MULTIPLE CHOICE

- 1. Some dental materials may be therapeutic in small quantities or if in contact with tissues for a short period of time. Dental materials may be irritating or toxic with longer or larger doses.
 - a. Both statements are true.
 - b. Both statements are false.
 - c. The first statement is true, and the second statement is false.
 - d. The first statement is false, and the second statement is true.

ANS: A

Some dental materials may be therapeutic in small quantities or if in contact with tissues for a short period of time but also may be irritating or toxic with longer or larger doses. Topical fluoride is of great benefit when used according to manufacturers' directions but can be irritating to soft tissues and can even excessively etch enamel if used improperly.

DIF: Analyze REF: Biocompatibility | p. 10 OBJ: 1
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental
Materials and Procedures 1

- 2. Normal masticatory forces on the occlusal surfaces of molar teeth can increase to as much as _____ pounds per square inch on a cusp tip.
 - a. 280
 - b. 1000
 - c. 10,000
 - d. 28,000

ANS: D

Normal masticatory forces on the occlusal surfaces of molar teeth can increase to as much as 28,000 pounds per square inch on a cusp tip. Normal masticatory forces on the occlusal surfaces of molar teeth average 90 to 200 pounds. Masticatory forces decrease in incisor areas and can increase during bruxing or clenching.

DIF: Remember REF: Biocompatibility | p. 11 OBJ: 1
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental
Materials and Procedures 1

- 3. _____ force is applied when two surfaces slide against each other in opposite directions.
 - a. Compressive
 - b. Shearing
 - c. Tensile
 - d. Axial

ANS: B

Shearing force is applied when two surfaces slide against each other or in a twisting or rotating motion. An incisor used for cutting is an example of shearing forces.

DIF: Understand REF: Biocompatibility | p. 11 OBJ: 1 TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 4. Stress is the amount of force exerted from within an object, and _____ is the amount of change that the force has produced.
 - a. strain
 - b. tension
 - c. compression
 - d. chemical bonding

ANS: A

Stress is the amount of force exerted from within an object, and strain is the amount of change that the force has produced. The normal process of chewing rarely involves only one type of stress; these combinations of stresses form complex stress combinations.

DIF: Apply REF: Force, Stress and Strain | p. 12 OBJ: 1 TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 5. How much force do denture wearers apply as compared to individuals with intact dentitions?
 - a. 40%
 - b. 50%
 - c. 60%
 - d. 70%

ANS: C

Denture wearers apply 40% less force than patients with intact dentitions, thus, using 60% force during mastication.

DIF: Remember REF: Classification of Dental Materials | Force and Stress | p. 11

OBJ: 3

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 6. Which of the following statements is correct about fatigue failure?
 - a. It is not a factor for restorative dental materials.
 - b. It is not dependent on conditions in the oral cavity.
 - c. It occurs as the result of a large, single-force application.
 - d. It occurs as the result of microscopic flaws that grow over time.

ANS: B

Fatigue failure occurs as the result of microscopic flaws that grow over time. Failures rarely occur in a single-force application; rather, they occur when stress is frequently repeated. A metal wire will eventually break when bent repeatedly. Restorative materials are subject to repeated fatigue testing for all forces. Conditions of the oral cavity such as humidity and temperature and pH fluctuations may also increase fatigue failure.

DIF: Apply REF: Force, Stress and Strain | p. 13 OBJ: 3

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 7. How does force exerted over a large area compare to force exerted over a small area when the same force is applied to each?
 - a. Deformation is greater in a small area than in a large area.
 - b. Compression on objects in the large area are shortened more than in the small area.
 - c. There is little difference in outcome whether the area is large or small.
 - d. It will depend on how poorly the force is dissipated over each area.

ANS: A

The amount of distortion is determined on the size of the force. Force applied to a small area will cause greater distortion than over a large area. Objects are shortened as a result of compressive force. The larger the area helps dissipate the impact of the force.

DIF: Understand REF: Classification of Dental Materials | Force and Stress | p. 12

OBJ: 3

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 8. The staining of resins and acrylics from repeated exposure to coffee, tea, and other dyed beverages is due to:
 - a. compressive forces.
 - b. water sorption.
 - c. galvanism.
 - d. tarnish.

ANS: B

The staining of resins and acrylics from repeated exposure to coffee, tea, and other dyed beverages is due to water sorption. Water sorption is the ability to absorb moisture. Dentures, when placed in a glass of water, will take up the liquid and become slightly larger. Some acrylics will absorb both odors and tastes from foods.

DIF: Remember REF: Water Sorption | p. 14 OBJ: 1

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 9. Which of the following dental restorative materials is particularly susceptible to corrosion?
 - a. Acrylic
 - b. Dental porcelain
 - c. Dental amalgam
 - d. Composite resin

ANS: C

Dental amalgam is particularly susceptible to corrosion, causing marginal breakdown and discoloration of tooth structures. In newer, high-copper amalgams, this may not be as critical to their longevity.

DIF: Understand REF: Corrosion | p. 14 OBJ: 1

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental

Materials and Procedures 1

- 10. Which of the following has been suggested to delay formation of surface tarnish on dental amalgams?
 - a. Polishing
 - b. Undercondensation
 - c. Incremental addition
 - d. Use of low-copper amalgam

ANS: A

Polishing of amalgams to produce a smooth surface has been recommended to help delay the process of surface tarnish. Surface tarnish, discoloration due to oxidation of the metal's surface, can accelerate in crevices between a tooth and restoration and on rough surfaces.

DIF: Understand REF: Corrosion | p. 14 OBJ: 6

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 11. Which of the following is true of galvanism?
 - a. It is an electrical current transmitted between two similar metals.
 - b. It is observed in patients with composite resin but not silver amalgam restorations.
 - c. Galvanic stimulation will decrease with time as oxides form on the surface of the metal.
 - d. The salts of the saliva inhibit the movement of electrical current from one type of metal to another.

ANS: C

Galvanic stimulation will decrease with time as oxides form on the surface of the metal. Galvanism is an electrical current transmitted between two dissimilar metals. An environment containing moisture, acidity, and dissimilar metals makes the generation of electrical current possible. The salts of the saliva facilitate the movement of electrical current from one type of metal to another. The current may result in stimulation to the pulp, called *galvanic shock*.

DIF: Understand REF: Galvanism | p. 15 OBJ: 6

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 12. What could excessive expansion of a restorative material result in?
 - a. Corrosion
 - b. Galvanism
 - c. Fracture of cusps
 - d. Leakage of fluid and bacteria into the gaps

ANS: C

Excessive expansion of a restorative material may result in fracture of cusps. Excessive contraction may result in leakage of fluid and bacteria into the open gaps, resulting in sensitivity. Expansion and contraction are measured using the coefficient of thermal expansion, the measurement of change in volume or length in relationship to change in temperature.

DIF: Understand REF: Expansion and Contraction | p. 15 OBJ: 7 TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 13. What is percolation?
 - a. The rate at which heat flows through a material
 - b. A form of chemical rather than mechanical retention
 - c. Something that helps seal the interface between tooth and restorative material
 - d. Something that allows the ingress of bacteria and oral fluids and may lead to recurrent caries, staining, and pulpal irritation

ANS: D

Percolation allows the ingress of bacteria and oral fluids and may lead to recurrent caries, staining, and pulpal irritation. Percolation is the repeated shrinkage and expansion of the restoration during ingestion of cold and hot fluids, producing the opening and closing of a gap between the restoration and the tooth surface.

DIF: Understand REF: Expansion and Contraction | p. 15 OBJ: 7 TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 14. Mechanical retention is the result of adhesion whereas chemical retention uses undercuts for retention. When significant tooth structure is lost, undercuts are no longer effective for retention.
 - a. Both statements are current.
 - b. Neither statement is correct.
 - c. Statement 1 is correct; statement 2 is incorrect.
 - d. Statement 1 is incorrect; statement 2 is correct.

ANS: D

Mechanical retention uses undercuts to retain a restoration in the preparation while chemical retention relies on adhesion. When significant tooth structure is lost, the cusps or other parts of the tooth are undermined and weakened. An indirect restoration such as a crown would become the standard of care.

DIF: Analyze REF: Retention | p. 16 OBJ: 8
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 15. Which of the following restorative materials has a coefficient of thermal expansion and thermal conductivity closest to enamel?
 - a. Gold
 - b. Amalgam
 - c. Porcelain
 - d. Composite resin

ANS: C

Porcelain has a coefficient of thermal expansion ($\times 10^{-6}$ /°C) of 15 and thermal conductivity (k) ([mcal·cm]/cm sec/°C) of 2.50; enamel has a coefficient of thermal expansion of 11 and thermal conductivity of 2.0. In contrast, the coefficient of thermal expansion of amalgam is 20 to 28, and the thermal conductivity of amalgam is 54, but the coefficient of thermal expansion of composite resin is 26 to 40, and the thermal conductivity of composite resin is 2.60.

DIF: Understand REF: Temperature | p. 15 OBJ: 7
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 16. The technique of chemical bonding rather than mechanical means to produce retention requires _____ removal of tooth structure and produces a _____ retentive force between tooth and restoration.
 - a. more; stronger
 - b. more; weaker
 - c. less; stronger
 - d. less; weaker

ANS: C

The technique of chemical bonding rather than mechanical means to produce retention requires less removal of tooth structure and produces a stronger retentive force between tooth and restoration. Additionally, it can seal the margin of the restoration to prevent seepage of bacteria and fluids through percolation.

DIF: Apply REF: Bonding | p. 16 OBJ: 9
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 17. Which of the following statements is true for the property of wetting as related to dental materials?
 - a. The Teflon surface of cooking equipment has good wetting.
 - b. A thin film of dental cement is desirable to cement crowns.
 - c. Liquids generally spread better over low surface energy surfaces.
 - d. A surface has high surface energy when liquids bead up on the surface.

ANS: B

A thin film of dental cement is desirable to cement crowns. This allows the cement to completely wet the surfaces and for excess material to flow from under the crown when it is seated under pressure during cementation. The Teflon surface of cooking equipment has poor wetting. The surface has low surface energy such as on wax or many plastics when liquids bead up on the surface. Liquids generally wet or spread over high surface energy surfaces better; metals, ceramics, and enamel have high surface energies.

DIF: Understand REF: Corrosion | p. 17 OBJ: 9
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

18. Microleakage into the interface between tooth structure and restorative material is responsible for much of the _____ observed following tooth restoration.

- 1. recurrent decay
- 2. marginal staining
- 3. postoperative sensitivity
- 4. tarnish
- a. 1, 2, 3, 4
- b. 1, 2, 3
- c. 2, 3, 4
- d. 1, 2

ANS: B

Microleakage into the interface between tooth structure and restorative material is responsible for much of the recurrent decay, marginal staining, and postoperative sensitivity observed following tooth restoration.

DIF: Apply REF: Microleakage | p. 17 OBJ: 10

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 19. _____ refers to the intensity or strength of the color.
 - a. Hue
 - b. Value
 - c. Chroma
 - d. Opacity

ANS: C

Chroma refers to the intensity or strength of the color. Hue is the dominant color of the wavelength detected. Value describes how light or dark the color is. If light is completely absorbed by the object, it is opaque.

DIF: Understand REF: Esthetics and Color | p. 18 OBJ: 11

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 20. Which of the following is considered to be the most reliable means of clinical assessment of composite and glass ionomer restorations?
 - a. The patient history
 - b. Evaluation of radiographs
 - c. Use of the air-water syringe
 - d. Tactile evaluation of the tooth surface

ANS: D

Tactile evaluation of the tooth surface is considered to be the most reliable means of clinical assessment of composite and glass ionomer restorations. Some composite and glass ionomer restorations may have a rougher surface than enamel. Tracing the enamel surface onto the restoration with the sharp tip of an explorer is the best way to distinguish this difference. The clinician will detect a smooth surface on the enamel and a "scratchy" surface on the restoration.

DIF: Understand REF: Detection of Dental Materials | p. 21

OBJ: 14

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 21. Which of the 700 microorganisms in the oral cavity are most prevalent?
 - a. Fungi
 - b. Viruses
 - c. Bacteria
 - d. Protozoa

ANS: C

Over 700 species of microorganisms can colonize the mouth. Bacteria are found in the greatest numbers and species.

DIF: Understand REF: Oral Biofilm And Dental Materials | p. 19

OBJ: 13

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 22. Constant bending of a metal wire weakens the wire by compression on the inside surface and tension on the outside surface until the wire breaks. Which type of force has occurred?
 - a. Stress
 - b. Strain
 - c. Tension
 - d. Flexure

ANS: D

Flexure or bending force is a combination of compressive, tensile and shear forces. Constant flexure or bending of the wire will result in shear or breaking the wire.

DIF: Understand REF: Classification of Materials | Force and Stress | p. 12

OBJ: 3

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 23. When an object cannot resist force, _____ occurs.
 - a. deformation
 - b. distortion
 - c. deformation and distortion

ANS: C

If the stress within an object cannot resist the force, distortion or deformation occurs.

DIF: Understand REF: Oral Biofilm And Dental Materials | p. 9

OBJ: 13

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 24. Torque is a combination of which forces?
 - a. Compressive and tensile
 - b. Compressive and torsion

- c. Shearing and tensile
- d. Shearing and compressive

ANS: A

Torque, a.k.a. torsion, is a combination of compressive and tensile forces.

DIF: Analyze REF: Force, Stress and Strain | p. 12 OBJ: 4

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 25. Which material listed would show the lowest level of solubility?
 - a. Amalgam
 - b. Composite resin
 - c. Porcelain
 - d. Cement

ANS: C

Porcelain and high noble metals have low solubility. Other restorative materials such as amalgam, composite resin, and cement have varying levels of solubility depending on the properties of each material.

DIF: Understand REF: Moisture and Acid Levels | p. 14 OBJ: 5 TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 26. Acidulated topical fluorides can have a negative effect on certain dental materials. Many of today's dental materials are made to be moisture resistant.
 - a. Both statements are correct.
 - b. Neither statement is correct.
 - c. Statement 1 is correct; statement 2 is incorrect.
 - d. Statement 1 is incorrect; statement 2 is correct.

ANS: C

Acidulated topical fluorides can adversely affect materials such as glass ionomers, composite resins and ceramics. Most dental materials are adversely affected by moisture both during placement and over time.

DIF: Analyze REF: Effects of pH | p. 13 | p. 14 OBJ: 5
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 27. Contact between two dissimilar metals in the mouth may result in what reaction?
 - a. Galvanic shock
 - b. Metallic taste
 - c. Electrical current
 - d. All of the above are possible.

ANS: D

An environment containing moisture, acidity, and dissimilar metals makes the generation of electrical current possible. This is known as galvanism. The current may result in stimulation of the pulp, called *galvanic shock*. It may also create a metallic taste in the mouth.

DIF: Understand REF: Galvanism | p. 14 OBJ: 6

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 28. Why is the coefficient of thermal expansion significant in dental materials?
 - a. It measures the change in volume and length of a restoration.
 - b. It measures the amount of percolation of the restoration interface.
 - c. It measures the change in oral temperature related to foods ingested.
 - d. It measures the amount of stress and strain placed on the restoration.

ANS: A

Expansion and contraction are measured using the coefficient of thermal expansion (CTE). This measures the change in volume or length in relationship to the change in temperature.

DIF: Understand REF: Expansion and Contraction | p. 15 OBJ: 7

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 29. Which of the following is *not* a good conductor of temperature?
 - a. Gold crown
 - b. Amalgam restoration
 - c. Composite resin restoration

ANS: C

Metals, such as gold and amalgam, are good conductors of temperature, but nonmetals are poor conductors of temperature.

DIF: Understand REF: Temperature | p. 15 OBJ: 7

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 30. Some materials give off heat when mixed. What is this called?
 - a. Chemical reaction
 - b. Exothermic reaction
 - c. Thermal conductivity
 - d. Coefficient of thermal expansion

ANS: B

Some materials when mixed will produce heat. This exothermic reaction must be minimized to protect the tooth structures from excess heat, thus causing sensitivity or pulpal damage.

DIF: Remember REF: Moisture and Acid Levels | p. 16 OBJ: 5

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 31. What causes microleakage?
 - a. A poorly placed restoration
 - b. A fracture within a restoration
 - c. Expansion and contraction of a restoration
 - d. All of the above could cause microleakage.

ANS: D

The space between the walls of the preparation and the preparation is called the *interface*. If the interface is not sealed, fluids and microorganisms can penetrate between the tooth surface and the restorative material. This seepage of harmful materials, or microleakage, results in tooth sensitivity, recurrent decay, and marginal staining.

DIF: Analyze REF: Microleakage | p. 17 OBJ: 10

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 32. Adhesion is the method of _____ retention.
 - a. chemical
 - b. mechanical
 - c. dual

ANS: A

Retention may be mechanical, chemical through adhesion, or a combination of the two.

DIF: Remember REF: Bonding | p. 16 OBJ: 9

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 33. The color range of a tooth is usually seen by the human eye as yellow or brown. What is this component classified as?
 - a. Hue
 - b. Value
 - c. Chroma

ANS: A

The three components of color result in hue, chroma, and value. Hue is the dominant color of the wavelength detected. Teeth are predominately seen in the yellow and brown ranges. Chroma is the intensity or strength of the color. Value describes how light or dark the color is.

DIF: Understand REF: Moisture and Acid Levels | p. 18 OBJ: 12

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 34. Which of the following is a concern regarding identification of dental materials in the mouth and why is it important?
 - a. Therapeutic agents could erode some materials.
 - b. Scaling could damage the surfaces of some materials.
 - c. Both are concerns when materials are identified.

ANS: C

It is important that oral health care professionals are able to identify restorative materials within the oral environment, to treat them appropriately. Heavy pressure during scaling, the use of sonic and ultrasonic scaling or air polishing, and inappropriate use of polishing agents may gouge or scratch the surface of a restoration.

DIF: Understand REF: Detection of Restorative Materials | p. 20

OBJ: 14

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

- 35. What is the thermal conductivity of composite resin?
 - a. Similar to tooth structure
 - b. Lower than tooth structure
 - c. Similar to metal restorations
 - d. Does not conduct temperature

ANS: A

Thermal conductivity is the rate at which heat flows through a material. Metals are particularly excellent conductors. Gold is one of the best thermal conductors, but non-metals such as ceramics, resins, cements, enamel, and dentin are poor conductors.

DIF: Understand REF: Expansion and Contraction | p. 15 OBJ: 7

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

MATCHING

Match the items with the correct description below.

- a. Electrical current between two dissimilar metals
- b. Discoloration due to oxidation of the metal's surface
- c. Deterioration of the metal due to moisture and acid present in the oral
- d. The rate at which heat flows through a material
- e. Opening and closing of a gap between the restoration and the tooth surface
- 1. Corrosion
- 2. Tarnish
- 3. Galvanism environment
- 4. Thermal conductivity
- 5. Percolation
- 1. ANS: C DIF: Analyze REF: Moisture and Acid Levels | p. 14

OBJ: 5

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

2. ANS: B DIF: Analyze REF: Moisture and Acid Levels | p. 14

OBJ: 5

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

3. ANS: A DIF: Analyze REF: Moisture and Acid Levels | p. 14

OBJ: 6

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

4. ANS: D DIF: Analyze REF: Temperature | p. 15

OBJ: 7

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

5. ANS: E DIF: Analyze REF: Temperature | p. 15

OBJ: 7

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

SHORT ANSWER

1. What advantages do probiotics present in the overall oral health of a patient?

ANS:

Probiotics are live organisms that are added to mild, yogurt or sour cream. They are also available as tablets, capsules or drops. By increasing the numbers of healthy bacteria in the mouth, probiotics can reduce the numbers of mutans streptococci in plaque and saliva. Probiotics reduce the risk of caries and assist in the management of periodontal disease.

DIF: Understand REF: Probiotics | p. 19 | p. 20 OBJ: 13
TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1

2. Why is it important for the oral healthcare professional to be able to identify restorative materials within the oral environment?

ANS:

Many dental materials, including tooth-colored materials and ceramics, can be easily damaged through the use of scalers, power scalers, air polishers and some therapeutic agents may scratch the surface of restorations.

DIF: Apply REF: Detection of Dental Materials | p. 20

OBJ: 14

TOP: NBDHE, Providing Supportive Treatment Services 6.1 | CODA, Restorative/Dental Materials and Procedures 1