
Test Bank For Radiologic Science for Technologists 12th

Edition by Bushong Chapter 1-40 [Updated 2024]

TWELFTH EDITION

RADIOLOGIC SCIENCE FOR TECHNOLOGISTS

PHYSICS, BIOLOGY, AND PROTECTION

TESTBANK

Chapter 01: Essential Concepts of Radiologic Science Bushong: Radiologic Science for Technologists, 12th Edition

MULTIPLE CHOICE

- 1. Matter is measured in .
 - a. kilograms
 - b. joules
 - c. electron volts
 - d. rems

<mark>ANS:</mark> A

Matter is measured in kilograms.

- 2. Atoms and molecules are the fundamental building blocks of
 - a. energy
 - b. radiation
 - c. matter
 - d. gravity

<mark>ANS: </mark>C

Atoms and molecules are the fundamental building blocks of matter.

- 3. Ice and steam are examples of two forms of _____.
 - a. matter
 - b. radiation
 - c. energy
 - d. work

<mark>ANS:</mark> A

Ice and steam are examples of two forms of matter.

- 4. The formula $E = mc^2$ is the basis for the theory that led to the development of <u>. a.</u> x-rays
 - b. electromagnetic radiation
 - c. nuclear power
 - d. cathode ray tubes

<mark>ANS:</mark>C

The formula $E = mc^2$ is the basis for the theory that led to the development of nuclear power.

- 5. Radio waves, light, and x-rays are all examples of energy.
 - a. nuclear
 - b. thermal
 - c. electrical
 - d. electromagnetic

Electromagnetic energy includes radio waves, light, and x-rays as well as other parts of the spectrum.

- 6. A moving object has energy.
 - a. potential
 - b. kinetic
 - c. nuclear
 - d. electromagnetic

<mark>ANS:</mark>B

A moving object has kinetic energy.

- 7. What is the removal of an electron from an atom called?
 - a. Ionization
 - b. Pair production
 - c. Irradiation
 - d. Electricity

<mark>ANS:</mark> A

The removal of an electron from an atom is called ionization.

- 8. Ionizing radiation is capable of removing ______from atoms as it passes through the matter.
 - a. neutrons
 - b. protons
 - c. electrons
 - d. ions

<mark>ANS: </mark>C

Ionizing radiation is capable of removing electrons from atoms as it passes through the matter.

- 9. The energy of x-rays is _____.
 - a. thermal
 - b. potential
 - c. kinetic
 - d. electromagnetic

<mark>ANS:</mark> D

X-rays are a form of electromagnetic energy.

- 10. The biggest source of man-made ionizing radiation exposure to the public is
 - a. atomic fallout
 - b. diagnostic x-rays
 - c. smoke detectors
 - d. nuclear power plants

Medical x-ray exposure is the biggest source of man-made radiation.

- 11. In the United States, we are exposed to ____mSv/year of ionizing radiation from the natural environment.
 - a. 0 to 5
 - b. 5 to 20
 - c. 20 to 90
 - d. 100 to 300

<mark>ANS:</mark>A

We are exposed to about 3 mSv/yr of ionizing radiation from natural environmental sources in the United States.

12. Today, radiology is considered to be a(n) _____occupation.

- a. safe
- b. unsafe
- c. dangerous
- d. high-risk

<mark>ANS:</mark> A

Today, radiology is considered to be a safe occupation because of effective radiation protection practices.

- 13. _____is a special quantity of radiologic science.
 - a. Mass
 - b. Velocity
 - c. Radioactivity
 - d. Momentum

<mark>ANS: </mark>C

Radioactivity is a special quantity of radiologic science.

- 14. What does ALARA mean?
 - a. All Level Alert Radiation Accident
 - b. As Low As Reasonably Achievable
 - c. Always Leave A Restricted Area
 - d. As Low As Regulations Allow

<mark>ANS:</mark>B

ALARA means As Low As Reasonably Achievable.

- 15. Computed tomography was developed in the _____.
 - a. 1890s
 - b. 1920s
 - c. 1970s
 - d. 1990s

Computed tomography was developed in the 1970s.

- 16. Filtration is used to _____
 - a. absorb low-energy x-rays
 - b. remove high-energy x-rays
 - c. restrict the useful beam to the body part imaged
 - d. fabricate gonadal shields

<mark>ANS:</mark> A

Filtration is used to absorb low-energy x-rays.

TRUE/FALSE

1. Mass is the quantity of matter as described by its energy equivalence.

<mark>ANS:</mark> T

Mass is the quantity of matter as described by its energy equivalence.

2. Radiation is the removal of an electron from an atom.

<mark>ANS: </mark>F

Ionization is the removal of an electron from an atom.

3. Radiology emerged as a medical specialty because of the Snook transformer and the Crookes x-ray tube.

<mark>ANS:</mark> F

Radiology emerged as a medical specialty because of the Snook transformer and the Coolidge x-ray tube.

Chapter 02: Basic Physics Primer Bushong: Radiologic Science for Technologists, 12th Edition

MULTIPLE CHOICE

- 1. The basic quantities measured in mechanics are _____, ____, and _____
 - a. volume; length; meters
 - b. mass; length; time
 - c. radioactivity; dose; exposure
 - d. meters; kilos; seconds

<mark>ANS:</mark>B

The basic quantities measured in mechanics are mass, length, and time.

- 2. An example of a derived quantity in mechanical physics is a _____
 - a. meter
 - b. second
 - c. dose
 - d. volume

Volume is a derived unit.

- 3. Exposure is measured in units of _____
 - a. becquerel
 - b. sieverts
 - c. meters
 - d. grays

<mark>ANS:</mark>D

Exposure is measured in units of grays.

- 4. What is the decimal equivalent of the proper fraction 4/1000?
 - a. 0004
 - b. 004
 - c. 04
 - d. 4

ANS: B

The decimal equivalent of the proper fraction 4/1000 is .004.

- 5. What is the decimal equivalent of the improper fraction 289/74?
 - a. 390
 - b. 3.90
 - c. 39.0
 - d. 390.0

<mark>ANS:</mark>B

6.

The decimal equivalent of the improper fraction 289/74 is 3.90.

The first step to expressing a number in scientific notation is to

- a. round up to the nearest 1000
- b. round down to the nearest 1000
- c. write the number in decimal form
- d. write the number as a fraction

<mark>ANS: </mark>C

The first step to expressing a number in scientific notation is to write the number in decimal form.

- 7. What is 6080 in exponential form?
 - a. $6080.0 \square 10^4$

- b. $608.0 \square 10^4$
- c. $6.080 \square 10^3$
- d. $6080 \square 10^3$

The number 6080 in exponential form is 6.080 \Box 10³

- 8. Graphs are typically based on two axes; a <u>and a . a. y-axis; z-axis</u>
 - b. oblique; horizontal
 - c. x-axis; y-axis
 - d. vertical; oblique

<mark>ANS: </mark>C

Most graphs are based on two axes: a horizontal or x-axis and a vertical or y-axis.

- 9. In radiologic science, all of the following are special quantities, except:
 - a. exposure.
 - b. distance.
 - c. dose.
 - d. effective dose.

<mark>ANS:</mark>B

In radiologic science, special quantities are those of exposure, dose, effective dose, and radioactivity.

- 10. The SI unit of velocity is _____.
 - a. meters per second
 - b. miles per hour
 - c. meters per millisecond
 - d. kilometers per second

<mark>ANS: </mark>C

Units of velocity in SI are meters per second (m/s).

- 11. Mass density should be reported in which units?
 - a. Coulomb/kilogram
 - b. Newtons per square meter
 - c. Kilograms per cubic meter
 - d. Kilograms per square meter

<mark>ANS:</mark>C

Mass density should be reported with units of kilograms per cubic meter (kg/m³).

- 12. An object at rest will if no outside forces are applied.
 - a. stay at rest
 - b. decrease mass

- c. increase velocity
- d. decrease velocity

An object at rest will stay at rest if no outside forces are applied.

- 13. Which of the following explains the difference between speed and velocity?
 - a. One has motion, and the other does not.
 - b. One involves acceleration, and the other does not.
 - c. One involves time, and the other does not.
 - d. One has direction, and the other does not.

<mark>ANS:</mark>B

Velocity includes acceleration and speed does not. Speed is the rate at which an object covers distance.

- 14. For every action, there is an equal and opposite reaction, this describes which Newton's law?
 - a. Newton's first law of motion
 - b. Newton's second law of motion
 - c. Newton's third law of motion
 - d. Newton's law of inertia

<mark>ANS: </mark>C

Newton's third law of motion states that for every action, there is an equal and opposite reaction.

- 15. Work is the product of and distance.
 - a. force
 - b. gravity
 - c. acceleration
 - d. motion

<mark>ANS:</mark> A

Work is the product of force and distance.

- 16. The transfer of heat by the emission of infrared radiation is <u>. a. electric rad</u>iation
 - b. magnetic energy
 - c. mechanical energy
 - d. thermal radiation

<mark>ANS:</mark> D

Thermal radiation is the transfer of heat by the emission of infrared radiation.

- 17. What heat transfer takes place when you burn your finger by touching a hot iron?
 - a. Conduction
 - b. Convection
 - c. Radiation
 - d. Electromagnetic

Conduction is the transfer of heat through a material or by touching.

- 18. What heat transfer takes place when water is boiled?
 - a. Conduction
 - b. Convection
 - c. Radiation
 - d. Electromagnetic

<mark>ANS:</mark>B

Convection is the mechanical transfer of —hot molecules in a gas or liquid from one place to another.

- 19. What are the two cryogens used in Magnetic resonance imaging with a superconducting magnet?
 - a. Gaseous helium and gaseous nitrogen
 - b. Liquid helium and gaseous nitrogen
 - c. Gaseous helium and liquid helium
 - d. Liquid helium and liquid nitrogen

<mark>ANS:</mark> D

Liquid nitrogen and liquid helium are the two cryogens that are used in magnetic resonance imaging with a superconducting magnet.

- 20. When you stretch a rubber band, you are storing _____ energy. a. kinetic
 - b. potential
 - c. thermal
 - d. radiant

<mark>ANS:</mark>B

Potential energy is the stored energy of position or configuration.

Chapter 03: The Structure of Matter Bushong: Radiologic Science for Technologists, 12th Edition

MULTIPLE CHOICE

- 1. The term —atom was first used by the
 - a. Ethiopians
 - b. British
 - c. Greeks
 - d. Romans

<mark>ANS: </mark>C

The term —atom $\|$ was first used by the Greeks.

2. The first person to describe an element as being composed of identical atoms was

- a. J. J. Thomson
- b. John Dalton
- c. Dmitri Mendeleev
- d. Niels Bohr

The first person to describe an element as being composed of identical atoms was John Dalton.

- 3. The smallest particle that has all the properties of an element is a(n) ______. a. neutron
 - b. proton
 - c. electron
 - d. atom

<mark>ANS:</mark> D

The smallest particle that has all the properties of an element is an atom.

- 4. The periodic table of the elements was developed by in the late 19th century. a. Bohr
 - b. Rutherford
 - c. Mendeleev
 - d. Roentgen

ANS: C

The Periodic Table was developed by Mendeleev.

- 5. Rutherford's experiments in 1911 showed that the atom was composed of
 - a. electrons with well-defined orbits
 - b. a nucleus with an electron cloud
 - c. electrified plum pudding
 - d. a ball of hooks and eyes

<mark>ANS: </mark>C

Rutherford's experiments in 1911 showed that the atom was composed of a nucleus with an electron cloud.

- 6. A positively charged nucleus surrounded by negatively charged electrons in well-defined orbits is the <u>model of the atom.</u> a. Bohr
 - b. Thomson
 - c. Rutherford
 - d. Dalton

<mark>ANS:</mark> A

A positively charged nucleus surrounded by negatively charged electrons in well-defined orbits is the Bohr model of the atom.

- 7. What are the fundamental particles of an atom?
 - a. Quark, positron, negatron
 - b. Nucleon, electron, proton
 - c. Proton, neutron, quark
 - d. Proton, electron, neutron

The fundamental particles of an atom are the proton, electron, and neutron.

- 8. The chemical element is determined by the number of in the atom.
 - a. protons
 - b. electrons
 - c. neutrons
 - d. nucleons

<mark>ANS:</mark> A

The chemical element is determined by the number of protons in the atom.

- 9. An atom in a normal state has an electrical charge of _____
 - a. one
 - b. zero
 - c. positive
 - d. negative

ANS: B

An atom in a normal state has an electrical charge of zero.

- 10. The binding energies, or energy levels, of electrons are represented by their.
 - a. atomic numbers
 - b. atomic mass units
 - c. shells
 - d. isotopes ANS: C

The binding energies, or energy levels, of electrons are represented by their shells.

- 11. When an atom has the same number of protons as another, but a different number of neutrons, it is called an _____.
 - a. isomer
 - b. isobar
 - c. isotone
 - d. isotope

ANS: D

When an atom has the same number of protons as another, but a different number of neutrons, it is called an isotope.

- 12. When atoms of various elements combine, they form.
 - a. isotopes

- b. compounds
- c. molecules
- d. ions

When atoms of various elements combine, they form molecules.

- 13. An atom that loses or gains one or more electrons is a(n).
 - a. ion
 - b. molecule
 - c. isotope
 - d. isomer

<mark>ANS:</mark> A

An atom that loses or gains one or more electrons is an ion.

- 14. The maximum number of electrons that can exist in an electron shell is calculated with the formula $\underline{. a. 2n}$
 - b. $2n^2$
 - c. 2/n
 - d. $2/n^2$

<mark>ANS:</mark>B

The number of electrons in an electron shell is calculated with the formula $2n^2$.

- 15. A neutral atom has the same number of <u>and electrons</u>.
 - a. quarks
 - b. neutrinos
 - c. neutrons
 - d. protons

<mark>ANS:</mark> D

A neutral atom has the same number of protons and electrons.

- 16. The innermost electron shell is symbolized by the letter_____.
 - a. J
 - b. K
 - c. L
 - d. M

<mark>ANS:</mark>B

The innermost electron shell is symbolized by the letter K.

- 17. The shell number of an atom is called the
 - a. alpha particle
 - b. chemical element
 - c. principal quantum number
 - d. half-life number

The shell number of an atom is called the principal quantum number.

- 18. The atomic number of an element is symbolized by the letter_____.
 - a. A
 - b. X
 - c. Z
 - d. n

<mark>ANS:</mark>C

The atomic number of an element is symbolized by the letter Z.

- 19. Aluminum has an atomic number of 13. How many protons does it have?
 - a. 13
 - b. 26
 - c. 27
 - d. None of the options

<mark>ANS:</mark> A

The atomic number equals the number of protons in an atom.

- 20. Two identical atoms which exist at different energy states are called ______. a. isotopes
 - b. isomers
 - c. isotones
 - d. isobars

<mark>ANS:</mark>B

Two identical atoms which exist at different energy states are called isomers.

Chapter 04: Electromagnetic Energy Bushong: Radiologic Science for Technologists, 12th Edition

MULTIPLE CHOICE

- 1. The four properties of photons are <u>, and .</u>
 - a. size; shape; spin; mass
 - b. frequency; mass; amplitude; wavelength
 - c. frequency; wavelength; velocity; amplitude
 - d. refraction; velocity; spin; amplitude

<mark>ANS: </mark>C

The properties of photons are frequency, wavelength, velocity, and amplitude.

- 2. The smallest quantity of any type of electromagnetic radiation is a(n)
 - a. photon
 - b. electron

- c. neutrino
- d. quark

The smallest quantity of any type of electromagnetic radiation is a photon.

- 3. What is the velocity of all electromagnetic radiation?
 - a. $8 \Box 10^3 \text{ m/s}$
 - b. $2 \Box 10^8 \, \text{m/s}$
 - c. $3 \Box 10^8 \, \text{m/s}$
 - d. $4 \Box 10^3 \text{ m/s}$

<mark>ANS: </mark>C

The velocity of all electromagnetic radiation is $3 \square 10^8$ m/s.

- 4. The rate of rise and fall of a sine wave is called its _____
 - a. amplitude
 - b. frequency
 - c. wavelength
 - d. velocity

<mark>ANS:</mark>B

The rate of rise and fall of a sine wave is called its frequency.

- 5. A hertz (Hz) is equal to<u>cycle(s)</u> per second.
 - a. 103
 - b. 102
 - c. 10
 - d. 1

<mark>ANS:</mark> D

A hertz is equal to 1 cycle per second.

- 6. What is the electromagnetic wave equation?
 - a. $c = f\Box$
 - b. $c = f/\Box$
 - c. c = fv
 - d. $\mathbf{c} = \mathbf{f} \Box$

<mark>ANS:</mark>A

The wave equation is $c = f \Box$.

- 7. The ______of electromagnetic radiation is constant.
 - a. amplitude
 - b. velocity
 - c. frequency
 - d. wavelength

The velocity of electromagnetic radiation is constant.

- 8. If the wavelength of a beam of electromagnetic radiation increases by a factor of 2, then its frequency must _____.
 - a. double
 - b. increase four times
 - c. decrease by half
 - d. remain constant

<mark>ANS: </mark>C

If the wavelength of a beam of electromagnetic radiation increases by a factor of 2, then its

frequency must decrease by half.

9. The intensity of radiation in the object from the source.

proportion to the square of the distance of

- a. increases; direct
- b. decreases; direct
- c. increases; inverse
- d. decreases; inverse

<mark>ANS:</mark>D

The intensity of radiation decreases in inverse proportion to the square of the distance of the object from the source.

- 10. The reduction of radiation intensity due to scattering and absorption is called______. a. reflection
 - b. refraction
 - c. attenuation
 - d. dispersion

<mark>ANS: </mark>C

The reduction of radiation intensity due to scattering and absorption is called attenuation.

- 11. The intensity of radiation on an object is reduced with distance because the radiation
 - a. reduces its velocity
 - b. increases in wavelength
 - c. loses its energy
 - d. is spread out over a greater area

<mark>ANS:</mark> D

The intensity of radiation on an object is reduced with distance because the radiation is spread out over a greater area.

- 12. If the intensity of light from a flashlight is 4 millilumens (mlm) at a distance of 3 feet, what will the intensity be at 6 feet? a. 0.4 millilumens
 - b. 1 millilumen
 - c. 2 millilumens
 - d. 16 millilumens

If the intensity of light from a flashlight is 4 millilumens (mlm) at a distance of 3 feet using the inverse square law, it will be 1 millilumen at 6 feet.

- 13. The diagnostic range of x-ray energy is _____.
 - a. 30 to 150 kVp
 - b. 200 to 300 kVp
 - c. 300 to 1000 kVp
 - d. over 1 MV

<mark>ANS:</mark> A

The diagnostic range of x-ray energy is 30 to 150 kVp.

- 14. The energy of a photon is directly proportional to its .
 - a. amplitude
 - b. frequency
 - c. velocity
 - d. wavelength

<mark>ANS:</mark>B

The energy of a photon is directly proportional to its frequency.

- 15. The mass equivalent of a 100 KeV photon of radiation can be calculated using the _____
 - a. inverse square formula
 - b. equivalent Planck equation
 - c. relativity formula
 - d. Planck quantum equation

<mark>ANS:</mark>C

The mass equivalent of a 100 KeV photon of radiation can be calculated using the relativity formula.

- 16. X-rays are usually identified by their .
 - a. energy
 - b. velocity
 - c. wavelength
 - d. hertz

<mark>ANS:</mark> A

X-rays are usually identified by their energy.

- 17. The lowest energy range of the electromagnetic spectrum is .
 - a. sound waves
 - b. radio waves
 - c. gamma rays
 - d. microwaves

The lowest energy range on the electromagnetic spectrum is radio waves.

- 18. Gamma rays are produced in the <u>of the atom</u>.
 - a. outer electron shell
 - b. inner electron shell
 - c. nucleus
 - d. K-shell

<mark>ANS:</mark>C

Gamma rays are produced in the nucleus of the atom.

- 19. Photons tend to interact with matter their wavelength.
 - a. equal in size to
 - b. larger in size than
 - c. smaller in size than
 - d. unequal in size to

ANS: A

Photons tend to interact with matter equal in size to their wavelength.

- 20. Photons with the highest frequencies have the.
 - a. highest velocity
 - b. lowest energy
 - c. longest wavelengths
 - d. shortest wavelengths

<mark>ANS:</mark> D

Photons with the highest frequencies have the shortest wavelengths.

Chapter 05: Electricity, Magnetism, and Electromagnetism Bushong: Radiologic Science for Technologists, 12th Edition

MULTIPLE CHOICE

- 1. The smallest unit of electrical charge is the _____
 - a. electron
 - b. proton
 - c. neutron
 - d. neutrino

The smallest unit of electrical charge is the electron.

- 2. Electrification occurs through the movement of _____.
 - a. protons only
 - b. protons and electrons
 - c. electrons only
 - d. electrons and neutrons

<mark>ANS: </mark>C

Electrification occurs only through the movement of electrons.

- - a. repel; repel
 - b. attract; attract
 - c. attract; repel
 - d. repel; attract

<mark>ANS:</mark> D

Like charges repel and unlike charges attract.

- 4. Electrostatic force is <u>proportional</u> to the distance between charges, and <u>proportional</u> to the product of the charges. a. directly; inversely
 - b. inversely; directly
 - c. inversely; inversely
 - d. directly; directly

<mark>ANS:</mark>B

Electrostatic force is inversely proportional to the distance between charges, and directly proportional to the product of the charges.

- 5. The charges on an electrified object are distributed _____.
 - a. in the center of the object
 - b. on the side nearest the charge
 - c. on the topside of the object
 - d. evenly throughout the object

<mark>ANS:</mark> D

The charges on an electrified object are distributed evenly throughout.

6. On the surface of an electrified object, the charges concentrate on the _____.

- a. top side
- b. underside
- c. sharpest curvatures
- d. smoothest curvatures

On the surface of an electrified object, the charges concentrate on the sharpest curvature.

- 7. A is a source of direct current.
 - a. wall socket
 - b. battery
 - c. generator
 - d. spark

ANS: B

A battery is a source of direct current.

- 8. What is the unit of electric potential?
 - a. Watt
 - b. Amp
 - c. Volt
 - d. Ohm

<mark>ANS:</mark>C

The unit of electric potential is the volt.

- 9. An electric potential applied to a conductor produces a(n) ______.
 - a. electric current

- b. magnetic field
- c. electric insulator and conductor
- d. electric current and a magnetic field

When an electric potential is applied to a conductor, both an electric current and a magnetic field are produced.

- 10. An alternating (AC) current is represented by a line.
 - a. sinusoidal
 - b. horizontal
 - c. vertical
 - d. descending

<mark>ANS:</mark> A

An alternating (AC) current is represented by a sinusoidal line.

- 11. A <u>uses direct current</u>.
 - a. hair dryer
 - b. toaster
 - c. microwave
 - d. flashlight

ANS: D

A flashlight is battery operated, and batteries use direct current.

- 12. Alternating current is produced by a _____.
 - a. battery