Chapter 2
 Descriptive Statistics: Tabular and Graphical Displays

Learning Objectives

1. Learn how to construct and interpret summarization procedures for qualitative data such as: frequency and relative frequency distributions, bar graphs and pie charts.
2. Learn how to construct and interpret tabular summarization procedures for quantitative data such as: frequency and relative frequency distributions, cumulative frequency and cumulative relative frequency distributions.
3. Learn how to construct a dot plot and a histogram as graphical summaries of quantitative data.
4. Learn how the shape of a data distribution is revealed by a histogram. Learn how to recognize when a data distribution is negatively skewed, symmetric, and positively skewed.
5. Be able to use and interpret the exploratory data analysis technique of a stem-and-leaf display.
6. Learn how to construct and interpret crosstabulations, scatter diagrams, and side-by-side and stacked bar charts.
7. Learn best practices for creating effective graphical displays and for choosing the appropriate type of display.

Chapter 2

Solutions:

1.

Class	Frequency	Relative Frequency
A	60	$60 / 120=0.50$
B	24	$24 / 120=0.20$
C	$\underline{36}$	$36 / 120=\underline{0.30}$
Total	120	1.00

2. a. $1-(.22+.18+.40)=.20$
b. $.20(200)=40$
c/d.

Class	Frequency	Percent Frequency
A	$.22(200)=44$	22
B	$.18(200)=36$	18
C	$.40(200)=80$	40
D	$.20(200)=\frac{40}{200}$	$\underline{20}$
Total		100

3. a. $360^{\circ} \times 58 / 120=174^{\circ}$
b. $360^{\circ} \times 42 / 120=126^{\circ}$
c.

d.

4. a. These data are categorical.
b.

Website	Frequency	Percent Frequency
FB	7	14
GOOG	14	28
WIKI	9	18
YAH	13	26
YT	7	14
	50	100

c. The most frequently visited website is google.com (GOOG); second is yahoo.com (YAH).
5. a.

Name	Frequency	Relative Frequency	Percent Frequency
Brown	7	0.14	14%
Johnson	10	0.20	20%
Jones	7	0.14	14%
Garcia	6	0.12	12%
Smith	12	0.24	24%
Williams	8	0.16	16%
\quad Total	50	1	100%

b.

c.

d.

Common U.S. Last Names

e. The three most common last names are Smith (24\%), Johnson (20\%) and Williams (16\%). This is easily apparent from the sorted bar chart in c. Without the labeling of percentages, it is difficult to determine the most common names from the pie chart.
6. a.

Relative
Percent

Network	Frequency	Percent Frequency
ABC	6	24
CBS	9	36
FOX	1	4
NBC	9	36
Total	25	100

b. For these data, NBC and CBS tie for the number of top-rated shows. Each has $9(36 \%)$ of the top 25. ABC is third with $6(24 \%)$ and the much younger FOX network has 1 (4\%).

$$
2-5
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
7. a.

Rating	Frequency	Percent Frequency
Excellent	20	40
Very Good	23	46
Good	4	8
Fair	1	2
Poor	$\underline{2}$	$\underline{4}$
Total	50	100

Management should be very pleased with the survey results. $40 \%+46 \%=86 \%$ of the ratings are very good to excellent. 94% of the ratings are good or better. This does not look to be a Delta flight where significant changes are needed to improve the overall customer satisfaction ratings.
b. While the overall ratings look fine, note that one customer (2%) rated the overall experience with the flight as Fair and two customers (4\%) rated the overall experience with the flight as Poor. It might be insightful for the manager to review explanations from these customers as to how the flight failed to meet expectations. Perhaps, it was an experience with other passengers that Delta could do little to correct or perhaps it was an isolated incident that Delta could take steps to correct in the future.
8. a.

Position	Frequency	Relative Frequency
Pitcher	17	0.309
Catcher	4	0.073
1st Base	5	0.091
2nd Base	4	0.073
3rd Base	2	0.036
Shortstop	5	0.091
Left Field	6	0.109
Center Field	5	0.091
Right Field	$\underline{7}$	$\underline{0.127}$
Total	55	1.000

b. Pitchers (Almost 31\%)
c. 3 rd Base $(3-4 \%)$
d. Right Field (Almost 13\%)
e. Infielders (16 or 29.1\%) to Outfielders (18 or 32.7\%)
9. a.

	Bachelor's	Master's
B	21%	27%
CSE	9%	9%
E	6%	24%
H	16%	8%
NSM	8%	2%
SBS	16%	6%
O	24%	24%
Total	100%	100%

b.

c. The lowest percentage for a Bachelor's is Education (6\%) and for a Master's is Natural Sciences and Mathematics (2\%).

$$
2-7
$$

d. The highest percentage for a Bachelor's is Other (24%) and for a Master's is Business (27%).
e.

	Bachelor's		Master's		Difference
		21%		27%	
B	9%		9%		6%
CSE	6%		24%		18%
E	16%		8%		-8%
H	8%		2%	-6%	
NSM	16%		6%		-10%
SBS	24%		24%		0%
O					

Education has the largest increase in percent: 18\%
10. a.

Rating	Frequency
Excellent	187
Very Good	252
Average	107
Poor	62
Terrible	41
Total	649

b.

Rating	Percent Frequency
Excellent	29
Very Good	39
Average	16
Poor	10
Terrible	6
Total	100

c.

d. At the Lakeview Lodge, $29 \%+39 \%=68 \%$ of the guests rated the hotel as Excellent or Very Good. But, $10 \%+6 \%=16 \%$ of the guests rated the hotel as poor or terrible.
e. The percent frequency distribution for the Timber Hotel follows:

Rating	Percent Frequency
Excellent	48
Very Good	31
Average	12
Poor	6
Terrible	3
Total	100

At the Lakeview Lodge, $48 \%+31 \%=79 \%$ of the guests rated the hotel as excellent or very good, and $6 \%+3 \%=9 \%$ of the guests rated the hotel as poor or terrible.

Compared to ratings of other hotels in the same region, both of these hotels received very favorable ratings. But, in comparing the two hotels, guests at the Timber Hotel provided somewhat better ratings than guests at the Lakeview Lodge.
11.

Class	Frequency	Relative Frequency	Percent Frequency
$12-14$	2	0.050	5.0
$15-17$	8	0.200	20.0
$18-20$	11	0.275	27.5
$21-23$	10	0.250	25.0
$24-26$	$\underline{9}$	$\underline{0.225}$	$\underline{22.5}$
Total	40	1.000	100.0

12.

Class	Cumulative Frequency	Cumulative Relative Frequency
less than or equal to 19	10	.20
less than or equal to 29	24	.48
less than or equal to 39	41	.82
less than or equal to 49	48	.96
less than or equal to 59	50	1.00

13.

14. a.

b / c.

Class	Frequency	Percent Frequency
$6.0-7.9$	4	20
$8.0-9.9$	2	10
$10.0-11.9$	8	40
$12.0-13.9$	3	15
$14.0-15.9$	$\underline{3}$	$\underline{15}$
Total	20	100

15. Leaf Unit $=.1$

6	3			
7	5	5	7	
8	1	3	4	8

9	3	6	
10	0	4	5
11	3		

16. Leaf Unit $=10$

11	6		
12	0	2	
13	0	6	7
14	2	2	7
15	5		
16	0	2	8
17	0	2	3

17. a / b

Waiting Time	Frequency	Relative Frequency
$0-4$	4	0.20
$5-9$	8	0.40
$10-14$	5	0.25
$15-19$	2	0.10
$20-24$	$\underline{1}$	$\underline{0.05}$
Totals	20	1.00

c/d.

Waiting Time	Cumulative Frequency	Cumulative Relative Frequency
Less than or equal to 4	4	0.20
Less than or equal to 9	12	0.60
Less than or equal to 14	17	0.85
Less than or equal to 19	19	0.95
Less than or equal to 24	20	1.00

e. $12 / 20=0.60$
18. a.

PPG	Frequency
$10-11.9$	1
$12-13.9$	3
$14-15.9$	7
$16-17.9$	19
$18-19.9$	9
$20-21.9$	4
$22-23.9$	2
$24-25.9$	0
$26-27.9$	3
$28-29.9$	2

Total 50

b.

PPG	Relative Frequency
$10-11.9$	0.02
$12-13.9$	0.06
$14-15.9$	0.14
$16-17.9$	0.38
$18-19.9$	0.18
$20-21.9$	0.08
$22-23.9$	0.04
$24-25.9$	0.00
$26-27.9$	0.06
$28-29.9$	0.04
Total	1.00

c.

PPG	Cumulative Percent Frequency
Less than 12	2
Less than 14	8
Less than 16	22
Less than 18	60
Less than 20	78
Less than 22	86
Less than 24	90
Less than 26	90
Less than 28	96
Less than 30	100

d.

e. There is skewness to the right.
f. $(11 / 50)(100)=22 \%$
19. a. The busiest airport is Hartsfield-Jackson Atlanta (ATL) with 104.2 million total passengers. The least busy airport is Detroit Metropolitan (DTW) with 34.4 million total passengers.
b.

Total Passengers (Millions)	Frequency
$30-39.9$	4
$40-49.9$	9
$50-59.9$	3
$60-69.9$	1
$70-79.9$	1
$80-89.9$	1
$90-99.9$	0
$100-109.9$	1
Total	20

c.

Histogram for 20 Busiest North American Airports

Most of the top 20 busiest North American airports service fewer than 60 million passengers. Only four of the 20 airports have more than 60 million passengers.
20. a. Least $=12$, Highest $=23$
b.

Hours in Meetings per		Percent
Week	Frequency	Frequency
$11-12$	1	4%
$13-14$	2	8%
$15-16$	6	24%
$17-18$	3	12%
$19-20$	5	20%
$21-22$	4	16%
$23-24$	4	16%
Total	25	100%

The distribution is slightly skewed to the left.
21. $\mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$.

Revenue	Frequency	Relative Frequency	Cumulative Frequency	Cumulative Relative Frequency
$0-1.9$	10	0.17	10	0.17
$2.0-3.9$	24	0.40	34	0.57
$4.0-5.9$	7	0.12	41	0.68
$6.0-7.9$	5	0.08	46	0.77
$8.0-9.9$	3	0.05	49	0.82
$10.0-11.9$	4	0.07	53	0.88
$12.0-13.9$	1	0.02	54	0.90
$14.0-15.9$	1	0.02	55	0.92
$16.0-17.9$	0	0.00	55	0.92
$18.0-19.9$	0	0.00	55	0.92
$20.0-21.9$	0	0.00	55	0.92
$22.0-23.9$	1	0.02	56	0.93
$24.0-25.9$	1	0.02	57	0.95
$26.0-27.9$	2	0.03	59	0.98
$28.0-29.9$	0	0.00	59	0.98
$30.0-31.9$	0	0.00	59	0.98
$32.0-33.9$	0	0.00	59	0.98
$34.0-35.9$	0	0.00	59	0.98
$36.0-37.9$	1	0.02	60	1.00
Total	60	1.00		

e. Most universities (55) have endowments less than $\$ 16$ billion. Only 5 have endowments larger than $\$ 16$ billion. We see that .92 , or 92%, of the universities have endowments less than $\$ 16$ billion, and only .08 , or 8%, of the universities have endowments larger than $\$ 16$ billion.
f.

Top University Endowments

Endowment Amount (\$ Billions)

The histogram shows the distribution is skewed to the right with five university endowments in the $\$ 22$ to $\$ 38$ billion range.
g. Harvard University has the largest endowment at $\$ 36$ billion. All other universities have endowments less than $\$ 28$ billion. Most (92%) have endowments less than $\$ 16$ billion.
22. a.

\# U.S. Locations	Frequency	Percent Frequency
$0-4,999$	10	50
$5,000-9,999$	3	15
$10,000-14,999$	2	10
$15,000-19,999$	1	5
$20,000-24,999$	0	0
$25,000-29,999$	1	5
$30,000-34,999$	2	10
$35,000-39,999$	1	5
	20	100

b.

c. The distribution is skewed to the right. The majority of the franchises in this list have fewer than 20,000 locations $(50 \%+15 \%+15 \%=80 \%)$. McDonald's, Subway and 7-Eleven have the highest number of locations.
23. a. The highest positive YTD \% Change for Japan's Nikkei index with a YTD \% Change of 31.4%.
b. A class size of 10 results in 10 classes.

YTD \% Change Frequency

$-20--15.1$	1
$-15--10.1$	1
$-10--5.1$	3
$-5--0.1$	3
$0-4.9$	4
$5-9.9$	5
$10-14.9$	8
$15-19.9$	3
$20-24.9$	1
$25-29.9$	0
$30-34.9$	1

Chapter 2

c.

The general shape of the distribution is skewed to the left. Twenty-two of the 30 indexes have a positive YTD \% Change and 13 have a YTD \% Change of 10% or more. Eight of the indexes had a negative YTD \% Change.
d. A variety of comparisons are possible depending upon when the study is done.
24.

Leaf Unit $=1000$
Starting Median
Salary

| 4 | 6 | 8 | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1 | 2 | 3 | 3 | 5 | 6 | 8 | 8 |
| 6 | 0 | 1 | 1 | 1 | 2 | 2 | | |
| 7 | 1 | 2 | 5 | | | | | |

Leaf Unit $=1000$
Mid-Career Median
Salary

8	0	0	4		
9	3	3	5	6	7
10	5	6	6		
11	0	1	4	4	4
12	2	3	6		

There is a wider spread in the mid-career median salaries than in the starting median salaries.
Also, as expected, the mid-career median salaries are higher than the starting median salaries. The

$$
2-18
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
mid-career median salaries were mostly in the $\$ 93,000$ to $\$ 114,000$ range while the starting median salaries were mostly in the $\$ 51,000$ to $\$ 62,000$ range.
25. a.

b. The histogram is skewed to the right.
c.

4	3						
5							
6	1	3	7	9			
7	1	3	4	5	7	7	9
8	2	4	7				
9	0	3	6				
10	0						
11	3						

d. Rotating the stem-and-leaf display counterclockwise onto its side provides a picture of the data that is similar to the histogram shown in part (a). Although the stem-and-leaf display may appear to offer the same information as a histogram, it has two primary advantages: the stem-and-leaf display is easier to construct by hand; and the stem-and-leaf display provides more information than the histogram because the stem-and-leaf shows the actual data.
26. a.

2	1	4
2	6	7

Chapter 2

3	0	1	1	1	2	3			
3	5	6	7	7					
4	0	0	3	3	3	3	3	4	4
4	6	6	7	9					
5	0	0	0	2	2				
5	5	6	7	9					
6	1	4							
6	6								
7	2								
7									

b. Most frequent age group: 40-44 with 9 runners
c. 43 was the most frequent age with 5 runners
27. a.

	\boldsymbol{y}			
\boldsymbol{x}	1	2	Total	
	A	5	0	5
C	11	2	13	
Total	18	12	30	

b.

		y		
		1	2	Total
x	A	100%	0%	100%
	B	84.6%	15.4%	100%
	C	16.7%	83.3%	100%

c.

		y	
		1	2
x	A	27.8%	0%
	B	61.1%	16.7%
	C	11.1%	83.3%
	Total	100%	100%

d. Category A values for x are always associated with category 1 values for y. Category B values for x are usually associated with category 1 values for y. Category C values for x are usually associated with category 2 values for y.
28. a.

b.

c.

		20-39	y			
		40-59	60-79	80-		
				100		
x	10-29		0.0	0.0	16.7	100.0
	30-49		28.6	0.0	66.7	0.0
	50-69	14.3	100.0	16.7	0.0	
	70-90	57.1	0.0	0.0	0.0	
	Grand Total	100	100	100	100	

d. Higher values of x are associated with lower values of y and vice versa.
29. a. Row Percentages

	Average Speed					
Make	$130-139.9$	$140-149.9$	$150-159.9$	$160-9$	$170-179.9$	Total
Buick	100.0	0.0	0.0	0.0	0.0	100
Chevrolet	18.75	31.25	25.0	18.75	6.25	100
Dodge	0.0	100.0	0.0	0.0	0.0	100
Ford	33.33	16.67	33.33	16.67	0.0	100

b. $(4+3+1) / 16=50 \%$
c. Column Percentages

Average Speed

			$160-$			
Make	$130-139.9$	$140-149.9$	$150-159.9$	169.9	$170-179.9$	
Buick	16.67	0.0	0.0	0.0	0.0	
Chevrolet	50.0	62.5	66.67	75.0	100.0	
Dodge	0.0	25.0	0.0	0.0	0.0	
Ford	33.33	12.5	33.33	25.0	0.0	
Total	100	100	100	100	100	

d. $3 / 4=75 \%$
30. a. Row Percentages

Average Speed	$1988-1992$	$1993-1997$	$1998-2002$	$2003-2007$	$2008-2012$	Total
$130-139.9$	16.7	0.0	0.0	33.3	50.0	100
$140-149.9$	25.0	25.0	12.5	25.0	12.5	100
$150-159.9$	0.0	50.0	16.7	16.7	16.7	100
$160-169.9$	50.0	0.0	50.0	0.0	0.0	100
$170-179.9$	0.0	0.0	100.0	0.0	0.0	100

b. It appears that most of the faster average winning times occur before 2003. This could be due to new regulations that take into account driver safety, fan safety, the environmental impact, and fuel consumption during races.
31. a. The crosstabulation of condition of the greens by gender is presented below.

	Green Condition		
Gender	Too Fast	Fine	Total
Male	35	65	100
Female	40	60	100
Total	75	125	200

The female golfers have the highest percentage saying the greens are too fast: $40 / 100=40 \%$. Male golfers have $35 / 100=35 \%$ saying the greens are too fast.
b. Among low handicap golfers, $1 / 10=10 \%$ of the women think the greens are too fast and $10 / 50=$ 20% of the men think the greens are too fast. So, for the low handicappers, the men show a higher percentage who think the greens are too fast.
c. Among the higher handicap golfers, $39 / 90=43 \%$ of the woman think the greens are too fast and $25 / 50=50 \%$ of the men think the greens are too fast. So, for the higher handicap golfers, the men show a higher percentage who think the greens are too fast.
d. This is an example of Simpson's Paradox. At each handicap level a smaller percentage of the women think the greens are too fast. But, when the crosstabulations are aggregated, the result is reversed and we find a higher percentage of women who think the greens are too fast.

The hidden variable explaining the reversal is handicap level. Fewer people with low handicaps think the greens are too fast, and there are more men with low handicaps than women.
32. a. Row percentages are shown below.

$$
2-22
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Region	$\begin{gathered} \text { Under } \\ \$ 15,000 \end{gathered}$	$\begin{gathered} \$ 15,000 \\ \text { to } \\ \$ 24,999 \\ \hline \end{gathered}$	\$25,000 to \$34,999	\$35,000 \$49,999		$\begin{gathered} \$ 75,000 \\ \text { to } \\ \$ 99,999 \\ \hline \end{gathered}$	\$100,000 and over	Total
Northeast	12.72	10.45	10.54	13.07	17.22	11.57	24.42	100.00
Midwest	12.40	12.60	11.58	14.27	19.11	12.06	17.97	100.00
South	14.30	12.97	11.55	14.85	17.73	11.04	17.57	100.00
West	11.84	10.73	10.15	13.65	18.44	11.77	23.43	100.00

The percent frequency distributions for each region now appear in each row of the table. For example, the percent frequency distribution of the West region is as follows:

Income Level	Percent Frequency
Under $\$ 15,000$	11.84
$\$ 15,000$ to $\$ 24,999$	10.73
$\$ 25,000$ to $\$ 34,999$	10.15
$\$ 35,000$ to $\$ 49,999$	13.65
$\$ 50,000$ to $\$ 74,999$	18.44
$\$ 75,000$ to $\$ 99,999$	11.77
$\$ 100,000$ and over	23.43
Total	100.00

b. West: $18.44+11.77+23.43=53.64 \%$ or $(4804+3066+6104) / 26057=53.63 \%$

South: $17.73+11.04+17.57=46.34 \%$ or $(7730+4813+7660) / 43609=46.33 \%$
c.

Northeast

Midwest

South

$$
2-24
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

The largest difference appears to be a higher percentage of household incomes of $\$ 100,000$ and over for the Northeast and West regions.
d. Column percentages are shown below.

Region	$\begin{gathered} \text { Under } \\ \$ 15,000 \end{gathered}$		\$25,000 to \$34,999	\$35,000 to $\mathbf{\$ 4 9 , 9 9 9}$			$\begin{aligned} & \$ 100,000 \\ & \text { and over } \end{aligned}$
Northeast	17.83	16.00	17.41	16.90	17.38	18.35	22.09
Midwest	21.35	23.72	23.50	22.68	23.71	23.49	19.96
South	40.68	40.34	38.75	39.00	36.33	35.53	32.25
West	20.13	19.94	20.34	21.42	22.58	22.63	25.70
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Each column is a percent frequency distribution of the region variable for one of the household income categories. For example, for an income level of $\$ 35,000$ to $\$ 49,999$ the percent frequency distribution for the region variable is as follows:

Percent

Region	Frequency
Northeast	16.90
Midwest	22.68
South	39.00
West	
	Total

e. 32.25% of households with a household income of $\$ 100,000$ and over are from the South region, while 17.57% of households from the South region have income of $\$ 100,000$ and over. These percentages are different because they represent percent frequencies based on different category totals.
33. a.

Brand Value (\$ billions)							
Industry	$0-9.9$	$10-19.9$	$20-29.9$	$30-19.9$	$40-49.9$	$50-60$	Total
Automotive \& Luxury	10	4	1				15
Consumer Packaged Goods	7	5					12
Financial Services	11	3					14
Other	14	10		2			26
Technology	7	4		1	1	2	15

b.

Industry	Frequency
Automotive \& Luxury	15
Consumer Packaged Goods	12
Financial Services	14
Other	26
Technology	15
	Total

c.

Brand Value (\$ billions)	Frequency
$0-9.9$	49
$10-19.9$	26
$20-29.9$	1
$30-39.9$	3
$40-49.9$	1
$50-60$	
	Total

d. The right margin shows the frequency distribution for the fund type variable and the bottom margin shows the frequency distribution for the brand value.
e. Higher brand values are associated with the technology brands. For instance, the crosstabulation shows that 4 of the 15 technology brands (approximately 27%) had a brand value of $\$ 30$ billion or higher.
34. a.

Brand Revenue (\$ billions)

Brand Revenue (\$ billions)							
Industry	$0-25$	$25-50$	$50-75$	$75-100$	$100-125$	$125-150$	Total
Automotive \& Luxury	10	1	1	1	2	15	
Consumer Packaged Goods	12						12
Financial Services	2	4	2	2	2	2	14

Other		13	5	3	2	2	1	26
Technology		4	4	4	1	2		15
	Total	41	14	10	5	7	5	82

b.
Brand Revenue (\$ billions) Frequency

$0-25$	41	
$25-50$	14	
$50-75$	10	
$75-100$	5	
$100-125$		7
$125-150$		5
	Total	82

c. Consumer packaged goods have the lowest brand revenues; each of the 12 consumer packaged goods brands in the sample data had a brand revenue of less than $\$ 25$ billion. Approximately 57% of the financial services brands (8 out of 14) had a brand revenue of $\$ 50$ billion or greater, and 47% of the technology brands (7 out of 15) had a brand revenue of at least $\$ 50$ billion.
d.

1-Yr Value Change (\%)							
Industry	$\begin{gathered} -60-- \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} -40-- \\ 21 \end{gathered}$	$\begin{gathered} -20-- \\ 1 \\ \hline \end{gathered}$	$\begin{aligned} & 0- \\ & 19 \end{aligned}$	$\begin{gathered} 20- \\ 39 \end{gathered}$	$\begin{gathered} 40- \\ 60 \\ \hline \end{gathered}$	Tota
Automotive \& Luxury				11	4		15
Consumer Packaged							
Goods			2	10			12
Financial Services		1	6	7			14
Other			2	20	4		26
Technology	1	3	4	4	2	1	15
Total	1	4	14	52	10	1	82

e.

1-Yr Value Change (\%)	Frequency
$-60--41$	1
$-40--21$	4
$-20--1$	14
$0-19$	52
$20-39$	10
$40-60$	
	Total
	$2-27$

Chapter 2

f. The automotive \& luxury brands all had a positive 1-year value change (\%). The technology brands had the greatest variability. Financial services were heavily concentrated between -20% and $+19 \%$ changes, while consumer goods and other industries were mostly concentrated in $0-19 \%$ gains.
35. a.

Hwy MPG							
	$30-$					$35-$	
Size	$20-24$	$25-29$	34	39	$40-44$	Total	
Compact	13	25	49	29	6	122	
Large	10	31	19	11	1	72	
Midsize	15	35	61	29	7	147	
Total	38	91	129	69	14	341	

b. Midsize and Compact seem to be more fuel efficient than Large.
c.

City MPG

	$10-$					
Drive	14	$15-19$	$20-24$	$25-29$	$30-34$	Total
A	3	43	57	5		108
F		8	48	82	16	154
R	10	33	32	4		79
Total	13	84	137	91	16	341

d. Higher fuel efficiencies are associated with front wheel drive cars.
e.

City MPG

Fuel Type	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	Total
P	13	58	94	16	1	182
R		26	43	75	15	159
Total	13	84	137	91	16	341

f. Higher fuel efficiencies are associated with cars that use premium fuel.
36. a.

b. There is a negative relationship between x and $y ; y$ decreases as x increases.
37. a.

b. As x goes from A to D the frequency for I increases and the frequency of II decreases.
38. a.

Chapter 2

b.

39. a.

b. For midsized cars, lower driving speeds seem to yield higher miles per gallon.

$$
2-30
$$

40. a.

b. Colder average low temperature seems to lead to higher amounts of snowfall.
c. Two cities have an average snowfall of nearly 100 inches of snowfall: Buffalo, NY and Rochester, NY. Both are located near large lakes in New York.
41. a.

b. The percentage of people with hypertension increases with age.
2-31
© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
c. For ages earlier than 65 , the percentage of males with hypertension is higher than that for females. After age 65, the percentage of females with hypertension is higher than that for males.
42. a.

b. After an increase in age $25-34,4 \mathrm{~K}$ TV ownership decreases as age increases. The percentage of people with other types of televisions increases with age. There is less variation across age groups in the percentage who own 1080 televisions.
c. Television technology is advancing rapidly, so it is likely that a new display will be introduced within 10 years. But until the next display type becomes rapidly available, we would expect that 4 K TV ownership percentages would increase across age ranges as this technology matures and the television prices continue to decrease.
43. a.

2-32
© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
b.

c. The stacked bar chart seems simpler than the side-by-side bar chart and more easily conveys the differences in store managers' use of time.
44. a.

Class	Frequency
$600-699$	1
$700-799$	2
$800-899$	4
$900-999$	6
$1000-1099$	7
$1100-1199$	3
$1200-1299$	4
$1300-1399$	2
$1400-1499$	1
Total	30

b. The distribution is nearly symmetrical. It could be approximated by a bell-shaped curve.
c. 10 of 30 or 33% of the scores are between 1400 and 1599 . The average SAT score looks to be a little over 1500. Scores below 800 or above 2200 are unusual.
45. a.

Median Household Income	Frequency	Percent Frequency
$65.0-69.9$	1	2%
$70.0-74.9$	6	12%
$75.0-79.9$	17	34%
$80.0-84.9$	6	12%
$85.0-89.9$	7	14%
$90.0-94.9$	5	10%
$95.0-99.9$	4	8%
$100.0-104.9$	0	0%
$105.0-109.9$	3	6%
$110.0-114.9$	1	2%
	50	100%

b.

c. The distribution is skewed to the right. There is a gap in the $\$ 100.0-\$ 104.9$ range. The most frequent range for the median household income is $\$ 75.0-\$ 79.9$ thousand.
d. New Jersey $\quad \$ 110.7$ thousand
e. Idaho $\$ 67.1$ thousand

Chapter 2

46. a.

b. The distribution is skewed to the right.
c. Fifteen states (30%) have a population less than 2.5 million. Over half of the states have population less than 5 million (28 states -56%). Only seven states have a population greater than 10 million (California, Florida, Illinois, New York, Ohio, Pennsylvania and Texas). The largest state is California (37.3 million) and the smallest states are Vermont and Wyoming (600 thousand).
47. a.

1	8
2	014
3	18
4	007899
5	012444578
6	00139
7	237888
8	011
9	1
10	3
11	0289
12	9
13	01
14	
15	46
16	68
17	
18	
19	2
20	
21	
22	
23	
24	
25	
26	
27	2

b. The majority of the start-up companies in this set have less than $\$ 90$ million in venture capital. Only 6 of the $50(12 \%)$ have more than $\$ 150$ million.
48. a.

Industry	Frequency	Percent Frequency
Bank	26	13%
Cable	44	22%
Car	42	21%
Cell	60	30%
Collection	28	14%
Total	200	100%

Chapter 2

b.

c. The cellular phone providers had the highest number of complaints.
d. The percentage frequency distribution shows that the two financial industries (banks and collection agencies) had about the same number of complaints. Also, new car dealers and cable and satellite television companies also had about the same number of complaints.
49. a.

Beta	Frequency	Percent Frequency
$0.00-0.09$	1	3.3%
$0.10-0.19$	1	3.3%
$0.20-0.29$	1	3.3%
$0.30-0.39$	0	0.0%
$0.40-0.49$	1	3.3%
$0.50-0.59$	1	3.3%
$0.60-0.69$	3	10.0%
$0.70-0.79$	2	6.7%
$0.80-0.89$	5	16.7%
$0.90-.99$	4	13.3%
$1.00-1.09$	0	0.0%
$1.10-1.19$	2	6.7%
$1.20-1.29$	5	16.7%
$1.30-1.39$	2	6.7%
$1.40-1.49$	0	0.0%
$1.50-1.59$	0	0.0%
$1.60-1.69$	0	0.0%
$1.70-1.80$	1	3.3%
$1.80-1.90$	1	3.3%
Total	30	100.0%

b.

c. The distribution is somewhat skewed to the left.
d. The stock with the highest beta is JP Morgan Chase \& Company with a beta of 1.84 . The stock with the lowest beta is Verizon Communications Inc. with a beta of . 04 .
50. a.

Level of Education	Percent Frequency
High school graduate	$32,773 / 65,644(100)=49.93$
Bachelor's degree	$22,131 / 65,644(100)=33.71$
Master's degree	$9003 / 65,644(100)=13.71$
Doctoral degree	$1737 / 65,644(100)=2.65$ \quad Total

$13.71+2.65=16.36 \%$ of heads of households have a master's or doctoral degree.
b.

Household Income	Percent Frequency
Under $\$ 25,000$	$13,128 / 65,644(100)=20.00$
$\$ 25,000$ to $\$ 49,999$	$15,499 / 65,644(100)=23.61$
$\$ 50,000$ to $\$ 99,999$	$20,548 / 65,644(100)=31.30$
$\$ 100,000$ and over	$16,469 / 65,644(100)=25.09$
Total	100.00

$31.30+25.09=56.39 \%$ of households have an income of $\$ 50,000$ or more.
c.

Household Income

Level of Education	$\begin{gathered} \text { Under } \\ \$ 25,000 \end{gathered}$	$\begin{gathered} \$ 25,000 \text { to } \\ \$ 49,999 \end{gathered}$	$\begin{gathered} \$ 50,000 \text { to } \\ \$ 99,999 \\ \hline \end{gathered}$	$\begin{gathered} \$ 100,000 \text { and } \\ \text { over } \end{gathered}$
High school graduate	75.26	64.33	45.95	21.14
Bachelor's degree	18.92	26.87	37.31	47.46
Master's degree	5.22	7.77	14.69	24.86
Doctoral degree	0.60	1.03	2.05	6.53
Total	100.00	100.00	100.00	100.00

There is a large difference between the level of education for households with an income of under $\$ 25,000$ and households with an income of $\$ 100,000$ or more. For instance, 75.26% of households with an income of under $\$ 25,000$ are households in which the head of the household is a high school graduate. But, only 21.14% of households with an income level of $\$ 100,000$ or more are households in which the head of the household is a high school graduate. It is interesting to note, however, that 45.95% of households with an income of $\$ 50,000$ to $\$ 99,999$ are households in which the head of the household is a high school graduate.
51. a. The batting averages for the junior and senior years for each player are as follows:

Junior year:

$$
\begin{array}{lr}
\text { Allison Fealey } & 15 / 40=.375 \\
\text { Emily Janson } & 70 / 200=.350
\end{array}
$$

Senior year:

$$
\begin{array}{ll}
\text { Allison Fealey } & 75 / 250=.300 \\
\text { Emily Janson } & 35 / 120=.292
\end{array}
$$

Because Allison Fealey had the higher batting average in both her junior year and senior year, Allison Fealey should receive the scholarship offer.
b. The combined or aggregated two-year crosstabulation is as follows:

Combined 2-Year Batting

Outcome	A. Fealey	E. Jansen
Hit	90	105
No Hit	200	215
Total At-Bats	290	320

Based on this crosstabulation, the batting average for each player is as follows:
Combined junior/senior years

$$
\begin{array}{lr}
\text { Allison Fealey } & 90 / 290=.310 \\
\text { Emily Janson } & 105 / 320=.328
\end{array}
$$

Because Emily Janson has the higher batting average over the combined junior and senior years, Emily Janson should receive the scholarship offer.

$$
2-40
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
c. The recommendations in parts (a) and (b) are not consistent. This is an example of Simpson's Paradox. It shows that in interpreting the results based upon separate or unaggregated crosstabulations, the conclusion can be reversed when the crosstabulations are grouped or aggregated. When Simpson's Paradox is present, the decision maker will have to decide whether the unaggregated or the aggregated form of the crosstabulation is most helpful in identifying the desired conclusion. Note: The authors prefer the recommendation to offer the scholarship to Emily Janson because it is based upon the aggregated performance for both players over a larger number of atbats. But this is a judgment or personal preference decision. Others may prefer the conclusion based on using the unaggregated approach in part (a).

52 a.

Size of Company				
Job Growth (\%)	Small	Midsized	Large	Total
$-10-0$	4	6	2	12
$0-10$	18	13	29	60
$10-20$	7	2	4	13
$20-30$	3	3	2	8
$30-40$	0	3	1	4
$60-70$		0	1	0
	Total	32	28	38

b. Frequency distribution for growth rate.

Job Growth (\%)	Total
$-10-0$	12
$0-10$	60
$10-20$	13
$20-30$	8
$30-40$	4
$60-70$	1
	Total

Frequency distribution for size of company.

Size	Total
Small	32
Medium	28
Large	38
	Total

c. Crosstabulation showing column percentages.

Size of Company

$$
2-41
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

Job Growth (\%)	Small	Midsized	Large
$-10-0$	13	21	5
$0-10$	56	46	76
$10-20$	22	7	11
$20-30$	9	11	5
$30-40$	0	11	3
$60-70$		100	4
	Total	100	100

d. Crosstabulation showing row percentages.

Size of Company

Job Growth (\%)	Small	Midsized	Large	Total
$-10-0$	33.	50	17	100
$0-10$	30	22	48	100
$10-20$	54	15	31	100
$20-30$	38	38	25	100
$30-40$	0	75	25	100
$60-70$	0	100	0	100

e. 12 companies had a negative job growth: 13% were small companies; 21% were midsized companies; and 5% were large companies. So, in terms of avoiding negative job growth, large companies were better off than small and midsized companies. But, although 95% of the large companies had a positive job growth, the growth rate was below 10% for 76% of these companies. In terms of better job growth rates, midsized companies performed better than either small or large companies. For instance, 26% of the midsized companies had a job growth of at least 20% as compared to 9% for small companies and 8% for large companies.
53. a.

53.					Tuition \& Fees (\$)					
	1-	5001-	10,001	15,001		25,001	30,001	35,001	40,001	
Year	500	10,00	-	-	20,001-	-	-	-	-	
Founded	0	0	15,000	20,000	25,000	30,000	35,000	40,000	45,000	Total
1600-1649								1		1
1700-1749								2	1	3
1750-1799									4	4
1800-1849					1	3	3	6	8	21
1850-1899	1			2	2	13	14	13	4	49
1900-1949			1		2	3	4	8		18
1950-2000				2	4		1			7
Total	1	0	1	4	9	19	22	30	17	103

$$
2-42
$$

b.

Tuition
\& Fees
(\$)

		$5001-$	10,001	15,001		25,001	30,001	35,001	40,001	
Year	$1-$	10,00	-	-	$20,001-$	-	-	-	-	Grand
Founded	5000	0	15,000	20,000	25,000	30,000	35,000	40,000	45,000	Total
$1600-1649$								100.00		100
$1700-1749$								66.67	33.33	100
$1750-1799$										100.00
$1800-1849$									100	
$1850-1899$	2.04									
$1900-1949$			5.56		11.11	16.29	14.29	28.57	38.10	100
$1950-2000$				28.57	57.14		22.53	28.57	26.53	8.16
100										

c. Colleges in this sample founded before 1800 tend to be expensive in terms of tuition.
54. a.

b.

	\% Graduate													
Year Found ed	$\begin{aligned} & 35- \\ & 40 \end{aligned}$	$\begin{aligned} & 40 \\ & - \\ & 45 \end{aligned}$	$\begin{aligned} & 45- \\ & 50 \end{aligned}$	$\begin{aligned} & 50- \\ & 55 \end{aligned}$	$\begin{aligned} & 55 \\ & - \\ & 60 \end{aligned}$	$\begin{aligned} & 60- \\ & 65 \end{aligned}$	$\begin{aligned} & 65- \\ & 70 \end{aligned}$	$\begin{aligned} & 70- \\ & 75 \end{aligned}$	$\begin{aligned} & 75- \\ & 80 \end{aligned}$	$\begin{aligned} & 80- \\ & 85 \end{aligned}$	$\begin{aligned} & 85- \\ & 90 \end{aligned}$	$\begin{aligned} & 90- \\ & 95 \end{aligned}$	$\begin{aligned} & 95- \\ & 100 \end{aligned}$	Gran d Tota 1
$\begin{aligned} & \hline 1600- \\ & 1649 \end{aligned}$													$\begin{aligned} & 100 . \\ & 00 \end{aligned}$	100
$\begin{aligned} & \hline 1700- \\ & 1749 \end{aligned}$													$\begin{aligned} & 100 . \\ & 00 \end{aligned}$	100
$\begin{aligned} & 1750- \\ & 1799 \end{aligned}$												$\begin{aligned} & 25.0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 75.0 \\ & 0 \\ & \hline \end{aligned}$	100

Chapter 2

$\begin{aligned} & \hline 1800- \\ & 1849 \\ & \hline \end{aligned}$						4.76	9.52	$\begin{aligned} & 19.0 \\ & 5 \end{aligned}$	9.52	$\begin{aligned} & 14.2 \\ & 9 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 5 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 9 \\ & \hline \end{aligned}$	9.52	100
$\begin{aligned} & 1850- \\ & 1899 \end{aligned}$			2.04	4.08	$\begin{aligned} & 8.1 \\ & 6 \end{aligned}$	6.12	$\begin{aligned} & 22.4 \\ & 5 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 0 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 7 \end{aligned}$	$\begin{aligned} & 12.2 \\ & 4 \end{aligned}$	6.12	8.16	2.04	100
$\begin{aligned} & 1900- \\ & 1949 \end{aligned}$	5.56	$\begin{aligned} & \hline 5.5 \\ & 6 \end{aligned}$	5.56		5.5	$\begin{aligned} & 16.6 \\ & 7 \end{aligned}$		$\begin{aligned} & 16.6 \\ & 7 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 1 \end{aligned}$	$\begin{aligned} & 22.2 \\ & 2 \end{aligned}$	5.56	5.56		100
$\begin{aligned} & 1950- \\ & 2000 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 9 \\ & \hline \end{aligned}$		$\begin{aligned} & 14.2 \\ & 9 \\ & \hline \end{aligned}$	$\begin{aligned} & 42.8 \\ & 6 \end{aligned}$			$\begin{aligned} & 28.5 \\ & 7 \\ & \hline \end{aligned}$							100

c. Older colleges and universities tend to have higher graduation rates.
55. a.

b. Older colleges and universities tend to be more expensive.
56. a.

b. There appears to be a strong positive relationship between Tuition \& Fees and \% Graduation.

Chapter 2

57. a.

b.

Region	2013	2015
China	7.0\%	37.9\%
Western Europe	33.4\%	32.6\%
United States	45.6\%	20.4\%
Japan	13.5\%	8.2\%
Canada	0.4\%	0.9\%
Total:	100.0\%	100.0\%

c. The graph in part (a) is more insightful because it shows the change in vehicle sales over time for each market region.
58. a.

Zoo attendance appears to be dropping over time.
b.

c. General attendance is increasing, but not enough to offset the decrease in member attendance. School membership appears fairly stable.

Chapter 2
 Descriptive Statistics: Tabular and Graphical Displays

Case Problem 1: Pelican Stores

1. There were 70 promotional customers and 30 regular customers. Because there are 100 observations in the sample, the frequency and percent frequency distributions are the same. Percent frequency distributions for many of the variables are given.

No. of Items	Percent Frequency
1	29
2	27
3	10
4	10
5	9
6	7
7 or more	8
Total	100
Net Sales	Percent Frequency
0.00-24.99	9
25.00-49.99	30
50.00-74.99	25
75.00-99.99	10
100.00-124.99	12
125.00-149.99	4
150.00-174.99	3
175.00-199.99	3
200 or more	4
Total	100
Method of Payment	Percent Frequency
American Express	2
Discover	4
MasterCard	14
Proprietary Card	70
Visa	10
Total	100
Gender	Percent Frequency
Female	93
Male	7
Total	100
Marital Status	Percent Frequency
Married	84
Single	16
Total	100
Age	Percent Frequency
20-29	10

$30-39$		30
$40-49$		33
$50-59$		16
$60-69$		7
$70-79$		4
	Total	100

These percent frequency distributions provide a profile of Pelican's customers. Many observations are possible, including:

- A large majority of the customers use National Clothing's proprietary credit card.
- Over half of the customers purchase one or two items, but a few make numerous purchases.
- The percent frequency distribution of net sales shows that 61% of the customers spent $\$ 50$ or more.
- Customers are distributed across all adult age groups.
- The overwhelming majority of customers are female.
- Most of the customers are married.

2.

3. A crosstabulation of type of customer versus net sales is shown.

	Net Sales												
	$0-$ $25-$ $50-$ $75-$ $100-$ $125-$ $175-$ 200 $225-$ 250 $275-$ 25 50 75 100 125 175 200 225 250 275 300											Total	
Customer													
Promotional	7	17	17	8	9	3	2	3	3	2	1		70
Regular	2	13	8	2	3	1	1						30
Total	9	30	25	10	12	4	3	3	3	2	1		100

From the crosstabulation it appears that net sales are larger for promotional customers.
4. A scatter diagram of net sales vs. age is shown below. A trendline has been fitted to the data. From this, it appears that there is no relationship between net sales and age.

Age is not a factor in determining net sales.

Case Problem 2: Movie Theater Releases

This case provides the student with the opportunity to use tabular and graphical presentations to analyze data from the movie industry. Developing and interpreting frequency distributions, percent frequency distributions and scatter diagrams are emphasized. The interpretations and insights can be quite varied. We illustrate some below.

Frequency Distribution and Percent Frequency Distribution

The choice of the classes for frequency distributions or percent frequency distributions can be expected to vary. The frequency distributions we developed are as follows:

Opening Gross Sales (Millions)	Frequency (or Percentage)
$\$ 0-9.99$	14
$10-19.99$	34
$20-29.99$	22
$30-39.99$	10
$40-49.99$	5
$50-59.99$	3
$60-69.99$	1
$70-79.99$	2
$80-89.99$	1
$90-99.99$	0
$100-109.99$	2
$110-119.99$	0
$120-129.99$	0
$130-139.99$	3
$140-149.99$	0
$150-159.99$	1
$160-169.99$	1
$170-179.99$	1
Total	100

Total Gross Sales (Millions)	Frequency (or Percentage)
$\$ 0-49.99$	34
$50-99.99$	36
$100-149.99$	11
$150-199.99$	6
$200-249.99$	3
$250-299.99$	1
$300-349.99$	3
$350-399.99$	3
$400-449.99$	1
$450-499.99$	1
$500-549.99$	1
Total	100
	Frequency
Number	(or Percentage)
of Theaters	0
$0-499$	0

2-51

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part

$1000-1499$	1
$1500-1999$	4
$2000-2499$	6
$2500-2999$	17
$3000-3499$	37
$3500-3999$	21
$4000-4499$	$\frac{14}{100}$

Number of Weeks in Release	Frequency (or Percentage)
$0-4$	0
$5-9$	15
$10-14$	43
$15-19$	23
$20-24$	14
$25-29$	4
$30-34$	0
$35-39$	0
$40-44$	0
$45-49$	$\underline{1}$
Total	100

Histograms

The following histograms are based on the frequency distributions shown above.

Interpretation

Opening Weekend Gross Sales. The distribution is skewed to the right. Numerous movies have somewhat low opening weekend gross sales, while a relatively few (8\%) have an opening weekend gross sales of \$100 million or more. Only 3% had opening weekend gross sales of $\$ 150$ million or more. Eighty percent of the movies had opening weekend gross sales less than $\$ 40$ million, and 92% of the movies had opening weekend gross sales less than $\$ 100$ million.

Total Gross Sales. This distribution is also skewed to the right. Again, the majority of the movies have relatively low total gross sales with 70% of movies having gross sales less than $\$ 100$ million and 91% less than $\$ 300$ million. Highly successful blockbuster movies are rare. Total gross sales over $\$ 400$ million occurred only 3% of the time and over $\$ 500$ million occurred only 1% of the time. Unless there is something unusually attractive about the movie, a total gross sales less than $\$ 100$ million appear typical.

Number of Theaters. This distribution is skewed to the left. The number of theaters ranges from just over 1000 to almost 4500. Eighty-nine percent of the movies had large market exposure, playing in 2500 or more theaters. No movies were in less than 1000 theaters and only 11% were in less than 2500 theaters. It appears that most top movies in 2016 received large market exposure in 2500 or more theaters.

Number of Weeks in Release. This distribution is skewed to the right, but not as much as the distributions on sales. It appears that almost all movies in 2016 spent at least 10 weeks in release. Only 15% of movies in 2016 spent less than 10 weeks in release. One movie (Hidden Figures) spent much longer in release than any other movie at 46 weeks.

General Observations. The data show that there are relative few high-end, highly successful movies. The financial rewards are there for the pictures that make the blockbuster level. But the majority of movies will have relatively low opening weekend gross sales and low total gross sales. Movies being shown in more than 2500 theaters and movies that spend at least 10 weeks in release are common.

2.

Scatter Diagrams

Three scatter diagrams are suggested to show how Total Gross Sales is related to each of the other three variables.

Interpretation

Opening Weekend Gross Sales. The scatter plot of total gross sales and opening weekend gross sales shows a strong positive relationship. Movies with the highest total gross sales were the movies with the highest opening gross sales. How the movie does during its opening weekend should be a very good predictor of how the movie will do in terms of total gross sales. Note in the scatter diagram that the majority of the movies show a low opening weekend gross sales and a low total gross sales.

Number of Theaters. The scatter plot of the total gross sales and number of theaters also shows a positive relationship. For movies playing in less than 3500 theaters, the total gross sales were significantly less than those movies playing in more than 3500 theaters. If the movie is shown in more theaters, higher total gross sales are anticipated. For movies playing in more than 3500 theaters, the positive relationship is very strong. This scatter chart
also appears to show a nonlinear relationship as movies playing in the most theaters increase in total gross sales rapidly compared to those playing in fewer theaters.

Number of Weeks in Release. The scatter plot of the total gross sales and number of weeks in release shows a positive relationship, but this relationship appears to be the weakest of the three relationships studied. Generally, the more successful, higher gross sales movies are in release for more weeks. However, this is not always the case. The longest released movie (Hidden Figures) had less total gross sales than many movies that had shorter release times. And many movies that were in release for more than 20 weeks has less total gross revenue than those that had less than 20 weeks in release. This suggests that in some cases blockbuster movies with high gross sales may run their course quickly and not have an excessively long run in release. At the same time, perhaps quality movies with a limited audience may not generate the high total gross sales but may still show a run of 20 or more weeks. The number of weeks in release does not appear to the best predictor of total gross sales.

Case Problem 3: Queen City

This case provides the student with the opportunity to use basic tabular and graphical presentations to describe data from the annual expenditures for the city of Cincinnati, Ohio. The data set is large relative to others in the text. It contains 5,427 records of expenditures. As such, one point of this case is to expose students to a larger data set and help them understand that the pivot tables and charts can be used on a larger data set. In some cases, the student will have to copy, paste, and aggregate data to create the desired tables and charts. Style of presentation may vary by student (for example, vertical versus horizontal bar charts may be used). We illustrate with results and comments below.

Expenditures by Category

The pivot table shows expenditures and percentage of total expenditures by category. The bar chart shows percentage of total expenditures by category (both the table and the bar chart are sorted in descending order). Capital expenditures and payroll account for over 50% of all expenditures. Total expenditures are over $\$ 660$ million. Debt Service seems somewhat high, as it is over 10% of total expenditures.

Expenditures by Department

The following table and bar chart show the percentages of total expenditures incurred by department. Note that we have combined all departments that individually incurred less than 1% of the total expenditures. There are 119 departments, and 96 each account for less than 1% of the total expenditures. As shown below, only six individual departments incur 5% or more of the total expenditures. These include Police, Sewers, Transportation Engineering (Engineering), Fire, Sewer Debt Service and Finance/Risk Management. Debt service on sewers as a percentage of total expenditures appears to be very high.

Department	Percent of Total Expenditures
Department of Police	9.7%
Department of Sewers	8.8%
Transportation and Engineering, Engineering	8.7%
Department of Fire	7.2%
Sewers, Debt Service	6.6%
Finance, Risk Management	5.4%
SORTA Operations	3.6%
Water Works, Debt Service	3.2%
Department of Water Works	3.1%
Finance, Treasury	2.8%
Economic Development	2.1%
Division of Parking Services	1.9%
Community Development, Housing	1.7%
Enterprise Technology Solutions	1.7%
Public Services, Fleet Services	1.7%
Finance, Accounts \& Audits	1.7%
Transportation and Engineering, Planning	1.6%
Public Services, Neighborhood Operations	1.4%
Sewers, Millcreek	1.3%
Health, Primary Health Care Centers	1.2%
Water Works, Water Supply	1.2%
Public Services, Facilities Management	1.1%
Sewers, Wastewater Administration	1.0%
Other Depts. (<1\% each)	21.2%
Total	100.0%

Expenditures by Fund

The following bar table and bar chart show the percentages of total expenditures charged by fund used to pay. Note that we have combined those funds that each cover less than 1% of the total expenditures. There are 129 funds in the database, and 117 of these funds each account for less than 1% of total expenditures.

Fund	Percent of Total Expenditures Covered
050 - GENERAL FUND	25.5%
980 - CAPITAL PROJECTS	16.0%
701 - METROPOLITAN SEWER DISTRICT OF GREATER CINCINNATI	12.7%
704 - METROPOLITAN SEWER DISTRICT CAPITAL IMPROVEMENTS	8.8%
101 - WATER WORKS	7.9%
711 - RISK MANAGEMENT	4.9%
759 - INCOME TAX - TRANSIT	3.7%
151 - BOND RETIREMENT - CITY	2.4%
202 - FLEET SERVICES	1.7%
898 - WATER WORKS IMPROVEMENT 12	1.3%
897 - WATER WORKS IMPROVEMENT 11	1.3%
302 - INCOME TAX - INFRASTRUCTURE	1.1%
Other (<1 \% each).	12.9%
Total	100.0%

Other Points: Of 5,427 records of expenditures in the database, $235(4.3 \%)$ are negative.

Case Problem 4: Cut-Rate Machining, Inc.

1. A scatter diagram of the results for Hole-Maker in the order the holes were drilled shows that this machine consistently overdrills and is moderately consistent.

Hole-Maker Results

A scatter diagram of the results for Shafts \& Slips in the order the holes were drilled shows that this machine consistently underdrills and is moderately consistent.

Shafts \& Slips Results

Hole \#

A scatter diagram of the results for Judge's Jigs in the order the holes were drilled shows that on average this machine consistently underdrills and is extremely consistent.

$$
2-62
$$

© 2021 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Judge's Jigs Results

Hole \#

A scatter diagram of the results for Drill-for-Bits in the order the holes were drilled shows an average diameter of approximately 3 centimeters. However, this machine is very inconsistent.

Drill-for-Bits Results

If we focus solely on the average performance of a drill, we would purchase Drill-for-Bits as the diameters of holes drilled by this vendor's drill appear to be centered at approximately 3 centimeters. However, the diameters of the holes drilled by Drill-for-Bits' machine are extremely inconsistent - several are over $1 / 2$ centimeter too wide and several are over $1 / 2$ centimeter to narrow.

The diameters of holes drilled by the machine provided by Hole Maker are more consistent than those drilled by the machine provided by Drill-for-Bits, and this machine did not drill a single hole that is too narrow. If holes that are slightly too wide are acceptable, we should consider purchasing our drill from Hole Maker.

The diameters of holes drilled by the machine provided by Shafts \& Slips are similar in consistency to the holes by the machine provided by Hole Maker, and this machine did not drill a single hole that is too wide. If holes that are slightly too small are acceptable, we should consider purchasing our drill from Shafts \& Slips.

The diameters of holes drilled by the machine provided by Judge's Jigs are far more consistent than holes by the machine provided by any of the other vendors, but these holes are far too narrow. We should determine if this drill can be recalibrated to that the mean size of holes drilled is approximately 3 centimeters. If this can be done, we should consider purchasing our drill from Judge's Jigs and recalibrating the drill; this would give us a machine that consistently drills holes of approximately 3 centimeters.

However, before we make a decision we should scrutinize the way that these data were collected. We were told that Weideman started all four machines at 8:00 a.m. and let them warm up for two hours. We also see from the data that the drill provided by Hole-Maker was tested from 10:00 a.m. to noon, the drill provided by Shafts \& Slips, Inc. was tested from noon to 2:00 p.m., the drill provided by Judge's Jigs was tested from 2:00 p.m. to 4:00 p.m., and the drill provided by Drill-for-Bits was tested from 4:00 p.m. to 6:00 p.m. Were all drills allowed to keep running after the 8:00 a.m. to 10:00 a.m. warm-up period? Either way, this could bias the results.

We also see from the data that Ms. Ames ran the test drills from 10:00 a.m. to 4:00 p.m. when the drills provided by Hole-Maker, Shafts \& Slips, and Judge's Jigs were tested. Mr. Silver ran the test drill from 4:00 p.m. to 6:00 p.m. when the drill provided by Drill-for-Bits was tested. If these two employees are not equally competent, this could bias the results. Furthermore, did Ms. Ames become fatigued as the day progressed? Did she take a break for lunch or take a break at any other time?

We also note that we only tested one drill for each vendor. If the drill provided by a vendor is not representative of the drills that vendor produced, this could bias the results.

The data for this test should have been collected through an experimental study in which the four machines were all warmed up for the same amount of time and then left running as eight holes were drilled by each employee using the drill provided by each vendor in a random order. A design such as this would have eliminated the potential sources of bias we have identified and resulted in the collection of more reliable data, which would lead to a superior decision.

