MULTIPLE CHOICE

1	Of the 11 major body systems, which is the least involved in maintaining homeostasis?
1.	 a. Circulatory b. Endocrine c. Lymphatic d. Reproductive
	ANS: DDIF: ApplicationREF: p. 25, Table 2-1TOP: Homeostatic Functions of Body Systems
2.	 <i>Homeostasis</i> can best be described as: a. a constant state maintained by living and nonliving organisms. b. a state of relative constancy. c. adaptation to the external environment. d. changes in body temperature.
	ANS: B DIF: Application REF: p. 31 TOP: Homeostasis
3.	 The normal reading or range of normal is called the: a. sensor point. b. set point. c. effector point. d. integrator point.
	ANS: B DIF: Memorization REF: p. 24 TOP: Set Point
4.	 Which of the following is not one of the basic components in a feedback control loop? a. Effector mechanism b. Transmitter c. Sensor d. Integrating center
	ANS: BDIF: MemorizationREF: p. 27TOP: Basic Components of Control Mechanisms
5.	The body's thermostat is located in the:a. heart.b. cerebellum.c. pituitary.d. hypothalamus.
	ANS: DDIF: MemorizationREF: p. 27TOP: Basic Components of Control Mechanisms
6	The contraction of the uterus during the birth of a baby is an example of feedback

6. The contraction of the uterus during the birth of a baby is an example of _____ feedback.a. negative

	 b. positive c. inhibitory d. deviating 	DEE	20
	ANS: BDIF: MemorizationTOP: Positive Feedback in Control Systems	REF:	p. 29
7.	 Negative-feedback mechanisms: a. minimize changes in blood glucose levels. b. maintain homeostasis. c. are responsible for an increased rate of sweating when air than body temperature. d. All of the above are correct. 	r temp	erature is higher
	ANS: D DIF: Memorization TOP: Negative Feedback in Control Systems	REF:	p. 28
8.	 <i>Pathogenesis</i> can be defined as: a. a specific disease. b. a group of diseases. c. the course of disease development. d. a subgroup of viruses. 		
	ANS: C DIF: Memorization TOP: Disease Terminology	REF:	p. 32
9.	 Intracellular parasites that consist of DNA or RNA surrounder sometimes by a lipoprotein envelope are called: a. viruses. b. bacteria. c. fungi. d. protozoa. 	ed by a	a protein coat and
	ANS: ADIF:MemorizationTOP:Basic Mechanisms of Disease	REF:	p. 34
10.	The term that literally means self-immunity is:a. autoimmunity.b. homoimmunity.c. passive immunity.d. active immunity.		
	ANS: ADIF:MemorizationTOP:Basic Mechanisms of Disease	REF:	p. 34
11.	 <i>Epidemiology</i> is the study of the of diseases in human a. occurrence b. distribution c. transmission d. All of the above are correct. 	ı popul	ations.
	ANS: D DIF: Memorization TOP: Disease Terminology	REF:	p. 32

12.	 Which of the following may put one at risk for developing a a. Environment b. Stress c. Lifestyle d. All of the above 	given	disease?
	ANS: D DIF: Memorization TOP: Basic Mechanisms of Disease	REF:	pp. 34-35
13.	 Negative-feedback control systems: a. oppose a change. b. accelerate a change. c. have no effect on the deviation from set point. d. establish a new set point. 		
	ANS: A DIF: Memorization TOP: Negative Feedback in Control Systems	REF:	p. 28
14.	 Positive-feedback control systems: a. have no effect on the deviation from set point. b. accelerate a change. c. ignore a change. d. do not exist in human systems. 		
	ANS:BDIF:MemorizationTOP:Positive Feedback in Control Mechanisms	REF:	p. 28

- 15. Shivering to try to raise your body temperature back to normal would be an example of:
 - a. the body trying to maintain homeostasis.
 - b. a positive-feedback mechanism.
 - c. a negative-feedback mechanism.
 - d. both A and C.

ANS: D DIF: Synthesis REF: p. 27 TOP: Negative Feedback in Control Systems

- 16. Which of the following is a protein substance with no DNA or RNA and is thought to be the cause of mad cow disease?
 - a. Virus
 - b. Bacteria
 - c. Prion
 - d. Protozoan

ANS:	C DIF:	Memorization	REF: p. 33
TOP:	Pathogenic Organism	S	

- 17. Of the pathogenic organisms, which of the following are the most complex?
 - a. Viruses
 - b. Tapeworms
 - c. Bacteria
 - d. Protozoa

- 18. If the secretion of oxytocin during childbirth operated as a negative-feedback control loop, what effect would it have on uterine contractions?
 - a. Oxytocin would stimulate stronger uterine contractions.
 - b. Oxytocin would inhibit uterine contractions.
 - c. There would be no changes in the strength of the uterine contractions.
 - d. Uterine contractions would initially be weak and then gain strength after the release of the hormone.

ANS: B DIF: Application REF: p. 28 TOP: Positive Feedback in Control Systems

- 19. Intrinsic control:
 - a. usually involves the endocrine or nervous system.
 - b. operates at the cellular level.
 - c. is sometimes called *autoregulation*.
 - d. operates at the system or organism level.

ANS:	C DIF:	Memorization	REF:	p. 31
TOP:	Levels of Homeostati	c Control		

MATCHING

Match each term with its corresponding definition or explanation

- a. Prion
- b. Tumor
- c. Fungi
- d. Gene mutation
- e. Bacteria
- f. Virus
- g. Protozoa
- 1. An intracellular parasite that consists of an RNA or DNA core surrounded by a protein coat
- 2. A type of protein that converts normal protein in the nervous system into abnormal proteins that cause loss of function
- 3. A tiny, primitive cell that lacks a nucleus and can cause infection
- 4. An abnormal growth or neoplasm
- 5. Altered DNA that causes abnormal proteins to be made that do not perform their intended function
- 6. A one-celled organism whose DNA is organized into a nucleus that can parasitize human tissue
- 7. Simple organisms that are similar to plants but lack chlorophyll, which allows plants to make their own food; because these organisms cannot make their own food, they parasitize human tissue

1.	ANS:	F DIF: Memorization	REF: p. 34
	TOP:	Basic Mechanisms of Disease	

2.	ANS:	A DIF:	Memorization	REF: p. 33
	TOP:	Basic Mechanisms of	f Disease	
3.	ANS:	E DIF:	Memorization	REF: p. 34
	TOP:	Basic Mechanisms of	f Disease	
4.	ANS:	B DIF:	Memorization	REF: p. 34
	TOP:	Basic Mechanisms of	f Disease	
5.	ANS:	D DIF:	Memorization	REF: p. 33
	TOP:	Basic Mechanisms of	f Disease	
6.	ANS:	G DIF:	Memorization	REF: p. 34
	TOP:	Basic Mechanisms of	f Disease	
7.	ANS:	C DIF:	Memorization	REF: p. 34
	TOP:	Basic Mechanisms of	Disease	

SHORT ANSWER

1. Diagram a homeostatic control mechanism, including the three basic components.

ANS: Answers will vary.

DIF: Synthesis REF: p. 26 TOP: Homeostatic Control Mechanisms

2. How does childbirth demonstrate positive feedback?

ANS: Answers will vary.

DIF: Synthesis REF: p. 29 TOP: Positive Feedback in Control Systems

3. Give an example of how categories of risk factors or predisposing conditions could overlap.

ANS: Answers will vary.

DIF: Synthesis REF: pp. 34-35 TOP: Basic Mechanisms of Disease

4. Explain the feed-forward control system, and give an example of one in the body.

ANS:	vere will very						
Allsw	Answers will vary.						
DIF:	Application	REF:	p. 34	TOP:	Feed-Forward in Control Systems		

ESSAY

1. Give an example of a system, either living or nonliving, that is designed to maintain a relatively constant condition by using a negative-feedback mechanism. Explain briefly how the system works to accomplish this.

ANS:

Answers will vary.

DIF: Synthesis REF: pp. 28-29 TOP: Basic Components of Control Mechanisms

2. Explain how your set point can change under varying circumstances.

ANS: Answers will vary

DIF: Synthesis REF: pp. 29-30 TOP: Changing the Set Point