MULTIPLE CHOICE

1.	Which of the followa. Ionb. Protonc. Neutrond. Electron	ving is	not a subatomic particle that make	es up th	ne atom?
	ANS: A OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
2.	The atomic numbera. electronsb. neutronsc. protonsd. both b and c abo	of an	atom is equal to the number of		
	ANS: C OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
3.	The atomic mass of a. electrons b. neutrons c. protons d. both b and c abo	an ato	om is equal to the number of		
	ANS: D OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
4.	This subatomic parta. Electronb. Neutronc. Protond. Both b and c ab	ticle is ove	found in the nucleus of the atom.		
	ANS: D OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
5.	This subatomic parta. Electronb. Neutronc. Protond. Both b and c ab	ticle is ove	found in orbitals around the nucle	us of th	ne atom.
	ANS: A OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 24
6.	This is not a charac a. contributes to the	teristic ne aton	of a proton: n's atomic number		

b. contributes to the atom's atomic mass

	c. is located in thed. carries a negative	e nucle ve elec	us of the atom trical charge	1			
	ANS: D OBJ: 2	DIF: TOP:	Memorization Atoms	n		REF:	p. 23
7.	This is not a charact a. contributes to th b. contributes to th c. is located in the d. has no electrica	cteristic he aton he aton e nucle l charg	e of a neutron: n's atomic nu: n's atomic ma us of the atom ge	: mber uss 1			
	ANS: A OBJ: 2	DIF: TOP:	Memorization Atoms	n		REF:	p. 23
8.	This is not a charact a. is in an orbital a b. has a negative e c. contributes to th d. all of the above	eteristic around electric he aton are ch	c of an electro the nucleus o al charge n's atomic nu aracteristics o	n: f the at mber of an ele	om ectron		
	ANS: C OBJ: 2	DIF: TOP:	Memorization Atoms	n		REF:	p. 23
9.	A particular atom h atom is a. 49 b. 32 c. 33 d. 16	nas 16 j	protons, 17 ne	eutrons,	and 16 electr	ons. Th	ne atomic number of this
	ANS: D TOP: Atoms	DIF:	Application	REF:	p. 23	OBJ:	2
10.	A particular atom h is a. 49 b. 32 c. 33 d. 16	nas 16 j	protons, 17 ne	eutrons,	and 16 electr	ons. Th	ne atomic mass of this atom
	ANS: C TOP: Atoms	DIF:	Application	REF:	p. 23	OBJ:	2
11.	The second energy a. has four orbital b. can hold eight e c. is a lower energ d. both a and b ab	level o s electron gy leve ove	of an atom ns l then the first	t energy	y level		
	ANS: B TOP: Atoms	DIF:	Application	REF:	p. 24	OBJ:	2

- 12. Compounds are
 - a. pure substances
 - b. made up of only one type of atom
 - c. made up of two or more different types of atoms
 - d. both a and b above

ANS: C	DIF:	Memorization	REF:	p. 24
OBJ: 1	TOP:	Elements, molecules, and compound	ls	

13. The formula for oxygen gas is O_2 ; this means it is

- a. made up of two atoms of oxygen
- b. a molecule
- c. a compound
- d. both a and b above
- ANS: D DIF: Application REF: p. 24 OBJ: 1 TOP: Elements, molecules, and compounds

14. If an atom had 20 protons and 18 electrons, it would

- a. have a negative 2 charge
- b. have a plus 2 charge
- c. be attracted to a positively charged ion
- d. both a and c above
- ANS: B DIF: Application REF: p. 25 OBJ: 3 TOP: Ionic bonds

15. Ionic bonds:

- a. usually dissolve easily in water
- b. produced ions when dissolved in water
- c. are formed by atoms of opposite charge
- d. all of the above

ANS:	D	DIF:	Memorization	REF:	p. 25
OBJ:	3	TOP:	Ionic bonds		

16. Covalent bonds

- a. dissociate in water
- b. are formed when electrons are shared between atoms
- c. are formed by atoms of opposite charge
- d. both a and c above

ANS:	В	DIF:	Memorization	REF:	pp. 25-26
OBJ:	3	TOP:	Covalent bonds		

REF: p. 27

17. Organic compounds must contain

a. oxygen

- b. carbon–oxygen bonds
- c. hydrogen-oxygen bonds
- d. none of the above

ANS:	D	DIF:	Memorization
OBJ:	4	TOP:	Inorganic chemistry

- 18. Which of the following is not true of water?
 - a. Water is the most abundant organic compound in the body.
 - b. Water is found both in and around the cells of the body.
 - c. Water is the solvent in which most other compounds are dissolved.
 - d. All of the above are true of water.

ANS: A OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27

- 19. In a dehydration synthesis reaction:
 - a. water is a reactant
 - b. water is a product
 - c. a large molecule is broken down into a smaller one
 - d. both a and c above

ANS:	В	DIF:	Memorization	REF:	p. 27
OBJ:	5	TOP:	Water		_

20. In a dehydration synthesis reaction:

- a. hydrogen and oxygen are removed from the reactants
- b. water is added to the reactants
- c. water is broken down into hydrogen and oxygen
- d. both a and c above

ANS: A	DIF:	Memorization	REF:	p. 27
OBJ: 5	TOP:	Water		_

21. In a hydrolysis reaction:

- a. water is a product
- b. water is a reactant
- c. water is broken down into hydrogen and oxygen
- d. the product is larger than either reactant
- ANS: BDIF: MemorizationREF: p. 27OBJ: 5TOP: Water

22. Which of the following statements is true?

- a. The process of hydrolysis is used to build a larger molecule from smaller molecules.
- b. Water is an end product of a hydrolysis reaction.
- c. The process of dehydration synthesis is used to build a larger molecule from smaller molecules.
- d. Water is a reactant in a dehydration synthesis reaction.

ANS: C	DIF:	Memorization	REF:	p. 27
OBJ: 5	TOP:	Water		

- 23. Which is not true of the following chemical equation? $K^+ + Cl^- \rightarrow KCl$
 - a. The equation indicates that there are two reactants.
 - b. The equation indicates that there is one product.
 - c. The equation indicates that the reaction occurs in both directions equally.

d. All of the above are true.

	ANS: C OBJ: 4	DIF: TOP:	Memorization Inorganic chemistry	REF:	p. 28
24.	An acid a. has a pH greater b. has a pH less th c. has more OH ⁻ id d. both a and c abo	r than 7 an 7 ons tha	7 n H ⁺ ions in solution		
	ANS: B OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 28
25.	A base a. has a pH greater b. has a pH less th c. has more OH ⁻ id d. both a and c abo	r than 7 an 7 ons tha	7 .n H ⁺ ions in solution		
	ANS: D OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 28
26.	 A solution with a pla. a. is an acid b. is a base c. has 10 times model. d. both a and c above 	H of 6 ore H ⁺ : ove	ions than a solution with a pH of 5		
	ANS: A OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 28
27.	A solution with a pla.a. is an acidb. is a basec. has 10 times model.d. both b and c above	H of 11 ore OH	[–] ions than a solution with a pH of	10	
	ANS: D OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 28
28.	When the body rema. it lowers the pHb. it raises the pH isc. it has no effect ofd. it is acting as a b	oves C of the of the l on pH buffer	CO_2 by way of the respiratory syste blood blood because CO_2 is neither an acid nor	em a base	
	ANS: B OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 29

- 29. If a strong acid were added to one container of pure water and an equal amount of a weak acid were added to a second container of pure water:
 - a. the pH of both containers would go up equally

	 b. the pH of both containers would go down equally c. the pH of the container with the strong acid would go up more than the contain with the weak acid d. none of the above 							
	ANS: D TOP: Acids, bases,	DIF: Applicand salts	cation REF:	p. 28	OBJ:	6		
30.	Which of the followa. Glucoseb. Sucrosec. Lactosed. Glucagon	ving is a mon	osaccharide?					
	ANS: A OBJ: 7	DIF: Memo TOP: Carbo	orization hydrates		REF:	p. 30		
31.	Which of the followa. Glucoseb. Sucrosec. Starchd. Glycogen	ving is a disad	ccharide?					
	ANS: B OBJ: 7	DIF: Memo TOP: Carbo	orization hydrates		REF:	p. 30		
32.	Which of the followa. Glucoseb. Lactosec. Sucrosed. Glycogen	ving is a poly	saccharide?					
	ANS: D OBJ: 7	DIF: Memo TOP: Carbo	orization hydrates		REF:	p. 30		
33.	Liver cells and mus a. glycogen b. polyglucose c. sucrose d. lactose	cle cells are a	able to store cl	nains of glucos	e in a	molecule called		
	ANS: A OBJ: 7	DIF: Memo TOP: Carbo	orization hydrates		REF:	p. 30		
34.	Which of the followa. A part of the meb. The molecule cc. The molecule cd. Triglycerides and	ving is not tru olecule attrac ontains three ontains glyce re used by the	e of triglyceri ts water. fatty acids. rol. body to store	des? energy.				
	ANS: A OBJ: 7	DIF: Memo TOP: Lipids	prization		REF:	p. 30		

	35.	Which of the following is not true of phospholipids?a. The molecule contains three fatty acids.b. The molecule has a water-attracting part.c. The molecule has a water-repelling part.d. It is important in the structure of the cell membrane.						
		ANS: A OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 30		
	36.	Which of ta. It is a sb. It helpsc. It contad. It is the	the following is steroid lipid. s stabilize the c ains only two fa e starting point	not true of cholestero ell membrane. atty acids. for making the hormo	1? ne estrogen.			
		ANS: C OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 31		
	37.	This lipid a. triglyc b. phosph c. cholest d. both b	can be found in erides tolipids terol and c above	the cell membrane				
		ANS: D OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 31		
	38.	Which of t a. Hormo b. Collag c. Growt d. Enzym	the following is ones en h factor nes	a structural protein?				
		ANS: B OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32		
	39.	The "lock a. enzym b. collage c. keratin d. both a	and key" mode es en molecules molecules and c above	l is use to describe the	e functioning of			
		ANS: A OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32		
2	40.	Which of ta. They fb. They ac. They ad. All of	he following is unction on the re functional part re catalysts. the above are the	not true of enzymes? lock and key model. roteins. rue of enzymes.				
		ANS: D OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32		

41.	This molecule is for a. guanine b. thymine c. uracil d. adenine	und in	DNA but not RNA		
	ANS: B OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
42.	This molecule is fora. adenineb. ribose sugarc. deoxyribose sugd. phosphate	und in gar	DNA but not RNA		
	ANS: C OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
43.	This molecule is for a. guanine b. thymine c. uracil d. adenine	und in	RNA but not DNA		
	ANS: C OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
44.	This molecule is fora. ribose sugarb. deoxyribose sugc. adenined. cytosine	und in gar	RNA but not DNA		
	ANS: A OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
45.	This subatomic part a. proton b. neutron c. electron d. all of the above	ticle de partic	bes not contribute to the mass of ar les contribute to the mass of an ato	n atom m	
	ANS: C OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
10	T	1		1	1 • • • • •

- 46. The magnesium atom has two electrons in its outer energy level and is willing to donate both of them. The sodium atom has seven electrons in its outer energy level and will accept one electron. The chemical formula for the compound formed by magnesium and sodium would be
 - a. Mg₂Na
 - b. MgNa₂

	c. Mg ₂ S d. MgS	2						
	ANS: B TOP: Ior	nic bonds	DIF:	Synthesis	REF:	pp. 25-26	OBJ:	3
47.	Which of a. Kidn b. Lung c. Splee d. Both	f the follow eys by form s by exhali en by filteri a and b abo	ving or ning un ng carl ng the ove	gans help mai ine bon dioxide blood	ntain th	ne proper pH	of bod <u>y</u>	y fluids?
	ANS: D OBJ: 6		DIF: TOP:	Memorization Acids, bases, a	and salt	S	REF:	p. 29
48.	Which ofa. Phospb. Cholec. Trigled. Both	f the follow pholipids esterol ycerides a and b abo	ving lip ove	vids do not con	ntain fa	tty acids?		
	ANS: B OBJ: 7		DIF: TOP:	Memorization Lipids	l		REF:	pp. 30-31
49.	Which ofa. Phospb. Cholec. Trigled. Both	f the follow pholipids esterol ycerides b and c abo	ving lip ove	oids are used a	ıs starti	ng points in t	he mak	ing of hormones?
	ANS: B OBJ: 7		DIF: TOP:	Memorization Lipids	L		REF:	p. 31
50.	In an ato a. one e b. two e c. eight d. hydro	m, each ort lectron electrons electrons ogen can ho	oital ca	n hold	of the a	toms can hole	l eight	
	ANS: B OBJ: 2		DIF: TOP:	Memorization Atoms	l		REF:	p. 24
51.	An isotop a. more b. more c. the sa d. either	pe is an ato protons th electrons t ame numbe r a or b abo	om with an elec han pr er of pr ove	n etrons otons otons but diffe	erent n	umber of neu	trons	
	ANS: C OBJ: 3		DIF: TOP:	Memorization Clinical Appli	cation:	Radioactive Is	REF: otopes	p. 25
52.	Which of a. Proto	f the follow	ving ca	rries a positiv	e electr	ical charge?		

	b. Neutronc. Electrond. Both proton and	l neutro	on		
	ANS: A OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
53.	Which of the followa. Protonb. Neutronc. Electrond. Both proton and	ving is I neutro	found in the nucleus of the atom?		
	ANS: D OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
54.	Which of the followa. Protonb. Neutronc. Electrond. Both proton and	ving is I neutro	found in orbitals surrounding the p	nucleus	s of the atom?
	ANS: C OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
55.	Which of the followa. Protonb. Neutronc. Electrond. Both proton and	ving ca I neutro	rries no electrical charge?		
	ANS: B OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
56.	Which of the followa. Protonb. Neutronc. Electrond. Both proton and	ving co l neutro	ontributes to the atom's atomic mas	ss?	
	ANS: D OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
57.	Which of the followa. Protonb. Neutronc. Electrond. Both proton and	ving co I neutro	ontributes to the atom's atomic nur	nber?	
	ANS: A OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23

58. Which of the following carries a negative electrical charge?

	a. Protonb. Neutronc. Electrond. Both proton and	d neutre	on		
	ANS: C OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 23
59.	Which of the followa. Enzymesb. Triglyceridesc. Phospholipidsd. All of the above	wing co e	ontain three fatty acids and a molec	cule of	glycerol?
	ANS: B OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 29
60.	Which of the followa. Glucoseb. Lactosec. Glycogend. Starch	ving is	an example of a monosaccharide?		
	ANS: A OBJ: 7	DIF: TOP:	Memorization Carbohydrates	REF:	p. 30
61.	Which of the followa. DNAb. RNAc. Both a and b abd. Neither a nor b	ving ha oove above	as thymine as one of its nucleotides	5?	
	ANS: A OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
62.	Which of the follow molecule?a. Triglyceridesb. Cholesterolc. Phospholipidsd. None of the above	wing is	a lipid with a water-attracting and	water-	-repelling part of its
	ANS: C OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 30
63.	Which of the followa. Enzymesb. Collagenc. Glycogend. None of the above	ving is	an example of a structural protein	?	
	ANS: B OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32

64.	Which of the	following is an	example of a	functional	protein?
-----	--------------	-----------------	--------------	------------	----------

- a. Collagen
- b. Glycogen
- c. Enzymes
- d. None of the above

ANS:	С	DIF:	Memorization	REF:	p. 32
OBJ:	7	TOP:	Proteins		_

- 65. Which of the following is a lipid that can be found along with cholesterol in the cell membrane?
 - a. Triglycerides
 - b. Phospholipids
 - c. Both a and b above
 - d. Neither a nor b above

ANS: 1	B D	DIF: Me	emorization RI	EF:	p. 30
OBJ:	7 Т	OP: Li	pids		_

- 66. Which of the following is a nucleic acid with a double helix structure?
 - a. DNA
 - b. RNA
 - c. Both a and b above
 - d. Neither a nor b above

ANS:	А	DIF:	Memorization	REF:	p. 32
OBJ:	7	TOP:	Nucleic acids		-

- 67. Which of the following is a protein whose function is explained by the lock and key model?
 - a. Collagen
 - b. Glycogen
 - c. Enzymes
 - d. None of the above

ANS: C	DIF:	Memorization	REF:	p. 32
OBJ: 7	TOP:	Proteins		

- 68. Which of the following has uracil as one of its nucleotides?
 - a. DNA
 - b. RNA
 - c. Both a and b above
 - d. Neither a nor b above

ANS:	В	DIF:	Memorization	REF:	p. 32
OBJ:	7	TOP:	Nucleic acids		

- 69. Which of the following is an example of a disaccharide?
 - a. Glucose
 - b. Dextrose
 - c. Glycogen
 - d. Lactose

	ANS: D OBJ: 7	DIF: TOP:	Memorization Carbohydrates	REF:	p. 30
70.	Which of the follow testosterone?a. Lactoseb. Collagenc. DNAd. Cholesterol	ving is	a starting substance for making the	e horm	ones estrogen and
	ANS: D OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 31
71.	Which of the followa. DNAb. RNAc. Enzymesd. Phospholipids	ving ac	ets as a chemical catalyst?		
	ANS: C OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32
72.	Which of the followa. Glucoseb. Glycogenc. Dextrosed. Lactose	ving is	an example of a polysaccharide?		
	ANS: B OBJ: 7	DIF: TOP:	Memorization Carbohydrates	REF:	p. 30
73.	Which of the followa. Cholesterolb. Triglyceridesc. Enzymesd. Phospholipids	ving is	the steroid lipid?		
	ANS: A OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 31
74.	This element is nota. Nitrogenb. Hydrogenc. Oxygend. Sodium	one of	the elements that make up 96% of	f the bo	ody.
	ANS: D OBJ: 1	DIF: TOP:	Memorization Elements, molecules, and compound	REF: ls	p. 24
75.	This is a way the bo a. excreting them b. exhaling CO ₂ fr c. using a buffer	ody car in the u com the	n remove excess H ⁺ ions from the l urine e lungs	oody	

	d. all of the above	can rea	move H ⁺ ions from the blood		
	ANS: D OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 29
76.	This modified nucle a. adenosine triphe b. enzymes c. mRNA d. glycoproteins	eotide j osphate	plays an important role in energy-t	ransfei	in the body
	ANS: A OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 33
77.	Low blood pH result a. alkalosis b. acidosis c. atherosclerosis d. hydrolysis	lts in a	condition called		
	ANS: B OBJ: 6	DIF: TOP:	Memorization Acids, bases, and salts	REF:	p. 29
TRUE	E/FALSE				

1. Matter can be defined as anything that occupies space and has mass.

ANS: T	DIF:	Memorization	REF:	p. 23
OBJ: 1	TOP:	Levels of chemical organization		_

2. Atoms have never been seen by scientists, but their presence is strongly supported by the atomic theory.

ANS: F	DIF:	Memorization	REF:	p. 23
OBJ: 2	TOP:	Atoms		

3. The proton of the atom carries a positive electrical charge.

ANS:	Т	DIF:	Memorization	REF:	p. 23
OBJ:	2	TOP:	Atoms		

4. The proton of the atom is found in orbitals around the nucleus.

ANS:	F	DIF:	Memorization	REF:	p. 23
OBJ:	2	TOP:	Atoms		

5. The proton of an atom is found in the nucleus.

ANS: T	DIF:	Memorization	REF:	p. 23
OBJ: 2	TOP:	Atoms		

6. An atom with 15 protons would have an atomic mass of 15.

	ANS: TOP:	F Atoms	DIF:	Application	REF:	p. 23	OBJ:	2
7.	An at	om with 15 pr	otons	would have ar	n atomi	c number of 1	5.	
	ANS: TOP:	T Atoms	DIF:	Application	REF:	p. 23	OBJ:	2
8.	An at	om with 15 pr	otons a	and 15 electro	ons wou	uld have an ato	omic m	nass of 30.
	ANS: TOP:	F Atoms	DIF:	Application	REF:	p. 23	OBJ:	2
9.	An at	om with 15 pr	otons a	and 15 neutro	ns wou	ld have an ato	omic m	ass of 30.
	ANS: TOP:	T Atoms	DIF:	Application	REF:	p. 23	OBJ:	2
10.	Neutr	ons have no e	lectrica	al charge.				
	ANS: OBJ:	T 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 23
11.	Neutr	ons and electr	ons are	e found in the	nucleu	is of the atom.		
	ANS: OBJ:	F 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 23
12.	Neutr	ons contribute	e to the	atomic numb	er of a	n atom.		
	ANS: OBJ:	F 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 23
13.	Neutr	ons contribute	e to the	atomic mass	of the	atom.		
	ANS: OBJ:	T 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 23
14.	Electr	ons carry a ne	egative	electrical cha	rge.			
	ANS: OBJ:	T 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 23
15.	The n	umber of elec	trons p	olus the number	er of pi	otons is equal	to the	atomic number of an atom.
	ANS: OBJ:	F 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 23
16.	All or	bitals of an at	om car	n hold two ele	ctrons.			
	ANS: OBJ:	T 2	DIF: TOP:	Memorizatior Atoms	1		REF:	p. 23

17.	All energy level	s of an atc	om can hold four orbitals.		
	ANS: F OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 24
18.	All energy level	s can hold	eight electrons.		
	ANS: F OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 24
19.	The first energy	level of a	n atom can hold only two orb	itals.	
	ANS: F OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 24
20.	The first energy	level of a	n atom is closest to the nucleu	us and is the	lowest energy level.
	ANS: T OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 24
21.	The terms energy	gy <i>level</i> and	d electron orbital are intercha	ingeable.	
	ANS: F OBJ: 2	DIF: TOP:	Memorization Atoms	REF:	p. 24
22.	Elements are pu	re substan	ces.		
	ANS: T OBJ: 1	DIF: TOP:	Memorization Elements, molecules, and comp	REF: pounds	p. 24
23.	The terms mole	cule and co	ompound are interchangeable.		
	ANS: F OBJ: 1	DIF: TOP:	Memorization Elements, molecules, and comp	REF: pounds	p. 24
24.	A formula of a c compound.	compound	tells you the number and type	es of elemen	nts that make up that
	ANS: T OBJ: 1	DIF: TOP:	Memorization Elements, molecules, and comp	REF: pounds	p. 24
25.	The elements so	odium, oxy	gen, hydrogen, and nitrogen	make up 96	% of the human body.
	ANS: F OBJ: 1	DIF: TOP:	Memorization Elements, molecules, and comp	REF: pounds	p. 24
26.	An atom is said	to be cher	nically stable when its outer e	energy level	is full.
	ANS: T OBJ: 3	DIF: TOP:	Memorization Chemical bonding	REF:	p. 24

27.	An atom with one more electron than proton would have a plus one charge.							
	ANS: F DIF: TOP: Ionic bonds	Application REF: p. 25	OBJ: 3					
28.	In order for an atom to be	an ion, the number of electrons c	annot equal the number of protons.					
	ANS: T DIF: TOP: Ionic bonds	Application REF: p. 25	OBJ: 3					
29.	When ionic compounds d	issolve in water, they tend to disso	ociate into ions.					
	ANS: T DIF: OBJ: 3 TOP:	Memorization Ionic bonds	REF: p. 25					
30.	The ions that are dissolve	d in water are called electrolytes.						
	ANS: T DIF: OBJ: 3 TOP:	Memorization Ionic bonds	REF: p. 25					
31.	The symbol for a sodium	atom that has lost one electron we	ould be Na.					
	ANS: F DIF: TOP: Ionic bonds	Application REF: p. 25	OBJ: 3					
32.	The symbol for a sodium	atom that has lost one electron we	ould be Na ⁺ .					
	ANS: T DIF: TOP: Ionic bonds	Application REF: p. 25	OBJ: 3					
33.	Atom X has eight electron would most likely form as	ns, two in its first energy level and n ion with a plus two charge.	l six in its second energy level. It					
	ANS: F DIF: TOP: Ionic bonds	Synthesis REF: p. 25	OBJ: 3					
34.	Covalent bonds do not us	ually dissociate in water.						
	ANS: T DIF: OBJ: 3 TOP:	Memorization Covalent bonds	REF: p. 26					
35.	Covalent bonds dissociate	e into ions when dissolved in wate	r.					
	ANS: F DIF: OBJ: 3 TOP:	Memorization Covalent bonds	REF: p. 26					
36.	All compounds in the hur	nan body are, by definition, organ	ic compounds.					
	ANS: F DIF: OBJ: 4 TOP:	Memorization Inorganic chemistry	REF: p. 27					

37. Organic compounds must have either a C–C or C–H bond.

	ANS: T OBJ: 4	DIF: TOP:	Memorization Inorganic chemistry	REF:	p. 27
38.	Water is an inorgar	nic con	npound.		
	ANS: T OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
39.	Aqueous solutions	have w	vater as the solvent.		
	ANS: T OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
40.	In a dehydration sy	nthesis	s reaction, water is always a reacta	nt.	
	ANS: F OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
41.	In a dehydration sy	nthesis	s reaction, water is always a produc	ct.	
	ANS: T OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
42.	In dehydration synt	thesis 1	reaction, smaller reactants are joine	ed to fo	orm a larger product.
	ANS: T OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
43.	In the process of hy	ydrolys	is, a molecule of water is broken of	lown to	b hydrogen and oxygen.
	ANS: F OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
44.	In hydrolysis, wate molecules.	r is use	ed to break the bonds of a larger m	olecule	e and convert it to smaller
	ANS: T OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
45.	In a hydrolysis read	ction, v	vater is always an end product.		
	ANS: F OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
46.	Hydrolysis is virtua	ally the	e reverse of a dehydration synthesis	s reacti	on.
	ANS: T OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
47.	Acids produce an e	excess	of H ⁺ ions.		
	ANS: T	DIF:	Memorization	REF:	p. 28

OBJ: 6 TOP: Acids, bases, and salts

48. Bases produce an excess of OH⁻ ions.

ANS: T	DIF:	Memorization	REF:	p. 28
OBJ: 6	TOP:	Acids, bases, and salts		_

49. An increase in H^+ ions will cause an increase in the pH value.

ANS: F	DIF:	Memorization	REF:	p. 28
OBJ: 6	TOP:	Acids, bases, and salts		

50. An increase in pH value would mean more H^+ ions are in solution.

ANS: F DIF: Application REF: p. 28 OBJ: 6 TOP: Acids, bases, and salts

51. A solution with a pH of 4 has 100 times more H^+ ions than a solution with a pH of 2.

ANS: F DIF: Application REF: p. 28 OBJ: 6 TOP: Acids, bases, and salts

52. A solution with a pH of 3 has 10 times more H^+ ions than a solution with a pH of 4.

ANS: T DIF: Application REF: p. 28 OBJ: 6 TOP: Acids, bases, and salts

53. A solution that has a greater concentration of OH⁻ ions than H⁺ ions would be called a base.

ANS: TDIF:MemorizationREF: p. 28OBJ: 6TOP:Acids, bases, and salts

54. A strong acid added to a solution would raise the pH more than the same amount of a weak acid added to the solution.

ANS: F DIF: Application REF: p. 28 OBJ: 6 TOP: Acids, bases, and salts

55. When a neutralization reaction occurs between a strong acid and base, one of the end products is water.

ANS:	Т	DIF:	Memorization	REF:	p. 29
OBJ:	6	TOP:	Acids, bases, and salts		

56. A buffer is a chemical that helps prevent a sudden change in pH.

ANS: T	DIF:	Memorization	REF:	p. 29
OBJ: 6	TOP:	Acids, bases, and salts		

57. The word carbohydrate literally means "sugar."

ANS: F DIF: Memorization REF: p. 29

OBJ: 7 TOP: Carbohydrates

58. Both sucrose and lactose are monosaccharides.

ANS: F	DIF:	Memorization	REF:	p. 30
OBJ: 7	TOP:	Carbohydrates		-

59. Glucose is used by the body as a source of energy.

ANS: T	DIF:	Memorization	REF:	p. 29
OBJ: 7	TOP:	Carbohydrates		-

60. Both sucrose and lactose are disaccharides.

ANS: TDIF:MemorizationREF: p. 30OBJ: 7TOP:Carbohydrates

61. A molecule of glycogen contains more saccharide units than a molecule of sucrose.

ANS: T DIF: Application REF: p. 30 OBJ: 7 TOP: Carbohydrates

62. A molecule of glucose has more saccharide units than a molecule of lactose.

ANS: F DIF: Application REF: p. 30 OBJ: 7 TOP: Carbohydrates

63. Muscles store chains of glucose in a molecule called dextrose.

ANS:	F	DIF:	Memorization	REF:	p. 30
OBJ:	7	TOP:	Carbohydrates		-

64. Glycogen and starch are both polysaccharides.

ANS:	Т	DIF:	Memorization	REF:	p. 30
OBJ:	7	TOP:	Carbohydrates		-

65. Cholesterol is an important source of energy for the body.

ANS:	F	DIF:	Memorization	REF:	p. 30
OBJ:	7	TOP:	Lipids		

66. Phospholipids and triglycerides both contain fatty acids.

ANS: T	DIF:	Memorization	REF:	p. 30
OBJ: 7	TOP:	Lipids		

67. Phospholipids and triglycerides both have parts of their molecules that attract water.

ANS: F	DIF:	Memorization	REF:	p. 30
OBJ: 7	TOP:	Lipids		

68. Phospholipids are the starting substance for several steroid hormones in the body.

	ANS: F OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 31
69.	Both phospholipids	and cl	nolesterol are structural componen	ts of th	e cell membrane.
	ANS: T OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	pp. 30-31
70.	Both phospholipids	and cl	nolesterol are steroid lipids.		
	ANS: F OBJ: 7	DIF: TOP:	Memorization Lipids	REF:	p. 31
71.	The bonds that join	amino	acids together to form a protein a	re calle	ed peptide bonds.
	ANS: T OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 31
72.	The functional prote	eins in	the body include hormones, collag	gen, an	d cell membrane receptors.
	ANS: F OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32
73.	The shape of protei	ns dete	rmines their role in body chemistr	y.	
	ANS: T OBJ: 7	DIF: TOP:	Memorization Proteins	REF:	p. 32
74.	The basic building	blocks	of nucleic acids are nucleotides.		
	ANS: T OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
75.	Both DNA and RN.	A cont	ain uracil.		
	ANS: F OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
76.	Both DNA and RN.	A cont	ain a sugar molecule as part of the	ir struc	cture.
	ANS: T TOP: Nucleic acids	DIF:	Application REF: p. 32	OBJ:	7
77.	Both DNA and RN.	A have	a double helix structure.		
	ANS: F OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32
78.	DNA is the "master	code"	for making proteins.		
	ANS: T OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 32

79.	LDLs have a	a high concent	ration of prot	ein and	l low con	ncentration	of lipid.		
	ANS: F OBJ: 7	DIF: TOP:	Memorizatior Clinical Appl	n ication:	Blood L	REF: ipoproteins	p. 31		
80.	HDL is som	etimes called	the "bad" cho	lestero	1.				
	ANS: F OBJ: 7	DIF: TOP:	Memorizatior Clinical Appl	n ication:	Blood L	REF: ipoproteins	p. 31		
81.	LDL is som	etimes called t	he "bad" cho	lestero	l.				
	ANS: T OBJ: 7	DIF: TOP:	Memorization Clinical Appl	n ication:	Blood L	REF: ipoproteins	p. 31		
82.	High levels	of LDL are as	sociated with	the dev	velopme	nt of atheros	sclerosis.		
	ANS: T OBJ: 7	DIF: TOP:	Memorization Clinical Appl	n ication:	Blood L	REF: ipoproteins	p. 31		
83.	An atom's n	nass number is	s usually grea	ter thar	n its aton	nic number.			
	ANS: T TOP: Atom	DIF:	Application	REF:	p. 23	OBJ:	2		
84.	An atom's a	tomic number	is usually gre	eater th	an its m	ass number.			
	ANS: F TOP: Atom	DIF:	Application	REF:	p. 23	OBJ:	2		
85.	Electrons m	ove in an ellip	tical orbit ratl	her tha	n a circu	lar orbit aro	und the nue	cleus.	
	ANS: F OBJ: 2	DIF: TOP:	Memorization Atoms	1		REF:	pp. 23-24		
86.	An electron energy level	in the third en	ergy level is o	closer t	o the nu	cleus than a	n electron i	in the second	l
	ANS: F OBJ: 2	DIF: TOP:	Memorization Atoms	1		REF:	p. 24		
87.	All compour	nds are molecu	ules, but not a	ıll mole	cules ar	e compound	ls.		
	ANS: T TOP: Eleme	DIF: ents, molecules,	Application and compound	REF: ds	p. 24	OBJ:	1		
88.	The bond be bond.	etween carbon	and hydroger	n in an	organic	compound i	s an examp	le of a coval	ent
	ANS: T	DIF:	Memorization	1		REF:	p. 26		

TOP: Inorganic chemistry

OBJ: 4

89. Water is the most abundant solute in the body.

	ANS: F OBJ: 5	DIF: TOP:	Memorization Water	REF:	p. 27
90.	Chemical bonds ca	in store	potential chemical energy.		
	ANS: T OBJ: 3	DIF: TOP:	Memorization Water	REF:	pp. 27-28
91.	The primary source	e of ene	ergy used by the body is a carbohy	drate.	
	ANS: T OBJ: 7	DIF: TOP:	Memorization Carbohydrates	REF:	p. 30
92.	The only group of	organic	c compounds that contains sugar is	the car	rbohydrates.
	ANS: F TOP: Carbohydrate	DIF: es Nucl	Application REF: p. 30 eic acids	OBJ:	7
93.	Adenosine triphosj body.	phate is	a modified nucleotide that is impo	ortant i	n energy transfer in the
	ANS: T OBJ: 7	DIF: TOP:	Memorization Nucleic acids	REF:	p. 30

94. If blood pH tests indicate that your blood pH is high, you are suffering from alkalosis.

ANS: T DIF: Application REF: p. 29 OBJ: 6 TOP: Acids, bases, and salts

MATCHING

Match the name of the element with the correct symbol.

- a. Potassium
- b. Phosphorus
- c. Sodium
- d. Calcium
- e. Carbon
- f. Hydrogen
- g. Chlorine
- h. Nitrogen
- 1. C
- 2. Ca
- 3. Cl
- 4. H
- 5. Na
- 6. P
- 7. K

1.	ANS:	Е	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	s	-
2.	ANS:	D	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	S	
3.	ANS:	G	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	s	
4.	ANS:	F	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	s	
5.	ANS:	С	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	S	
6.	ANS:	В	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	s	
7.	ANS:	А	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	s	
8.	ANS:	Н	DIF:	Memorization	REF:	p. 26
	OBJ:	1	TOP:	Elements, molecules, and compound	s	

Match the term with its definition or explanation.

- a. Proton
- b. Electron
- c. Neutron
- d. Atomic mass
- e. Atomic number
- f. Element
- g. Compound
- h. Hydrolysis
- i. Acid
- j. Base
- k. Covalent bond
- l. Ionic bond
- m. Water
- n. Buffer
- o. Electrolytes
- p. Dehydration synthesis
- 9. A process where a molecule of water is used to make large compounds smaller
- 10. A substance composed of more than one type of element
- 11. When an ionic compound dissociates in water it forms these
- 12. Bond formed by the attraction of opposite charges
- 13. A subatomic particle with a positive charge
- 14. The most important inorganic compound in the body
- 15. A substance that resists a change in pH
- 16. A subatomic particle with a negative charge
- 17. The sum of the protons and neutrons in an atom
- 18. The number of protons in an atom
- 19. A pure substance made up of only one kind of atom
- 20. A subatomic particle with no charge

- 21. A substance that increases the concentration of H^+ ions in a solution
- 22. A bond formed when electrons are shared
- 23. A substance that increases the concentration of OH⁻ ions in a solution
- 24. A process where a molecule of water is removed to make two small molecules into one larger molecule

9.	ANS:	H	DIF:	Memorization	REF:	p. 27
10	OBJ: 3	5	TOP:	Water		
10.	ANS: 0	G	DIF:	Memorization	REF:	p. 24
	OBJ:	1	TOP:	Elements, molecules, and compound	S	
11.	ANS:	0	DIF:	Memorization	REF:	p. 25
	OBJ:	3	TOP:	Ionic bonds		
12.	ANS:	L	DIF:	Memorization	REF:	p. 26
	OBJ:	3	TOP:	Ionic bonds		
13.	ANS:	A	DIF:	Memorization	REF:	p. 23
	OBJ: 2	2	TOP:	Atoms		
14.	ANS: 1	M	DIF:	Memorization	REF:	p. 27
	OBJ:	5	TOP:	Water		
15.	ANS: 1	N	DIF:	Memorization	REF:	p. 29
	OBJ:	6	TOP:	Acids, bases, and salts		
16.	ANS: 1	В	DIF:	Memorization	REF:	p. 23
	OBJ: 2	2	TOP:	Atoms		
17.	ANS: 1	D	DIF:	Memorization	REF:	p. 23
	OBJ: 2	2	TOP:	Atoms		
18.	ANS: 1	E	DIF:	Memorization	REF:	p. 23
	OBJ: 2	2	TOP:	Atoms		
19.	ANS:	F	DIF:	Memorization	REF:	p. 24
	OBJ:	1	TOP:	Elements, molecules, and compound	S	
20.	ANS:	С	DIF:	Memorization	REF:	p. 23
	OBJ: 2	2	TOP:	Atoms		
21.	ANS: 1	I	DIF:	Memorization	REF:	p. 28
	OBJ:	6	TOP:	Acids, bases, and salts		
22.	ANS:	K	DIF:	Memorization	REF:	p. 25
	OBJ:	3	TOP:	Covalent bonds		_
23.	ANS:	J	DIF:	Memorization	REF:	p. 28
	OBJ:	6	TOP:	Acids, bases, and salts		-
24.	ANS:	Р	DIF:	Memorization	REF:	p. 27
	OBJ: 2	5	TOP:	Water		-

Match the term with the definition or explanation.

- a. Glucose
- b. Enzyme
- c. Triglyceride
- d. Glycogen
- e. Cholesterol
- f. Adenosine triphosphate
- g. RNA
- h. Phospholipids
- i. Collagen
- j. DNA

- 25. This is an example of a functional protein.
- 26. This nucleic acid has thymine as one of its nitrogen bases.
- 27. This lipid has a side that attracts water and another side that repels water and is important in formation of cell membranes.
- 28. This is the monosaccharide that the body prefers for its source of energy.
- 29. This is an example of a structural protein.
- 30. This nucleic acid has uracil as one of its nitrogen bases.
- 31. This lipid is made up of a molecule of glycerol and three fatty acids.
- 32. This is a special type of nucleotide that is used to transfer energy in the body.
- 33. This is a lipid that is used in the making of a number of hormones in the body.
- 34. This is the polysaccharide that the human body stores for energy.

25	ANS B	DIF: Memorization	REF n 32
20.	OBI: 7	TOP: Proteins	iuli : p. 52
26	ANS: I	DIF: Memorization	REF n 32
20.	OBI: 7	TOP: Nucleic acids	REI : p. 52
27	ANS: H	DIE: Memorization	PEE: p 30
27.	ANS. II	TOD. Linida	KEP. p. 50
	ODJ: /	TOP: Lipius	
28.	ANS: A	DIF: Memorization	REF: p. 30
	OBJ: 7	TOP: Carbohydrates	
29.	ANS: I	DIF: Memorization	REF: p. 32
	OBJ: 7	TOP: Protein	-
30.	ANS: G	DIF: Memorization	REF: p. 32
	OBJ: 7	TOP: Nucleic acids	-
31.	ANS: C	DIF: Memorization	REF: p. 30
	OBJ: 7	TOP: Lipids	•
32.	ANS: F	DIF: Memorization	REF: p. 33
	OBJ: 7	TOP: Nucleic acids	-
33.	ANS: E	DIF: Memorization	REF: p. 31
	OBJ: 7	TOP: Lipids	-
34.	ANS: D	DIF: Memorization	REF: p. 29
	OBJ: 7	TOP: Carbohydrates	-

ESSAY

1. Briefly describe the structure of the atom.

ANS: (Answers may vary) DIF: Memorization REF: p. 23 OBJ: 2 TOP: Atoms

2. A particular atom contains 28 protons, 28 electrons, and 31 neutrons. What is its atomic mass? What is its atomic number?

ANS: (Answers may vary) DIF: Synthesis REF: p. 23 OBJ: 2 TOP: Atoms 3. Distinguish among an element, a molecule, and a compound.

ANS: (Answers may vary) DIF: Memorization REF: p. 24 OBJ: 1 TOP: Elements, molecules, and compounds 4. Write the correct chemical formula for a substance containing four atoms of chlorine and one atom of carbon. ANS: (Answers may vary) Synthesis REF: p. 24 OBJ: 1 DIF: TOP: Elements, molecules, and compounds 5. Assume an atom of element X has two electrons in its outermost energy level. Two atoms of element Y each have seven electrons in their outermost energy level (eight is stable). Explain how an ionic bond would form among these three atoms and give the formula for the compound. ANS: (Answers may vary) DIF: Synthesis REF: p. 25 OBJ: 3 TOP: Atoms, Ionic bonds 6. Explain the relationship between the number of H^+ ions in solution and the pH value. ANS: (Answers may vary) DIF: Application REF: p. 28 OBJ: 6 TOP: Acids, bases, and salts 7. Describe the three ways in which the body can regulate the removal of H^+ ions or a sudden change in pH. ANS: (Answers may vary) DIF: Memorization REF: p. 29 OBJ: 6 TOP: Acids, bases, and salts 8. List the three types of lipids in the body and describe the structure and function of each. ANS: (Answers may vary)

DIF:	Memorization	REF:	pp. 30-31	OBJ:	7
TOP:	Lipids				

9. Differentiate between DNA and RNA in terms of structure and function.

TOP: Carbohydrates

	ANS: (Answers may vary)		
	DIF: Application REF: p. 29	OBJ: 7	TOP: Nucleic acids
10.	Describe the two different types of lipo health.	proteins in the blood	. Explain their possible impact on
	ANS: (Answers may vary)		
	DIF: Memorization TOP: Clinical Application: Blood Lipopro	REF: p. 31 pteins	OBJ: 7
11.	Explain the difference between structur	al and functional pro	teins. Give an example of each.
	ANS: (Answers may vary)		
	DIF: Memorization TOP: Proteins	REF: p. 32	OBJ: 7
12.	Describe the types of carbohydrates. W carbohydrates?	hat are the two large	molecules that can store
	ANS: (Answers may vary)		
	DIF: Memorization	REF: pp. 29-30	OBJ: 7