Figure 2-6)

- TOP: Energy Levels
- 6. A negatively charged subatomic particle that moves around the nucleus is a(n):
 - A. orbital.
 - B. proton.
 - C. neutron.
 - D. electron.

ANS:	D DIF:	Memorization	REF:	Page 36
TOP:	Atomic Structure			

- 7. When atoms combine, they may gain, lose, or share:
 - A. electrons.
 - B. protons.
 - C. neutrons.
 - D. nuclei.

ANS: A DIF: Application REF: Page 38 TOP: Attraction Between Atoms: Chemical Bonds

- 8. An ionic bond is formed by:
 - A. two or more positive ions combining.
 - B. two or more negative ions combining.
 - C. a positive and a negative ion attracting each other.
 - D. sharing of a pair of electrons.

ANS: C DIF: Application REF: Page 38 TOP: Ionic Bonds

- 9. An example of an element would be:
 - A. Ne.
 - B. CO₂.
 - $C. C_6 H_{12} O_6.$
 - D. H₂O.

ANS: A DIF: Application REF: Page 34 TOP: Elements and Compounds

- 10. An isotope of an element contains a different number of _____ than other atoms of the same element.
 - A. electrons
 - B. protons
 - C. neutrons
 - D. protons and neutrons

ANS: C DIF: Application REF: Page 37 TOP: Isotopes

- 11. Which of the following elements is least likely to combine with another element?
 - A. Hydrogen
 - B. Helium
 - C. Oxygen
 - D. Carbon

ANS: B DIF: Synthesis REF: Page 37 (Figure 2-6) TOP: Attraction Between Atoms: Chemical Bonds

- 12. The hydrogen isotope tritium consists of:
 - A. one proton.
 - B. one proton and one neutron.
 - C. two protons and one neutron.
 - D. one proton and two neutrons.

ANS: D DIF: Application REF: Page 38 (Figure 2-7) TOP: Isotopes

- 13. Which of the following bonds are the weakest?
 - A. Ionic bonds
 - B. Hydrogen bonds

	C. Electrovalent bonD. Covalent bonds	nds					
	ANS: B TOP: Hydrogen Bo		Memorization	1		REF:	Page 39
14.	The type of reaction substances is called a A. reversible reaction B. exchange reaction C. synthesis reaction D. decomposition re	n(n): on. n. n.	h substances ar	e comb	ined to form m	nore com	plex
	ANS: C TOP: Chemical Rea	DIF: actions	Memorization	1		REF:	Page 40
15.	The process of the diA. SynthesisB. DecompositionC. ExchangeD. Reversible	gestion	of food is an e	xample	of which type	of react	ion?
	ANS: B TOP: Chemical Rea	DIF: actions	Application	REF:	Page 40 Pag	ge 41	
16.	Substances that accept A. acids. B. bases. C. buffers. D. salts.	pt hydro	ogen ions are ca	alled:			
	ANS: B TOP: Bases	DIF:	Memorization	1		REF:	Page 44
17.	Acids:A. are proton donorB. taste sour.C. release hydrogenD. are all of the abo	ions in	an aqueous so	lution.			
	ANS: D	DIF:	Synthesis	REF:	Page 44	TOP:	Acids
18.	A solution that conta hydrogen ions (H ⁺) is A. acidic solution. B. alkaline (basic) s C. neutral solution.	s a(n):		tion of	hydroxide ions	s (OH-) †	than
	ANS: B	DIF:	Application	REF:	Page 44	TOP:	Bases

19.	In the presence of a b A. stay red. B. turn blue. C. turn green. D. turn yellow.	base, red	l litmus paper v	will:			
	ANS: B TOP: Acids and Ba		Memorization	n		REF:	Page 44
20.	The most abundant aA. air.B. water.C. proteins.D. nucleic acids.	nd impo	ortant compour	nd(s) in	the body is/are	:	
	ANS: B TOP: Water	DIF:	Memorization	n		REF:	Page 42
21.	Approximately what A. 40% B. 50% C. 60% D. 70%	percent	age of body we	eight is	water?		
	ANS: D TOP: Water	DIF:	Memorization	n		REF:	Page 42
22.	$AB + CD \leftrightarrow AD + C$ A. synthesis reaction B. exchange reaction C. decomposition re D. reversible reaction	n. n. eaction.	example of a(n):			
	ANS: B TOP: Chemical Rea		Application	REF:	Page 41		
23.	Which of the followiA. CohesionB. High heat of vapeC. Strong polarityD. All of the above	• •		ties of w	vater?		
	ANS: D TOP: Properties of	DIF: Water	Synthesis	REF:	Page 43		
24.	The approximate pH A. 10.	of gastr	ric fluid is:				

B. 8.

	C. 4. D. 2. ANS: D	DIE	Momorization	2	
	REF: Page 45 (Fig		Memorization)		The pH Scale
25.	Which of the followinghuman body?A. ProteinsB. SaltsC. LipidsD. Nucleic acids	ng is nc	ot one of the ma	ajor grot	ups of organic substances in the
	ANS: B TOP: Organic Mole	DIF: ecules	Synthesis	REF:	Page 46
26.	The enzyme lactase of A. glucose only.B. glucose and fructC. fructose and galaD. glucose and gala	tose. actose.	s the chemical	reactior	n that changes lactose to:
	ANS: D TOP: Proteins	DIF:	Synthesis	REF:	Page 56 (Table 2-6)
27.	Peptide bonds join toA. glycerol.B. glucose.C. amino acids.D. water.	gether	molecules of:		
	ANS: C Acids	DIF:	Application	REF:	Page 52 TOP: Amino
28.	Vitamin D functionsA. form retinol.B. increase calciumC. promote wound D. aid in the synthesis	uptake. healing.		oteins.	
	ANS: B TOP: Lipids	DIF:	Application	REF:	Page 48 (Table 2-5)
29.	All of the followingA. lipids.B. electrolytes.C. carbohydrates.D. proteins	substand	ces are organic	except:	

D. proteins.

ANS: B Application REF: Page 46 DIF: **TOP:** Organic Molecules 30. The simple sugars that are the building blocks for other carbohydrates are: A. disaccharides. B. monosaccharides. C. polysaccharides. ANS: B DIF: Memorization REF: Page 48 TOP: Carbohydrates 31. The element that is present in all proteins but not in carbohydrates is: A. carbon. B. hydrogen. C. oxygen. D. nitrogen. ANS: D DIF: Synthesis REF: Page 46 | Page 52 **TOP:** Carbohydrates and Proteins 32. The formation of sucrose involves the removal of a molecule of water. This is called: A. hydrolysis. B. oxidation. C. decomposition. D. dehydration synthesis. ANS: D DIF: Synthesis REF: Page 42 TOP: Anabolism 33. Humans can synthesize 12 of 20 basic amino acids; the remaining 8, which must be included in the diet, are called: A. enzymes. B. essential amino acids. C. structural proteins. D. peptide bonds. ANS: B TOP: Amino DIF: Application REF: Page 52 Acids 34. The basic building blocks of fats are: A. monosaccharides. B. disaccharides. C. amino acids. D. fatty acids and glycerol. ANS: D DIF: Memorization REF: Page 48

35. A structural lipid found in the cell membrane is a:

TOP: Triglycerides or Fats

- A. triglyceride.
- B. phospholipid.
- C. steroid.
- D. both B and C.

ANS: D DIF: Application REF: Page 50 TOP: Phospholipids and Steroids

36. DNA:

- A. is a single strand of nucleotides.
- B. contains the sugar ribose.
- C. is the heredity molecule.
- D. transports amino acids during protein synthesis.
- ANS: C DIF: Application REF: Page 57 | Page 58 TOP: Nucleic Acids

37. The study of metabolism includes examination of:

- A. catabolism.
- B. anabolism.
- C. ATP requirements.
- D. all of the above.

ANS: D DIF: Memorization TOP: Metabolism

38. The bonds that exist between phosphate groups of the ATP molecule are:

- A. hydrogen bonds.
- B. high-energy bonds.
- C. covalent bonds.
- D. both B and C.

ANS: D DIF: Application REF: Page 41 | Page 42 TOP: Metabolism

- 39. The type of lipoprotein associated with cholesterol and the production of atherosclerotic changes in blood vessels is:
 - A. HDL.
 - B. LDL.
 - C. VLDL.

ANS: B DIF: Memorization (Box 2-2) TOP: Formation of Triglycerides REF: Page 51

REF: Page 41

- 40. The type of lipid found in sex hormones is:
 - A. triglycerides.
 - B. phosphoglycerides.
 - C. steroids.

D. prostaglandins.

ANS: C DIF: Application REF: Page 50 TOP: Steroids

41. Which of the following is not one of the three major ingredients of a DNA molecule? A. Sugar B. Nitrogenous bases C. Phosphate D. Lipid ANS: D DIF: Memorization REF: Page 57 TOP: Nucleic Acids 42. Which of the following is not one of the major elements present in the human body? A. Oxygen B. Zinc C. Carbon D. Potassium ANS: B Application REF: Page 35 (Table 2-1) DIF: TOP: Basic Chemistry 43. Which of the following is not a subatomic particle? A. Proton B. Electron C. Radon D. Neutron ANS: C DIF: Memorization REF: Page 36 **TOP:** Atomic Structure 44. The total number of electrons in a neutral atom equals the number of: A. neutrons orbiting the atom. B. protons plus the number of neutrons in its nucleus. C. protons in its nucleus. D. ions in its nucleus. ANS: C DIF: Memorization REF: Page 36 TOP: Energy Levels 45. An atom can be described as chemically inert if its outermost electron shell contains: A. 8 electrons. B. 9 electrons. C. 2 electrons. D. both A and C. ANS: A DIF: Synthesis REF: Page 37 TOP: Energy Levels

- 46. Ionic bonds are chemical bonds formed by the: A. sharing of electrons between molecules. B. donation of protons from one atom to another. C. transfer of electrons from one atom to another. D. acceptance of neutrons from one atom to another. ANS: C DIF: Application REF: Page 38 TOP: Ionic Bonds 47. Chemical bonds formed by the sharing of electrons are called: A. ionic. B. covalent. C. hydrogen. D. isotopic. ANS: B DIF: Memorization REF: Page 38 TOP: Covalent Bonds 48. The type of chemical reaction most likely to require energy is: A. synthesis reaction. B. decomposition reaction. C. exchange reaction. D. All of the above reactions are equally likely to require energy. ANS: A DIF: Memorization REF: Page 40 **TOP:** Chemical Reactions 49. Proteins are composed of _____ commonly occurring amino acids. A. 10 B. 18 C. 20 D. 22 ANS: C DIF: Memorization REF: Page 52 **TOP:** Proteins 50. Amino acids frequently become joined by: A. peptide bonds. B. catabolic reactions. C. atrophic reactions. D. all of the above. ANS: A DIF: Application REF: Page 52 TOP: Amino Acids
- 51. The elements carbon, hydrogen, oxygen, and nitrogen make up which percentage of the human body?A. 50%

	B. 69%C. 78%D. 96%		
	ANS:DDIF:MemorizationTOP:Elements and Compounds	REF:	Page 35
52.	Which subatomic particles carry a charge?A. Protons and neutronsB. Neutrons and electronsC. Protons and electronsD. Only neutrons carry a charge.		
	ANS: C DIF: Memorization TOP: Atomic Structure	REF:	Page 36
53.	The element oxygen has an atomic number of 8, which mA. 4 protons and 4 neutrons.B. 8 protons.C. 8 neutrons.D. 4 protons and 4 electrons.	eans it contains:	
	ANS: B DIF: Synthesis REF: Page TOP: Atomic Number and Atomic Weight	36	
54.	For sodium to go from a neutral atom to a positive ion, itA. gain an electron.B. gain a proton.C. lose an electron.D. lose a proton.	must:	
	ANS: C DIF: Application REF: Page Bonds	38 TOP:	Ionic
55.	A molecule that is polar:A. can form a hydrogen bond.B. must be ionic.C. has an unequal charge.D. is both A and C above.		
	ANS: D DIF: Application REF: Page Bonds	39 TOP:	Hydrogen
56.	The reaction between hydrogen and oxygen needed to for	m water is an ex	ample of a:

- A. hydrogen bond.
- B. synthesis reaction.
- C. decomposition reaction.
- D. none of the above.

	ANS: B TOP: Chemic		Application	REF:	Page 40		
57.	 57. Electrolytes are: A. organic compounds. B. called <i>cations</i> if they have a negative charge. C. called <i>cations</i> if they have a positive charge. D. both A and B. 						
	ANS: C TOP: Electro		Memorization	n		REF:	Page 44
58.	A weak acid: A. dissociates B. dissociates C. will cause D. Both B and	almost comp the pH of the	letely in solution		7.		
	ANS: A Bases	DIF:	Application	REF:	Page 44	TOP:	Acids and
59.	 9. Salts: A. can form as the result of a chemical reaction between acids and bases. B. are electrolytes. C. will form crystals if the water is removed. D. are all of the above. 						
	ANS: D	DIF:	Application	REF:	Page 45	TOP:	Salts
60.	 0. Hydrolysis: A. joins compounds by removing a water molecule. B. breaks down compounds by removing a water molecule. C. joins compounds by adding a water molecule. D. breaks down compounds by adding a water molecule. 						
	ANS: C REF: Page 54	DIF: 4 (Figure 2-27	Memorization		Amino Acids	5	
61.	Unsaturated fat A. contain all B. contain onl C. are usually D. will kink o	the hydrogen y single bond solids at roor	s between carb n temperature.	on aton		arbon ato	oms.
	ANS: D TOP: Triglyc	DIF: erides or Fats	Application	REF:	Page 48 Pag	ge 49	

62. As the concentration of hydrogen ions (H⁺) increases, the: A. solution becomes more basic.

	B. solution becomesC. pH rises.D. both A and C.	s more a	acidic.				
	ANS: B Bases	DIF:	Application	REF:	Page 44	TOP:	Acids and
63.	As the concentrationA. solution becomesB. solution becomesC. pH rises.D. both A and C.	s more t	basic.	I⁻) incre	eases, the:		
	ANS: D Bases	DIF:	Application	REF:	Page 44	TOP:	Acids and
64.	Which lipid acts as aA. TriglycerideB. ProstaglandinC. SteroidD. Phospholipid	"tissue	hormone"?				
	ANS: B TOP: Prostaglandin		Memorization	1		REF:	Page 50
65.	 65. A magnesium atom has an atomic number of 12, an atomic mass of 25, and a +2 charge. This atom would contain: A. 12 protons, 25 neutrons, and 2 electrons. B. 12 protons, 13 neutrons, and 14 electrons. C. 12 protons, 13 neutrons, and 10 electrons. D. Not enough information is given to answer the question. 						nd a +2
	ANS: C Structure	DIF:	Application	REF:	Page 36	TOP:	Atomic
66.	 The octet rule refers to: A. the stability of the nucleus when the protons are in a multiple of 8. B. the stability of the atom when there are 8 electrons in the outermost energy level. C. the stable configuration of the nucleus when there are 8 more neutrons than protons. D. the principle that one atom can combine with a maximum of 8 other atoms. 						
	ANS: C Levels	DIF:	Application	REF:	Page 37	TOP:	Energy
67.	The type of reaction	most lik	ely to release	energy i	s a(n):		

- A. synthesis reaction.
- B. decomposition reaction.
- C. exchange reaction.

D. all of the above reactions are equally likely to release energy.

ANS: B DIF: Application REF: Page 40 TOP: Chemical Reactions

- 68. Which of the following is not true about oxygen and carbon dioxide?
 - A. They are both important organic compounds.
 - B. Molecular oxygen is present as O_2 in the body.
 - C. Oxygen is needed for energy release in cellular respiration.
 - D. Carbon dioxide is important in maintaining the proper acid-base balance in the body.

ANS: A DIF: Application REF: Page 44 TOP: Oxygen and Carbon Dioxide

- 69. A solution with a pH of 4 has:
 - A. 10 times more H^+ ions than a solution with a pH of 6.
 - B. 10 times more OH^{-} ions than a solution with a pH of 6.
 - C. 100 times more H^+ ions that a solution with a pH of 6.
 - D. 100 times more OH^- ions than a solution with a pH of 6.

ANS: C	DIF:	Application	REF:	Page 44	TOP: The pH
Scale					

70. The alpha helix is an example of which level of protein structure?

- A. Primary
- B. Secondary
- C. Tertiary
- D. Quaternary

ANS:	B DIF:	Memorization	REF:	Page 54
TOP:	Levels of Protein Str	ucture		

- 71. Which of the following is not true of RNA?
 - A. It contains ribose sugar.
 - B. It contains adenine.
 - C. It is composed of smaller molecules called *nucleotides*.
 - D. All of the above are true of RNA.

ANS:	D	DIF:	Memorization	REF:	Page 57
TOP:	DNA and RN	A			

72. Which of the following is not true of all isotopes of oxygen?

- A. They can all react with two hydrogen atoms to form water.
- B. They have the same number of protons.
- C. They have the same atomic mass.
- D. All of the above are true of isotopes of oxygen.

ANS: C DIF: Application REF: Page 37 TOP: Isotopes

- 73. Hydrogen bonds are important in the attractive forces between: A. water molecules.
 - B. large protein molecules.
 - C. nucleic acids.
 - D. All of the above are true.

ANS: D DIF: Memorization REF: Page 39 | Page 40

TOP: Hydrogen Bonds

74. A strong acid:

- A. holds on strongly to its hydrogen atoms, releasing very few in solution.
- B. would cause a drop in the pH of a solution.
- C. would cause a rise in the pH of a solution.
- D. is both A and C above.

ANS: B DIF: Application REF: Page 44 TOP: Acids

- 75. Which of the following is not a function of protein?
 - A. Provides structure for the body
 - B. Acts as a catalyst for chemical reactions
 - C. Provides energy for the body
 - D. All of the above are functions of protein

ANS:	D	DIF:	Memorization	REF:	Page 52
TOP:	Proteins				-

- 76. Which level of protein structure refers to the number, kind, and sequence of amino acids?
 - A. Primary
 - B. Secondary
 - C. Tertiary
 - D. Quaternary

ANS:	A DIF	7:	Memorization	REF:	Page 54
TOP:	Levels of Protein	Str	ucture		

- 77. Which level of protein structure is one that contains several polypeptide chains?
 - A. Primary
 - B. Secondary
 - C. Tertiary
 - D. Quaternary

ANS:	D	DIF:	Memorization	REF:	Page 55
TOP:	Levels of Prot	tein Stru	ucture		

78. Which of the following is not true of both triglycerides and phospholipids?A. They both contain glycerol.

- B. They both contain fatty acids.
- C. They both contain a hydrophobic and hydrophilic end.
- D. All of the above are true of both triglycerides and phospholipids.

ANS: C DIF: Application REF: Page 48 | Page 50 TOP: Triglycerides and Phospholipids

- 79. Prostaglandins and steroids share which of the following characteristics?
 - A. Both are found in the cell membrane.
 - B. Both have a ring structure in their molecule.
 - C. Both have a saturated fat in their structure.
 - D. None of the above are shared characteristics.

ANS: B DIF: Application REF: Page 50 | Page 51 TOP: Steroids and Prostaglandins

- 80. Which energy-releasing or energy-transferring molecule does not contain a nucleotide?
 - A. FAD
 - B. Creatine phosphate
 - C. NAD
 - D. ATP

ANS: BDIF: MemorizationREF: Page 58 |Page 59

TOP: Nucleotides and Related Molecules

- 81. The twisted, double-strand arrangement of nucleotides in a DNA molecule is a(n):
 - A. deoxyribose.
 - B. double helix.
 - C. guanine.
 - D. uracil.

ANS: B DIF: Application REF: Page 57 TOP: RNA and DNA

- 82. If the pH of a person's blood was 7.4, it would be described as:
 - A. strongly acidic.
 - B. neutral.
 - C. slightly acidic.
 - D. slightly alkaline.

ANS: D DIF: Application REF: Page 44 TOP: Bases

- 83. When sodium (Na) gives up an electron to chlorine, the result is the formation of a sodium ion (Na⁺) with a positive charge. This happens because there is then:
 - A. one more proton (+) than electron (–).
 - B. one more electron (–) than proton (–).
 - C. one more proton (+) than neutron.

D. one more electron (–) than neutron.

ANS: A	DIF:	Application	REF:	Page 38	TOP:	Ionic
Bonds						

- 84. If an atom with nine (9) electrons was to ionically bond with an atom with three (3) electrons, what would occur?
 - A. The atom with 9 electrons would share one of its electrons with the other atom.
 - B. The atom with 9 electrons would lose one of its electrons, and the atom with three electrons would accept it.
 - C. The atom with 9 electrons would accept one of the electrons from the atom with 3 electrons.
 - D. The atom with 3 electrons would share one of its electrons with the other atom.

ANS: C DIF: Application REF: Page 38 TOP: Ionic Bonds

- 85. The carbon-containing molecules formed by living things are often called:
 - A. buffers.
 - B. inorganic molecules.
 - C. organic molecules.
 - D. salts.

ANS: C DIF: Application REF: Page 42 TOP: Organic and Inorganic Compounds

- 86. The term that is used to describe all of the chemical reactions that occur in body cells is:
 - A. catabolism.
 - B. metabolism.
 - C. synthesis.
 - D. anabolism.

ANS: B DIF: Application REF: Page 41 TOP: Metabolism

- 87. If your physician encourages you to take a daily aspirin, it is likely because aspirin can increase prostaglandin synthesis and play a:
 - A. therapeutic role in preventing abnormal blood clots.
 - B. therapeutic role in preventing abnormal blood clots.
 - C. role in preventing the accumulation of cholesterol in the arteries.
 - D. role in preventing the accumulation of cholesterol in the arteries.

ANS: A DIF: Application REF: Page 51 TOP: Prostaglandin

- 88. When your body is building larger and more complex chemical molecules from smaller subunits, what is occurring?
 - A. Anabolic reactions that expend energy

- B. Anabolic reactions that require energy
- C. Catabolic reactions that expend energy
- D. Catabolic reactions that require energy

ANS: B DIF: Application REF: Page 42 TOP: Metabolism

MATCHING

Match each term to its corresponding descriptive phrase.

- A. proton
- B. neutron
- C. electron
- D. isotopes
- E. ionic bonds
- F. covalent bonds
- G. Octet rule
- H. atomic number
- I. atomic weight
- J. hydrogen bonds
- 1. number of protons an atom has
- 2. subatomic particle with no charge
- 3. bond formed between atoms when they share electrons
- 4. subatomic particle with a positive charge
- 5. atoms with the same number of protons but a different number of neutrons
- 6. value determined by adding the number of protons and neutrons in an atom
- 7. bond that requires a polar molecule
- 8. subatomic particle that has a negative charge and is found in a "cloud" surrounding the nucleus of the atom
- 9. bond that is formed by the transfer of an electron from one atom to another
- 10. reaction of an atom that results in 8 electrons in the outer energy level

1.	ANS:	Н	DIF:	Memorization	REF:	Page 36
	TOP:	Atomic Numb	ber and	Atomic Weight		
2.	ANS:	В	DIF:	Memorization	REF:	Page 36
	TOP:	Atomic Struct	ture			
3.	ANS:	F	DIF:	Memorization	REF:	Page 38
	TOP:	Covalent Bon	ds			
4.	ANS:	А	DIF:	Memorization	REF:	Page 36
	TOP:	Atomic Struct	ture			
5.	ANS:	D	DIF:	Memorization	REF:	Page 37
	TOP:	Isotopes				-
6.	ANS:	Ι	DIF:	Memorization	REF:	Page 36
	TOP:	Atomic Number and Atomic Weight				
7.	ANS:	J	DIF:	Memorization	REF:	Page 39

	TOP:	Hydrogen Bo	nds			
8.	ANS:	С	DIF:	Memorization	REF:	Page 36
	TOP:	Atomic Struc	ture			
9.	ANS:	E	DIF:	Memorization	REF:	Page 38
	TOP:	Ionic Bonds				
10.	ANS:	G	DIF:	Memorization	REF:	Page 36
	Page 3	7				

TOP: Energy Levels

Match each term to its corresponding descriptive phrase.

- A. acid
- B. base
- C. RNA
- D. DNA
- E. carbohydrate
- F. fat
- G. steroid
- H. protein
- I. prostaglandins
- J. ATP
- 11. substance composed of a glycerol molecule and three fatty acid molecules
- 12. releases a hydrogen ion into a solution, which lowers the pH
- 13. starch or sugar
- 14. releases a hydroxide ion into solution, which raises the pH
- 15. lipid found in sex hormones that is made up of four rings
- 16. types of lipids that are called *tissue hormones*
- 17. molecule that is the body's usual source of direct energy
- 18. nucleic acid that contains thymine and deoxyribose sugar
- 19. substance that is made up of a long chain of amino acids
- 20. nucleic acid that contains ribose sugar and uracil

11.	ANS:	F	DIF:	Memorization	REF:	Page 48
	Page 4	.9				-
	TOP:	Triglycerides	or Fats			
12.	ANS:	А	DIF:	Memorization	REF:	Page 44
	TOP:	Acids and Ba	ses			
13.	ANS:	E	DIF:	Memorization	REF:	Page 46
	TOP:	Carbohydrate	S			
14.	ANS:	В	DIF:	Memorization	REF:	Page 44
	TOP:	Acids and Ba	ses			
15.	ANS:	G	DIF:	Memorization	REF:	Page 50
	TOP:	Steroids				
16.	ANS:	Ι	DIF:	Memorization	REF:	Page 50
	TOP:	Prostaglandin	S			-

17.	ANS:	J	DIF:	Memorization	REF:	Page 41
	Page 4	-2				
	TOP:	Metabolism				
18.	ANS:	D	DIF:	Memorization	REF:	Page 57
	TOP:	Nucleic Acids	8			
19.	ANS:	Н	DIF:	Memorization	REF:	Page 52
	TOP:	Proteins				
20.	ANS:	С	DIF:	Memorization	REF:	Page 57
	TOP:	Nucleic Acids	S			

SHORT ANSWER

1. Describe the Bohr model of the atom.

ANS: Answers will vary.

DIF:	Memorization	REF:	Page 36 Page 37
TOP:	Energy Levels		

2. Name and briefly describe the type of chemical bonds discussed in this chapter.

ANS: Answers will vary.

DIF: Application REF: Page 38 | Page 40 TOP: Covalent Bonds, Ionic of Electrovalent Bonds, Hydrogen Bonds

3. List the four types of lipids and give a function for each type.

ANS: Answers will vary.

DIF: Application REF: Page 48 | Page 51 TOP: Lipids

4. Explain the different functions performed by RNA in the cell.

ANS: Answers will vary.

DIF:	Memorization	REF:	Page 57 Page 58
TOP:	DNA and RNA		

5. Explain the three types of chemical reactions discussed in this chapter and give the formula for each.

ANS: Answers will vary.

DIF:	Memorization	REF:	Page 40 Page 41
TOP:	Chemical Reactions		

6. Explain the body's reaction to a shortage of ATP as an energy source for the cell.

ANS: Answers will vary.

DIF: Application REF: Page 58 | Page 59 TOP: Nucleotides and Related Molecules

7. Explain why the properties of water are important in the functioning of the body.

ANS: Answers will vary.

DIF: Application REF: Page 43 TOP: Properties of Water

8. Explain the role of buffers in maintaining the proper environment in which the body can function.

ANS: Answers will vary

DIF: Application REF: Page 45 TOP: Buffers

OTHER

1. Challenge: If one side of a DNA molecule is A-T-C-G-G-T-C-A-G, what would the bases be on the other side of the molecule?

ANS: T-A-G-C-C-A-G-T-C

DIF: Synthesis REF: Page 57 | Page 58 TOP: Nucleic Acids

2. Challenge: Enzymes that are exposed to high heat or low pH solutions lose their ability to function. What causes this to happen? Be specific.

ANS: Answers will vary. Test Bank

DIF: Synthesis REF: Page 56 TOP: Proteins