1. What instrument is used to measure Patm?

С

- a. dynameter b. altimeter
- c. barometer d. hygrometer

ANSWER:

FEEDBACK:

- a. A barometer is used to measure barometric (PB) or atmospheric (Patm) pressure.
- b. A barometer is used to measure barometric (PB) or atmospheric (Patm) pressure.
- c. A barometer is used to measure barometric (PB) or atmospheric (Patm) pressure.
- d. A barometer is used to measure barometric (PB) or atmospheric (Patm) pressure.

1
Recall
The Airways
Multiple Choice
False
1/29/2019 9:34 AM
1/29/2019 9:37 AM

2. What is the term for the movement of gas from the external environment to the alveoli?

		e		
	a. external respiration	b. ventilation		
	c. internal respiration	d. osmosis		
	ANSWER:	b		
	FEEDBACK:	 a. The movement of gas from the external environment to the alveoli is called ventilation. 		
		b. The movement of gas from the external environment to the alveoli is called ventilation.		
		c. The movement of gas from the external environment to the alveoli is called ventilation.		
		 d. The movement of gas from the external environment to the alveoli is called ventilation. 		
	POINTS:	1		
DIFFICULTY:		Recall		
REFERENCES:		Introduction		
QUESTION TYPE:		Multiple Choice		
HAS VARIABLES:		False		
LEARNING OBJECTIVES:		1		
DATE CREATED:		1/29/2019 9:38 AM		
	DATE MODIFIED:	1/29/2019 9:39 AM		
	3. At sea level under standard conditions, what would the P _B equal in mm Hg?			
	a. 29.9 b. 1034			
	c. 14.7 d. 760			

d

ANSWER:

Chapter 02: Ventilation			
	b. At sea level under standard conditions, the normal barometric pressure is 760 mm Hg.		
	c. At sea level under standard conditions, the normal barometric pressure is 760 mm Hg.		
	 d. At sea level under standard conditions, the normal barometric pressure is 760 mm Hg. 		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Mechanisms of Ventilation		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	: 2		
DATE CREATED:	1/29/2019 9:40 AM		
DATE MODIFIED:	1/30/2019 1:04 AM		
4. What is the general term for	or a pressure difference between two points in a system?		
-	o. osmotic gradient		
c. pressure gradient	l. system pressure variation		
ANSWER:	C		
FEEDBACK:	 A pressure gradient is defined as the difference in pressures occuring between two points. 		
	 b. A pressure gradient is defined as the difference in pressures occuring between two points. 		
	 c. A pressure gradient is defined as the difference in pressures occuring between two points. 		
	 A pressure gradient is defined as the difference in pressures occuring between two points. 		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Pressure Gradients		
QUESTION TYPE: Multiple Choice			
HAS VARIABLES: False			
LEARNING OBJECTIVES: 2			
DATE CREATED:	1/29/2019 9:43 AM		
DATE MODIFIED:	1/29/2019 9:45 AM		
5. At sea level, what would the	ne alveolar pressure at end-expiration equal?		
a. 760 mm Hg b. 0 m	ım Hg		
c. 764 mmHg d. 756	5 mm Hg		
ANSWER:	а		
	 Resource the alwaylar and atmospheric processing are identical at and expiration 		

FEEDBACK:

- a. Because the alveolar and atmospheric pressure are identical at end-expiration, no air movement occurs.
- b. Because the alveolar and atmospheric pressure are identical at end-expiration, no air movement occurs.
- c. Because the alveolar and atmospheric pressure are identical at end-expiration,

POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Pressure Gradients		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVE	S: 2		
DATE CREATED:	1/29/2019 9:45 AM		
DATE MODIFIED:	1/29/2019 9:47 AM		
6. At what point in the vent	ilatory cycle would the intra-alveolar pressure be higher than the atmospheric pressure?		
a. pre-inspiration b.	inspiration		
c. expiration d.	. end-expiration		
ANSWER:	С		
FEEDBACK:	 a. For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher than the atmospheric pressure. 		
	b. For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher than the atmospheric pressure.		
	c. For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher than the atmospheric pressure.		
	d. For gas to leave the lungs during exhalation, the intra-alveolar pressure must be higher than the atmospheric pressure.		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Pressure Gradients		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	HAS VARIABLES: False		
LEARNING OBJECTIVE	S: 2		
DATE CREATED: 1/29/2019 9:49 AM			
DATE MODIFIED:	DATE MODIFIED: 1/29/2019 9:51 AM		
7. Which gas law states that at constant temperature, a volume of gas varies inversely proportional to its pressure?a. Henry's b. Charles			
c. Boyle's d. Gay-I	Lussac's		
ANSWER:	c		
FEEDBACK:	$_{a.}$ Boyle's law states that at a constant temperature P1 x V1=P2 x V2 .		
	b_{B} Boyle's law states that at a constant temperature P1 x V1=P2 x V2 .		
	c. Boyle's law states that at a constant temperature P1 x V1=P2 x V2 .		
	d. Boyle's law states that at a constant temperature P1 x V1=P2 x V2 .		
POINTS:	1		

no air movement occurs.

d. Because the alveolar and atmospheric pressure are identical at end-expiration, no air movement occurs.

Recall

DIFFICULTY:

REFERENCES:	Boyle's Law and Its Relationship to Pressure Gradients
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	2
DATE CREATED:	1/29/2019 9:51 AM
DATE MODIFIED:	1/30/2019 4:10 AM

8. Which sequence represents one respiratory cycle?

I. Inspiration, expiration
II. Inspiration, end-inspiration, expiration, and end-expiration
III. Expiration, end-expiration, inspiration, end-inspiration
IV. End-inspiration, inspiration, end-expiration, expiration

- a. II only b. IV only c. 1 and III only d. II and IV only ANSWER: b FEEDBACK: a Inspi
 - a. Inspiration, end-inspiration, expiration, and end-expiration represents one respiratory cycle.
 - b. Inspiration, end-inspiration, expiration, and end-expiration represents one respiratory cycle.
 - c. Inspiration, end-inspiration, expiration, and end-expiration represents one respiratory cycle.
 - d. Inspiration, end-inspiration, expiration, and end-expiration represents one respiratory cycle.

POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Balloon Model of Ventilation
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	3
DATE CREATED:	1/29/2019 10:00 AM
DATE MODIFIED:	1/30/2019 4:14 AM

9. What is the general term for the inward movement of tissue between the ribs during inspiration due to increased negative intrapleural pressure generated during respiratory distress?

a. dyspnea	b. intercostal retractions
c. supraclavicular retraction	ons d. pectus excavatum
ANSWER:	b
FEEDBACK:	 Intercostal retractions are the inward movement of tissue between ribs during inspiration due the high negative intapleural pressure generated during respiratory distress, especially in newborns and infants.
	b. Intercostal retractions are the inward movement of tissue between ribs during inspiration due the high negative intapleural pressure generated during respiratory distress, especially in newborns and infants.
	c. Intercostal retractions are the inward movement of tissue between ribs during inspiration due the high negative intapleural pressure generated during

Chapter 02: Ventilation			
	respiratory distress, especially in newborns and infants. d. Intercostal retractions are the inward movement of tissue between ribs during inspiration due the high negative intapleural pressure generated during respiratory distress, especially in newborns and infants.		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	The Primary Mechanism of Ventilation Applied to the Human Airways Clinical Connection 2-1: Inspiratory Intercostal Retractions		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES.	: 4		
DATE CREATED:	1/29/2019 10:58 PM		
DATE MODIFIED:	1/29/2019 11:01 PM		
 10. What is the general term for the force required to move gas or fluid through a tube or vessel? a. transthoracic pressure b. driving pressure d. transmural pressure 			
ANSWER:	b		
FEEDBACK:	 a. The driving pressure is the pressure difference between two points in a tube or vessel. 		
	 b. The driving pressure is the pressure difference between two points in a tube or vessel. 		
	 c. The driving pressure is the pressure difference between two points in a tube or vessel. 		
	 d. The driving pressure is the pressure difference between two points in a tube or vessel. 		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Driving Pressure		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES: False			
LEARNING OBJECTIVES.	: 5		
DATE CREATED:	1/29/2019 11:01 PM		
DATE MODIFIED:	1/29/2019 11:03 PM		
11. Which pressure is represe	nted by $P_{rs} = P_B - P_{alv}$?		
a. transmural pressure	b. transpulmonary pressure		
c. transthoracic pressure	d. transrespiratory pressure		
ANSWER:	d		
FEEDBACK:	 a. Transrespiratory pressure is the difference between the atmospheric pressure and alveolar pressure. 		
	b. Transrespiratory pressure is the difference between the atmospheric pressure and alveolar pressure.		
	c. Transrespiratory pressure is the difference between the atmospheric pressure and alveolar pressure.		

Chapter 02: Venthation				
	 d. Transrespiratory pressure is the difference between the atmospheric pressure and alveolar pressure. 			
POINTS:	1			
DIFFICULTY:	Recall			
REFERENCES:	Transrespiratory Pressure			
QUESTION TYPE:	Multiple Choice			
HAS VARIABLES:	False			
LEARNING OBJECTIVES	2:5			
DATE CREATED:	1/29/2019 11:04 PM			
DATE MODIFIED:	1/30/2019 4:16 AM			
12. What is the term for the p a. Transmural pressure	12. What is the term for the pressure difference that occurs across the airway wall ?			
c. Transpulmonary press	d. Transthoracic pressure			
ANSWER:	a			
FEEDBACK:	a. The transmural pressure is derived by subtracting the pressure on the inside of the airway from the pressure on the ouside of the airway.			
	b. The transmural pressure is derived by subtracting the pressure on the inside of the airway from the pressure on the ouside of the airway.			
	c. The transmural pressure is derived by subtracting the pressure on the inside of the airway from the pressure on the ouside of the airway.			
	d. The transmural pressure is derived by subtracting the pressure on the inside of the airway from the pressure on the ouside of the airway.			
POINTS:	1			
DIFFICULTY:	Recall			
REFERENCES:	Transmural Pressure			
QUESTION TYPE:	Multiple Choice			
HAS VARIABLES:	False			
LEARNING OBJECTIVES	2:5			
DATE CREATED: 1/29/2019 11:09 PM				
DATE MODIFIED:	1/29/2019 11:12 PM			
 13. What is the term for the d a. transmural pressure c. transrespiratory pressu ANSWER: FEEDBACK: 	 difference between the alveolar pressure and the pleural pressure? b. transthoracic pressure d. transpulmonary pressure d a. The transpulmonary pressure is the difference between the alveolar pressure and the pleural pressure. b. The transpulmonary pressure is the difference between the alveolar pressure and the pleural pressure. c. The transpulmonary pressure is the difference between the alveolar pressure and the pleural pressure. d. The transpulmonary pressure is the difference between the alveolar pressure and the pleural pressure. d. The transpulmonary pressure is the difference between the alveolar pressure and the pleural pressure. d. The transpulmonary pressure is the difference between the alveolar pressure and the pleural pressure. 			
POINTS:	and the pleural pressure.			
	•			

Copyright Cengage Learning. Powered by Cognero.

Chapter 02: Ventilation

<u></u> ,			
DIFFICULTY:	Recall		
REFERENCES:	Transpulmonary Pressure		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	S: 5		
DATE CREATED:	1/29/2019 11:12 PM		
DATE MODIFIED:	1/29/2019 11:17 PM		
	f air from one lung to another?		
a. seesaw effect b. p	endulluft		
c. flail chest d. d	iaphragm paralysis		
ANSWER:	b		
FEEDBACK:	a. Pendelluft is the movement of air from one lung to another.		
	b. Pendelluft is the movement of air from one lung to another.		
	c_{\cdot} Pendelluft is the movement of air from one lung to another.		
	d. Pendelluft is the movement of air from one lung to another.		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Transthoracic Pressure		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	S: 5		
DATE CREATED:	1/29/2019 11:17 PM		
DATE MODIFIED:	1/29/2019 11:19 PM		
15 Williah alamana lihara (his			
	ng pattern is a result of diaphragm fatigue or paralysis? b. abdominal paradox		
a. partial inspiration	-		
c. respiratory distress ANSWER:	d. abdominal protrusion b		
FEEDBACK:	 Abdominal paradox is an abnormal breathing pattern that results from diaphragm fatigue, as the normal mechanics of breathing are altered to maintain ventilation. 		
	b. Abdominal paradox is an abnormal breathing pattern that results from diaphragm fatigue, as the normal mechanics of breathing are altered to maintain ventilation.		
	c. Abdominal paradox is an abnormal breathing pattern that results from diaphragm fatigue, as the normal mechanics of breathing are altered to maintain ventilation.		
	d. Abdominal paradox is an abnormal breathing pattern that results from diaphragm fatigue, as the normal mechanics of breathing are altered to maintain ventilation.		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Abdominal Paradox		

Chapter 02: Ventilation

QUESTION TYPE: HAS VARIABLES: LEARNING OBJECTIVES: DATE CREATED: DATE MODIFIED:	1/29/2019 11:19 PM 1/29/2019 11:22 PM
	ent is used to evaluate the elastic forces of the lungs?
	ung compliance
	irway resistance
ANSWER: FEEDBACK:	 b a. The elastic forces of the lungs can be evaluated by measuring lung compliance.
	 b. The elastic forces of the lungs can be evaluated by measuring lung compliance.
	 c. The elastic forces of the lungs can be evaluated by measuring lung compliance.
	 d. The elastic forces of the lungs can be evaluated by measuring lung compliance.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Elastic Properties of the Lung and Chest Wall
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	
DATE CREATED:	1/29/2019 11:29 PM
DATE MODIFIED:	1/29/2019 11:30 PM
17. What of the following is u a. $P=(2ST) / r$ b. ΔV	sed to calculate lung compliance? $I/\Delta P$
	$P/\Delta V$
ANSWER:	b
FEEDBACK:	 a. Lung compliance is defined as the change in lung volume per unit of pressure change.
	 b. Lung compliance is defined as the change in lung volume per unit of pressure change.
	 c. Lung compliance is defined as the change in lung volume per unit of pressure change.
	d. Lung compliance is defined as the change in lung volume per unit of pressure change.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Lung Compliance
QUESTION TYPE:	Multiple Choice

Copyright Cengage Learning. Powered by Cognero.

LEARNING OBJECTIVES: 8

False

HAS VARIABLES:

Chapter 02: Ventilation	
DATE CREATED:	1/29/2019 11:31 PM
DATE MODIFIED:	1/29/2019 11:44 PM
e	ompliance equal if a pressure change of 4 cm H20 resulted in a volume change of 600 mL?
	b. 1.5 L/cm H20
c. 0.24 L/cm H20	d. 0.066 L/cm H20
ANSWER:	а
FEEDBACK:	a. A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
	b. A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
	c. A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
	d. A volume change of 0.6 L from pressure change of 4 cm H20 would result in a lung compliance of 0.15 L/cm H20 (0.6L/4 cm H20).
POINTS:	1
DIFFICULTY:	Application
REFERENCES:	Lung Compliance
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVE	ES: 9
DATE CREATED:	1/29/2019 11:45 PM
DATE MODIFIED:	1/29/2019 11:47 PM

19. Reversible bronchospasm, airways inflammation, mucous plugging, and hyperinflation of the alveoli are characteristics of what pulmonary disorder?

a. cystic fibrosis b.	emphysema
c. flail chest d.	asthma
ANSWER:	d
FEEDBACK:	 a. Asthma is characterized by reversible bronchospasm, airways inflammation, mucous plugging, and hyperinflation of the alveoli.
	b. Asthma is characterized by reversible bronchospasm, airways inflammation, mucous plugging, and hyperinflation of the alveoli.
	c. Asthma is characterized by reversible bronchospasm, airways inflammation, mucous plugging, and hyperinflation of the alveoli.
	 d. Asthma is characterized by reversible bronchospasm, airways inflammation, mucous plugging, and hyperinflation of the alveoli.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Lung Compliance Clinical Connection 2-4: Pulmonary Disorders that Force the Patient to Breathe at the Top Flat Portion of the Volume Pressure Curve
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVE	S: 10
DATE CREATED:	1/29/2019 11:47 PM

Copyright Cengage Learnin	a Doward by Coanara
	u. Fowered by Couriero.

Name:
Chapter 02: Ventilation

DATE MODIFIED:	1/29/2019 11:49 PM		
20. How do obstructive lung of a. Lung compliance rema c. Lung compliance is in ANSWER: FEEDBACK:			
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Lung Compliance Clinical Connection 2-3: Pulmonary Disorders that Force the Patient to Breathe at the Top Flat Portion of the Volume Pressure Curve		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	JECTIVES: 10		
DATE CREATED:	1/29/2019 11:50 PM		
DATE MODIFIED:	1/29/2019 11:51 PM		
	lung diseases have on lung compliance?es do not affect lung compliance.b. Lung compliance decreasesd. Lung compliance increases		
ANSWER:	b		
FEEDBACK:	 Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance is reduced. 		
	 B. Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance is reduced. 		
	 c. Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance is reduced. 		
	 Restrictive lung diseases shift the volume-pressure curve to the right so lung compliance is reduced. 		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Lung Compliance Clinical Connection 2-4: Pulmonary Disorders that Shift the Pressure Volume Curve to the Right		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	: 11		
DATE CREATED:	1/29/2019 11:52 PM		
DATE MODIFIED:	1/29/2019 11:54 PM		

22. Which of the following would shift the volume-pressure curve to the right?

22. Which of the following w	ould shift the volume-pressure curve to the right.
I. Acute asthma episode II. Pneumothorax III. Pleural effusion IV. Pulmonary edema	
a. II, II, and IV only b. I. III and IV only c. I, II, and IV only d. Ii and IV only	
ANSWER:	а
FEEDBACK:	a. Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary edema shift the volume pressure curve to the right.
	 Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary edema shift the volume pressure curve to the right.
	c. Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary edema shift the volume pressure curve to the right.
	 d. Restrictive lung conditions, including pneumothorax, pleural effusion, and pulmonary edema shift the volume pressure curve to the right.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Lung Compliance Clinical Connection 2-4: Pulmonary Disorders that Shift the Pressure Volume Curve to the Right
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 11
DATE CREATED:	1/29/2019 11:54 PM
DATE MODIFIED:	1/29/2019 11:59 PM
23. What is the reciprocal of	*
a. elastance b. visco	
	ce tension
ANSWER:	a
FEEDBACK:	a. The reciprocal of compliance is elastance.
	b. The reciprocal of compliance is elastance.
	c. The reciprocal of compliance is elastance.
	d. The reciprocal of compliance is elastance.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Hooke's Law
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 12

DATE CREATED:	1/30/2019 12:00 AM
DATE MODIFIED:	1/30/2019 12:01 AM

24 Which physical law explains elastance?

24. Which physical law explains elastance?		
a. Gay-Lussac's law	b. Charles' law	
c. Boyle's law	d. Hooke's law	
ANSWER:	d	
FEEDBACK:	a. Hooke's law explains elastance.	
	b. Hooke's law explains elastance.	
	c. Hooke's law explains elastance.	
	d. Hooke's law explains elastance.	
POINTS:	1	
DIFFICULTY:	Recall	
REFERENCES:	Hooke's Law	
QUESTION TYPE:	Multiple Choice	
HAS VARIABLES:	False	
LEARNING OBJECTIVES	: 12	
DATE CREATED:	1/30/2019 12:02 AM	
DATE MODIFIED:	1/30/2019 12:04 AM	

25. When a positive pressure breath is delivered from a mechanical ventilator, how would intra-alveolar and intrapleural pressures be affected during inspiration?

a. The intra-alveolar pressure would rise while the intrapleural pressure remains subatmospheric		b. Both would remain constant at their resting levels
c. Both would decrease		d. Both would increase
ANSWER:	d	
FEEDBACK:	 a. The intra-alveolar and intrapleural pressures would increase during a positive pressure breath from a mechanical ventilator. b. The intra-alveolar and intrapleural pressures would increase during a positive pressure breath from a mechanical ventilator. 	
	c. The intra-alveolar and intrapleural press pressure breath from a mechanical vent	3 1
	 d. The intra-alveolar and intrapleural press pressure breath from a mechanical vent 	. .
POINTS:	1	
DIFFICULTY:	Recall	
REFERENCES:	Hooke's Law Clinical Connection 2-5: Posit	tive Pressure Ventilation
QUESTION TYPE:	Multiple Choice	
HAS VARIABLES:	False	
LEARNING OBJECTIVES:	13	
DATE CREATED:	1/30/2019 12:04 AM	
DATE MODIFIED:	1/30/2019 12:07 AM	

26. When a tension pneumothorax occurs during positive pressure ventilation, how will the cardiac output and blood

Chapter 02: Ventilation			
pressure affected?			
a. The BP will increase but the BP will decrease		b. Both will increase	
c. The cardiac output will increase but the BP will decrease		d. Both will decrease	
ANSWER:	d		
FEEDBACK:	 a. When a tesnion pneumothorax occurs, the cardiac output and blood press decrease due to compression of major vessels from accumulated gas in t pleural cavity. 		
	b. When a tesnion pneumothorax occurs, the cardiac output and blood pressure decrease due to compression of major vessels from accumulated gas in the pleural cavity.		
	c. When a tesnion pneumothorax occurs, the cardiac output and blood pressur decrease due to compression of major vessels from accumulated gas in the pleural cavity.		
		x occurs, the cardiac output and blood pressure of major vessels from accumulated gas in the	
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Hooke's Law Clinical Connection 2-6: Hazards of Positive Pressure Ventilation		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES:	∵ 14		
DATE CREATED:	1/30/2019 12:08 AM		
DATE MODIFIED:	1/30/2019 12:09 AM		
27. Which law best explains the basic operation of the negative pressure ventilator?a. Charles' b. Boyle's			
c. Hooke's d. Dalton ³			
ANSWER:	b		
FEEDBACK:		ne relationships described by Boyle's law are ssure ventilators.	
	 b. The basic pressure and volum implemented by negative pres 	ne relationships described by Boyle's law are ssure ventilators.	
	 c. The basic pressure and volum implemented by negative pres 	ne relationships described by Boyle's law are ssure ventilators.	
	 d. The basic pressure and volum implemented by negative pres 	ne relationships described by Boyle's law are ssure ventilators.	
POINTS:	1		
DIFFICULTY:	Recall		

	•
DIFFICULTY:	Recall
REFERENCES:	Hooke's Law Clinical Connection 2-7: Negative Pressure Ventilation
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	15
DATE CREATED:	1/30/2019 12:10 AM
DATE MODIFIED:	1/30/2019 12:12 AM

Chapter 02: Ventilation	
 28. Which of the following at I. Inspiration II. End-inspiration III. Expiration IV. End-expiration a. II only b. I and II 	re periods of no gas flow during negative-pressure ventilation?
c. IV only d. II and I	•
ANSWER:	d
FEEDBACK:	a. During negative-pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.
	b. During negative-pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.
	 c. During negative-pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.
	 d. During negative-pressure ventilation, no gas flow occurs at end-expiration and end-inspiration.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Hooke's Law Clinical Connection 2-7: Negative Pressure Ventilation
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 15
DATE CREATED:	1/30/2019 12:14 AM
DATE MODIFIED:	1/30/2019 12:20 AM
29. What is the term for the r	nolecular cohesive force at a liquid-gas interface?
a. compliance b. elas	stance
	face tension
ANSWER:	d
FEEDBACK:	 a. Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
	 b. Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
	c. Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
	 d. Surface tension is the molecular, cohesive force that occurs at a liquid-gas interface.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Surface Tension and its Effect on Lung Expansion
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False

DATE CREATED: 1/30/2019 12:20 AM

LEARNING OBJECTIVES: 16

Ν	а	m	٦٢	٠.
1 1	α		10	·.

Chapter 02: Ventilation	
30. Who is credited with the f	following equation: $P = (2ST)/r$?
a. Hooke b. LaPlace	
c. Dalton d. Boyle	
ANSWER:	b
FEEDBACK:	 a. The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
	 b. The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
	c. The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
	d. The equation for LaPlace's law with one liquid-gas interface is written as P=(2ST)/r.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Laplace's Law
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	17
DATE CREATED:	1/30/2019 12:23 AM
DATE MODIFIED:	1/30/2019 12:24 AM
	veoli is responsible for lowering the surface tension?
-	ry surfactant
c. plasma d. mucus	
ANSWER:	b
FEEDBACK:	 a. Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from collapsing.
	 b. Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from collapsing.
	 c. Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from collapsing.
	 d. Surfactant helps to reduce alveolar surface tension and helps prevent alveoli from collapsing.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	LaPlace's Law Applied to the Alveolar Fluid Lining
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	18
DATE CREATED:	1/30/2019 12:25 AM
DATE MODIFIED:	1/30/2019 12:27 AM

32. What percentage of pulmonary surfactant is composed of phospholipids?

c. 50 d. 20

Chapter 02: Ventilation	
ANSWER:	b
FEEDBACK:	 Pulmonary surfactant is composed of 90 percent phospholipids and 10 percent protein.
	 b. Pulmonary surfactant is composed of 90 percent phospholipids and 10 percent protein.
	 c. Pulmonary surfactant is composed of 90 percent phospholipids and 10 percent protein.
	 d. Pulmonary surfactant is composed of 90 percent phospholipids and 10 percent protein.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	How Pulmonary Surfactant Regulates Alveolar Surface Tension
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES.	19
DATE CREATED:	1/30/2019 12:28 AM
DATE MODIFIED:	1/30/2019 12:30 AM
-	is is fully distended, what is the approximate surface tension? 50 dynes/cm
•	50 cm H20
ANSWER:	b
FEEDBACK:	 a. When the average alveolus is inflated, the surface tension is approximately 50 dynes/cm.
	 b. When the average alveolus is inflated, the surface tension is approximately 50 dynes/cm.
	c. When the average alveolus is inflated, the surface tension is approximately 50 dynes/cm.
	 d. When the average alveolus is inflated, the surface tension is approximately 50 dynes/cm.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	How Pulmonary Surfactant Regulates Alveolar Surface Tension
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 19
DATE CREATED:	1/30/2019 12:30 AM
DATE MODIFIED:	1/30/2019 12:33 AM

34. Which of the following can cause pulmonary surfactant deficiency?

I. Pulmonary embolism II. Pulmonary edema III. Atelectasis IV. ARDS

Chanter	02.	Ventilation
Chapter	U4.	v chunation

Chapter 02: Ventilation	
a. I, II, III, and IV	b. II and III only
c. I, II, and III only	d. II and IV only
ANSWER:	a
FEEDBACK:	a. All of the factors listed can cause pulmonary surfactant deficiency.
	b. All of the factors listed can cause pulmonary surfactant deficiency.
	c. All of the factors listed can cause pulmonary surfactant deficiency.
	d. All of the factors listed can cause pulmonary surfactant deficiency.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Summary of the Lung's Elastic Properties
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	S: 20
DATE CREATED:	1/30/2019 12:34 AM
DATE MODIFIED:	1/30/2019 12:37 AM
25 What is the treatment of	choice for the early stages of RDS in premature infants?
a. oxygen therapy	b. CPAP
c. long acting bronchod	
ANSWER:	b
FEEDBACK:	a. CPAP is the treatment for the early stages of RDS.
	b. CPAP is the treatment for the early stages of RDS.
	c. CPAP is the treatment for the early stages of RDS.
	d. CPAP is the treatment for the early stages of RDS.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	
	Summary Clinical Connection 2-8: Pulmonary Surfactant Deficiency
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	
LEARNING OBJECTIVES	
DATE CREATED:	1/30/2019 12:38 AM

36. What term is used in respiratory care to describe the movement of gas in and out of the lung and the pressure changes required to move the gas?

a. passive	b. respiration	
c. static	d. dynamic	
ANSWER:	d	
FEEDBACK:		a. Dynamic refers to movement of gas in and out of the lungs and the accompanying pressure changes.
		b. Dynamic refers to movement of gas in and out of the lungs and the accompanying pressure changes.
		c. Dynamic refers to movement of gas in and out of the lungs and the

1/30/2019 12:39 AM

DATE MODIFIED:

LEARNING OBJECTIVES: 22 DATE CREATED: 1/30/2019 12:42 AM 37. When Poiscuille's law is rearranged for flow with pressure remaining constant, what impact would reducing the radius of a tube by 50% have on the gas flow? a. It would be reduced to 1/16 of the original flow b. It would increase to 16 times more than the original flow c. It would be reduced to 1/4 the original flow d. It would increase to 16 times more than the original flow ANSWER: a REEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019	REFERENCES: QUESTION TYPE:	Dynamic Characteristics Multiple Choice	s of the Lungs	
DATE CREATED: 1/30/2019 12:40 AM DATE MODIFIED: 1/30/2019 12:42 AM 37. When Poiseuille's law is rearranged for flow with pressure remaining constant, what impact would reducing the radius of a tube by 50% have on the gas flow? a. It would be reduced to 1/4 of the original flow b. It would increase to 16 times more than the original flow c. It would be reduced to 1/4 the original flow d. It would increase to 16 times more than the original flow c. It would be reduced to 1/4 the original output. a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. ANSWER: a FEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23	HAS VARIABLES:	False		
DATE MODIFIED: 1/30/2019 12:42 AM 37. When Poiseuille's law is rearranged for flow with pressure remaining constant, what impact would reducing the radius of a tube by 50% have on the gas flow? a. It would be reduced to 1/16 of the original flow b. It would increase to 16 times more than the original flow c. It would be reduced to 1/4 the original flow b. It would increase to 16 times more than the original flow c. It would be reduced to 1/4 the original flow d. It would increase to 16 times more than the original flow ANSWER: a FEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HARNING OBJECTIVES: 23 DATE MODIFIED: 1/30/2019 12:42 AM St. Men Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 16 times the original 0. The pressure must be increased to 16 times the o				
 37. When Poiscuille's law is rearranged for flow with pressure remaining constant, what impact would reducing the radius of a tube by 50% have on the gas flow? a. It would be reduced to 1/16 of the original flow b. It would increase to 16 times more than the original flow c. It would be reduced to 1/4 the original flow d. It would increase to 16 times more than the original flow a. It would be reduced to 1/4 the original flow d. It would increase to 16 times more than the original flow a. When the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is halved. d. When the radius of a tube is				
of a tube by 50% have on the gas flow? a. It would be reduced to 1/16 of the original flow b. It would increase to 16 times more than the original flow e. It would be reduced to 1/4 the original flow b. It would increase to 16 times more than the original flow e. It would be reduced to 1/4 the original flow c. It would increase to 16 times more than the original flow ANSWER: a FEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4	DATE MODIFIED.	1/30/2019 12.42 AM		
flow flow c. It would be reduced to 1/4 the original flow d. It would increase to 16 times more than the original flow ANSWER: a FEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent?		e	ssure remaining constant, what impact would reducing the	radius
flow ANSWER: a FEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:42 AM S8. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure must be increased to 16 times the original creater with the radius of the tube is reduced by 50 percent? a. The pressure must be doubled d. The pressure must be increased to 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.		1/16 of the original	÷	
FEEDBACK: a. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the pressure must be increased to 16 times the original c. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be reduced by 50 percent? ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved. <	c. It would be reduced to	1/4 the original flow		
original output. b. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	ANSWER:	а		
 original output. c. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM Stere flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be uncreased to 4 times the original c. The pressure must be dubled d. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be reduced by 50 percent? a. The pressure must be dubled d. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be reduced by 50 percent? 	FEEDBACK:		a tube is halved, the flow will decrease to 1/16 of the	
original output. d. When the radius of a tube is halved, the flow will decrease to 1/16 of the original output. POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.			a tube is halved, the flow will decrease to 1/16 of the	
POINTS: 1 DIFFICULTY: Application REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent? ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.			a tube is halved, the flow will decrease to 1/16 of the	
DIFFICULTY:ApplicationREFERENCES:Poiseuille's Law Arranged for FlowQUESTION TYPE:Multiple ChoiceHAS VARIABLES:FalseLEARNING OBJECTIVES:23DATE CREATED:1/30/2019 12:42 AMDATE MODIFIED:1/30/2019 12:44 AM38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent?a. The pressure must be is reduced by 50 percent?b. The pressure must be increased to 16 times the originalc. The pressure must be be is educed by 50 percent?c. The pressure must be reduced by 50 percentANSWER:bFEEDBACK:a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.			a tube is halved, the flow will decrease to 1/16 of the	
REFERENCES: Poiseuille's Law Arranged for Flow QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent ANSWER: b a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	POINTS:	1		
QUESTION TYPE: Multiple Choice HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	DIFFICULTY:	Application		
HAS VARIABLES: False LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	REFERENCES:	Poiseuille's Law Arrange	ed for Flow	
LEARNING OBJECTIVES: 23 DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure b. The pressure must be increased to 16 times the original c. The pressure must be dubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	QUESTION TYPE:	Multiple Choice		
DATE CREATED: 1/30/2019 12:42 AM DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	HAS VARIABLES:	False		
DATE MODIFIED: 1/30/2019 12:44 AM 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure must be increased to 16 times the original c. The pressure must be doubled b. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	LEARNING OBJECTIVES:	23		
 38. When Poiseuille's law is rearranged for pressure, what adjustment must be made in driving pressure to maintain the same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent ANSWER: b Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved. 	DATE CREATED:	1/30/2019 12:42 AM		
 same flowrate when the radius of the tube is reduced by 50 percent? a. The pressure must be increased to 4 times the original pressure b. The pressure must be increased to 16 times the original c. The pressure must be doubled d. The pressure must be reduced by 50 percent ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	DATE MODIFIED:	1/30/2019 12:44 AM		
pressureoriginalc. The pressure must be doubledd. The pressure must be reduced by 50 percentANSWER:bFEEDBACK:a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.				the
ANSWER: b FEEDBACK: a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	-	ncreased to 4 times the origi	-	•
<i>FEEDBACK:</i> a. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.	c. The pressure must be d	oubled	d. The pressure must be reduced by 50 percent	
pressure would be required to restore the flowrate when the radius of the tube is halved.	ANSWER:	b		
Copyright Cengage Learning. Powered by Cognero. Page 1	FEEDBACK:	pressure would be r		
	Copyright Cengage Learning. Powe	red by Cognero.		Page 18

POINTS:

DIFFICULTY:

Chapter 02: Ventilation

1 Recall

accompanying pressure changes.

d. Dynamic refers to movement of gas in and out of the lungs and the accompanying pressure changes.

Chapter 02: Ventilation	
	b. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.
	c. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.
	d. Pressure is a function of the radius to the fourth power so 16 times the original pressure would be required to restore the flowrate when the radius of the tube is halved.
POINTS:	1
DIFFICULTY:	Application
REFERENCES:	Poiseuille's Law Arranged for Pressure
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 25
DATE CREATED:	1/30/2019 12:45 AM
DATE MODIFIED:	1/30/2019 12:47 AM

39. When the radius of the bronchial airways decreases during exhalation, what change must occur to maintain a constant gas flow?

a. The transthoracic pressure must remain constant

- b. The transthoracic pressure must vary inversely with the second power of the radius
- c. The transthoracic pressure must vary directly with the fourth power of the radius
- d. The transthoracic pressure must vary inversely with the fourth power of the radius

ANSWER:	d
FEEDBACK:	 As the radius of the bronchial airways decrease during exhalation, the transthoracic pressure must vary inversely with the fourth power of the radius.
	b. As the radius of the bronchial airways decrease during exhalation, the transthoracic pressure must vary inversely with the fourth power of the radius.
	c. As the radius of the bronchial airways decrease during exhalation, the transthoracic pressure must vary inversely with the fourth power of the radius.
	d. As the radius of the bronchial airways decrease during exhalation, the transthoracic pressure must vary inversely with the fourth power of the radius.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Poiseuille's Law Rearranged to Simple Proportionalities
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	25
DATE CREATED:	1/30/2019 12:47 AM
DATE MODIFIED:	1/30/2019 12:49 AM

40. What is derived when the pressure difference between the mouth and alveoli is divided by the flowrate?

a. airway resistanceb. lung compliancec. chest wall complianced. surface tension

ANSWER: a

Copyright Cengage Learning. Powered by Cognero.

Chapter 02: Ventilation	
FEEDBACK:	 Airway resistance is defined as the change in transrespiratory pressure divided by flow rate.
	 b. Airway resistance is defined as the change in transrespiratory pressure divided by flow rate.
	 c. Airway resistance is defined as the change in transrespiratory pressure divided by flow rate.
	 d. Airway resistance is defined as the change in transrespiratory pressure divided by flow rate.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Airway Resistance
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	S: 27
DATE CREATED:	1/30/2019 12:49 AM
DATE MODIFIED:	1/30/2019 12:51 AM
41. If an individual generates Raw equal?	s a flow rate of 4 L/sec by generating a transrespiratory pressure of 6 cm H20, what would
a. 1.5 L/sec/cm H20	b. 2.4 L/sec/ cm H20
c. 1.5 cm H20/L/sec	d. 0.67 cm H20/L/sec
ANSWER:	C
FEEDBACK:	a. Airway resistance would be derived as 6 cm H20/4 L/sec to equal 1.5 cm

- a. Airway resistance would be derived as 6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.
 b. Airway resistance would be derived as 6 cm H20/4 L/sec to equal 1.5 cm
- H2O/L/sec. c. Airway resistance would be derived as 6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.
- d. Airway resistance would be derived as 6 cm H20/4 L/sec to equal 1.5 cm H2O/L/sec.

POINTS:	1
DIFFICULTY:	Application
REFERENCES:	Airway Resistance
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	28
DATE CREATED:	1/30/2019 12:54 AM
DATE MODIFIED:	1/30/2019 12:56 AM

42. If a patient who generates an intrapleural pressure of -4 mmHg to inhale 450 mL experiences inflammation and bronchospasm that reduce the radius of the bronchial airways to one-half of their original size, what pressure must the patient generate to inhale the same tidal volume?

a. 16 mm Hg	b. 64 mm Hg
c. 20 mm Hg	d. 48 mm Hg
ANSWER:	b

ł

Chapter 02: Ventilation	
FEEDBACK:	a. To maintain the same tidal volume when the radius of the bronchial airways is reduced by one half, the intrapleural pressure must increase by a factor of 16 so the required pressure would be 4 x 16 or 64 mm Hg.
	b. To maintain the same tidal volume when the radius of the bronchial airways is reduced by one half, the intrapleural pressure must increase by a factor of 16 so the required pressure would be 4 x 16 or 64 mm Hg.
	c. To maintain the same tidal volume when the radius of the bronchial airways is reduced by one half, the intrapleural pressure must increase by a factor of 16 so the required pressure would be 4 x 16 or 64 mm Hg.
	d. To maintain the same tidal volume when the radius of the bronchial airways is reduced by one half, the intrapleural pressure must increase by a factor of 16 so the required pressure would be 4 x 16 or 64 mm Hg.
POINTS:	1
DIFFICULTY:	Application
REFERENCES:	Poiseuille's Law Arranged for Simple Proportionalities Clinical Connection 2-9: Respiratory Disorders that Decrease the Radius of the Airways
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	26
DATE CREATED:	1/30/2019 1:05 AM
DATE MODIFIED:	1/30/2019 1:08 AM
43 Which flow pattern occurs	s in airways at low flow rates and low pressure-gradients?
a. turbulent flow	b. laminar flow
c. tracheobronchial flow	d. transitional flow
ANSWER:	b
FEEDBACK:	a. Laminar flow occurs in airways where flow rate and pressure gradients are both
	low.
	 b. Laminar flow occurs in airways where flow rate and pressure gradients are both low.
	 Laminar flow occurs in airways where flow rate and pressure gradients are both low.
	 d. Laminar flow occurs in airways where flow rate and pressure gradients are both low.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Laminar Flow
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	27
DATE CREATED:	1/30/2019 1:09 AM
DATE MODIFIED:	1/30/2019 1:10 AM

44. Which flow pattern occurs in airways at high flow rates and high pressure gradients?

a. laminar flow b. turbulent flow

d. tracheobronchial flow c. transitional flow

Copyright Cengage Learning. Powered by Cognero.

Name:		Class:	Date:
Chapter 02: Ventilation			
ANSWER:	b		
FEEDBACK:	a. Turbulent flow occurs	s in airways at high flow ra	ates and high pressure gradients.
			ates and high pressure gradients.
			ates and high pressure gradients.
	d. Turbulent flow occurs	s in airways at high flow ra	ates and high pressure gradients.
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Turbulent Flow		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	: 27		
DATE CREATED:	1/30/2019 1:11 AM		
DATE MODIFIED:	1/30/2019 1:13 AM		
45. What is defined as "the ti	me required to inflate a lung r	egion to 60% of its filling	capacity"?
a. inspiratory time	b. maximum inspiratory tir	ne	
c. dynamic compliance	d. time constant		
ANSWER:	d		
FEEDBACK:	a. A time constant is the potential filling capac		to inflate a lung region to 60% its
	 b. A time constant is the potential filling capac 		to inflate a lung region to 60% its
	c. A time constant is the potential filling capac	-	to inflate a lung region to 60% its
	d. A time constant is the potential filling capac	•	to inflate a lung region to 60% its
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Time Constants		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	: 29		
DATE CREATED:	1/30/2019 1:14 AM		
DATE MODIFIED:	1/30/2019 1:15 AM		
	reduced by half, how will tin		
a. The time constants will		b. The time constant wi	-
original	increase to four times the	d. The time constant wi original	ll be reduced to one-fourth of the
ANSWER:	b		
FEEDBACK:	a. When lung complian	ce is halved, the time con	stant will also be halved.
	- .	ce is halved, the time con	
	c. When lung complian	ce is halved, the time con	stant will also be halved.
Copyright Congogo Learning, Pow	arad by Cagnora		Pag

Name:

Chapter 02: Ventilation

d. When lung compliance is halved, the time constant will also be halved.

POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Time Constants
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	29
DATE CREATED:	1/30/2019 1:16 AM
DATE MODIFIED:	1/30/2019 1:18 AM

47. What effect will increased R_{aw} and increased C_L have on the time constants in the affected lung regions?

- a. Time constants are unaffected by C_L but will require more time to inflate in the affected region due to the increased R_{aw}
- b. Both factors require less time for the affected lung region to inflate
- c. Time constants are unaffected by Raw but will require less time to inflate due to the increased CL.
- d. Both factors require more time for the affected region to inflate.

	e
ANSWER:	d
FEEDBACK:	 Lung regions with increased airway resistance and increased lung compliance require more time to inflate.
	 b. Lung regions with increased airway resistance and increased lung compliance require more time to inflate.
	c. Lung regions with increased airway resistance and increased lung compliance require more time to inflate.
	 Lung regions with increased airway resistance and increased lung compliance require more time to inflate.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Time Constants
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	29
DATE CREATED:	1/30/2019 1:19 AM
DATE MODIFIED:	1/30/2019 1:37 AM
48 What term is defined as "t	be change in volume of the lungs divided by the change in transpulmonary pressure during

48. What term is defined as "the change in volume of the lungs divided by the change in transpulmonary pressure during the time required for one breath"?

a. static compliance	b. time constant
c. airway resistance	d. dynamic compliance
ANSWER:	d
FEEDBACK:	a. Dynamic compliance is the change in volume of the lungs divided by the change in transpulmonary pressure during the time required for one breath.
	b. Dynamic compliance is the change in volume of the lungs divided by the change in transpulmonary pressure during the time required for one breath.

	 Dynamic compliance is the change is 	
		in volume of the lungs divided by the
		during the time required for one breath.
	 d. Dynamic compliance is the change i change in transpulmonary pressure 	during the time required for one breath.
POINTS:	1	
DIFFICULTY:	Recall	
REFERENCES:	Dynamic Compliance	
QUESTION TYPE:	Multiple Choice	
HAS VARIABLES:	False	
LEARNING OBJECTIVES	: 30	
DATE CREATED:	1/30/2019 1:37 AM	
DATE MODIFIED:	1/30/2019 1:39 AM	
49 In the presence of restrict	ive lung disorders, how do patients typically	offset the decreased time constants?
-	d respiratory rate and add a breath hold	b. They adopt a decreased respiratory rate
c. They adopt a decrease volume	d respiratory rate with an increased tidal	d. They adopt an increased respiratory rate
ANSWER:	d	
FEEDBACK:	 a. With restrictive lung disorders, patie rate. 	nts typically adopt an increased respiratory
	 b. With restrictive lung disorders, patie rate. 	nts typically adopt an increased respiratory
	 c. With restrictive lung disorders, patie rate. 	nts typically adopt an increased respiratory
	 d. With restrictive lung disorders, patie rate. 	nts typically adopt an increased respiratory
POINTS:	1	
DIFFICULTY:	Recall	
REFERENCES:	Dynamic Compliance Clinical Connection Constants, and Breathing Pattern Relation	U
QUESTION TYPE:	Multiple Choice	
HAS VARIABLES:	False	
LEARNING OBJECTIVES	: 31	
DATE CREATED:	1/30/2019 1:40 AM	
DATE MODIFIED:	1/30/2019 1:42 AM	
50. What changes in breathin time constants typically adop		onary disorders with increased R_{aw} and increase

Class:

Date:

- a. They increase their respiratory rate and tidal volume
- b. They increase their respiratory rate and decrease their tidal volume

d. The decrease their respiratory rate and tidal volume

c. They decrease their respiratory rate and increase their tidal volume

С

ANSWER:

Name:

Chapter 02: Ventilation

FEEDBACK:

a. Patients with obstructive pulmonary disorders with increased Raw and

Chapter 02: Ventilation	
	increased time constants typically decrease their respiratory rates and increase their tidal volumes.
	 b. Patients with obstructive pulmonary disorders with increased Raw and increased time constants typically decrease their respiratory rates and increase their tidal volumes.
	c. Patients with obstructive pulmonary disorders with increased Raw and increased time constants typically decrease their respiratory rates and increase their tidal volumes.
	 d. Patients with obstructive pulmonary disorders with increased Raw and increased time constants typically decrease their respiratory rates and increase their tidal volumes.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Dynamic Compliance Clinical Connection 2-11: Obstructive Lung Disorders. Time Constants and Breathing Pattern Relationships
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	32
DATE CREATED:	1/30/2019 1:42 AM
DATE MODIFIED:	1/30/2019 1:48 AM
51. When rapid ventilatory rat	es occur, what is the term for the condition in which positive pressure remains in the alveoli

J1. when rapid ventilatory rates occur, what is the term for the condition in which positive pressure remains in the alveoli during exhalation due to the insufficient expiratory time?

8	The second
a. auto-PEEP	b. WOB
c. frequency dependence	d. pendulluft
ANSWER:	а
FEEDBACK:	 Auto-PEEP is the condition in which positive pressure remains in the alveoli during exhalation due to insufficient expiratory time.
	 b. Auto-PEEP is the condition in which positive pressure remains in the alveoli during exhalation due to insufficient expiratory time.
	c. Auto-PEEP is the condition in which positive pressure remains in the alveoli during exhalation due to insufficient expiratory time.
	 d. Auto-PEEP is the condition in which positive pressure remains in the alveoli during exhalation due to insufficient expiratory time.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	Dynamic Compliance Clinical Connection 2-12: Auto-PEEP and its Relationship to Raw During Rapid Ventilatory Rates
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	33
DATE CREATED:	1/30/2019 1:49 AM
DATE MODIFIED:	1/30/2019 1:50 AM

52. What is the term for the volume of gas that is typically measured during exhalation of one quiet breath? a. expiratory reserve volume b. minute volume

Chapter 02: Venthation	
c. tidal volume	d. expiration
ANSWER:	C
FEEDBACK:	a. The amount of gas exhaled from one quiet breath is the tidal volume.
	b. The amount of gas exhaled from one quiet breath is the tidal volume.
	c. The amount of gas exhaled from one quiet breath is the tidal volume.
	d. The amount of gas exhaled from one quiet breath is the tidal volume.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	The Normal Ventilatory Patterns
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	5: 34
DATE CREATED:	1/30/2019 1:51 AM
DATE MODIFIED:	1/30/2019 1:53 AM
52 What is the average roop	iratory rate for a newborn infant?
a. 19-26 breaths/min	b. 25-40 breaths/min
c. 30-60 breaths/min	d. 50-80 breaths/min
ANSWER:	b
FEEDBACK:	$a_{\rm a}$. The average respiratory rate for a newborn infant is 30-60 breaths/min.
	b. The average respiratory rate for a newborn infant is 30-60 breaths/min.
	c. The average respiratory rate for a newborn infant is 30-60 breaths/min.
	d. The average respiratory rate for a newborn infant is 30-60 breaths/min.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	The Normal Ventilatory Patterns
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	S: 34
DATE CREATED:	1/30/2019 1:53 AM
DATE MODIFIED:	1/30/2019 1:55 AM
1 V.	pause is factored in, what is the normal I:E ratio for an adult at rest?
a. 1 : 3 b. 1 : 2.5	
c. 1 : 1 d. 1 : 2	
ANSWER:	d
FEEDBACK:	a. When the end expiratory pause is included, the normal I:E ratio for an adult at rest is 1:2.
	b. When the end expiratory pause is included, the normal I:E ratio for an adult at rest is 1:2.
	c. When the end expiratory pause is included, the normal I:E ratio for an adult at rest is 1:2.
	d. When the end expiratory pause is included, the normal I:E ratio for an adult at

rest is 1:2.

1

 Name:
 Class:
 Date:

POINTS:

Chapter 02: Ventilation

1 01110.	
DIFFICULTY:	Recall
REFERENCES:	The Normal Ventilatory Patterns
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	
DATE CREATED:	1/30/2019 1:56 AM
DATE MODIFIED:	1/30/2019 1:57 AM
55. What is the average respir	atory rate for a healthy toddler at rest?
a. 15-24 breaths/min	b. 25-40 breaths/min
c. 12-20 breaths/min	d. 30-60 breaths/min
ANSWER:	b
FEEDBACK:	$a_{\rm a}$. The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
	$b_{\rm b}$. The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
	c. The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
	d. The average respiratory rate for a healthy toddler at rest is 25-40 breaths/min.
DO MITO:	
POINTS:	
DIFFICULTY:	Recall
REFERENCES:	The Normal Ventilatory Patterns Clinical Connection 2-13: Normal Respiratory Rates for Different Age Groups
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	35
DATE CREATED:	1/30/2019 1:58 AM
DATE MODIFIED:	1/30/2019 2:00 AM
condition is 6 mL/kg IBW, wh a. approximately 520 mL c. approximately 820 mL	d. approximately 290 mL
ANSWER:	d
FEEDBACK:	 a. A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x 6mL/kg would equal approximately 290 mL.
	 b. A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x 6mL/kg would equal approximately 290 mL.
	c. A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x 6mL/kg would equal approximately 290 mL.
	d. A 5 ft tall female's IBW would be approximately 100-105 pounds or 47 kg, so 47 x 6mL/kg would equal approximately 290 mL.
POINTS:	1
DIFFICULTY:	Application
REFERENCES:	The Normal Ventilatory Patterns Clinical Connection 2-14: Tidal Volume and
Copyright Cengage Learning. Powe	• •

QUESTION TYPE: HAS VARIABLES: LEARNING OBJECTIVES DATE CREATED: DATE MODIFIED:	Breathing Rate Strategies for Mechanical Ventilation Multiple Choice False 2 36 1/30/2019 2:00 AM 1/30/2019 2:02 AM		
57. What are the boundaries of a. nose and mouth to the	*		
c. nose and mouth to the			
ANSWER:	b		
FEEDBACK:	 a. Anatomic dead space extends from the nose and mouth through the terminal bronchioles. 		
	b. Anatomic dead space extends from the nose and mouth through the terminal bronchioles.		
	c. Anatomic dead space extends from the nose and mouth through the terminal bronchioles.		
	d. Anatomic dead space extends from the nose and mouth through the terminal bronchioles.		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Anatomic Dead Space		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
LEARNING OBJECTIVES	: 37		
DATE CREATED:	1/30/2019 2:03 AM		
DATE MODIFIED:	1/30/2019 2:05 AM		
58. What is the approximate	volume of anatomic dead space?		
a. 2.2 mL/lb of ideal bod	ly weight b. 2.2 mL/kg actual body weight		
c. 1 mL/lb of ideal body	weight d. 1 mL/kg of ideal body weight		
ANSWER:	C		
FEEDBACK:	 a. The volume of anatomic dead space is approximately 1mL/lb of ideal body weight. 		
	 b. The volume of anatomic dead space is approximately 1mL/lb of ideal body weight. 		
	 c. The volume of anatomic dead space is approximately 1mL/lb of ideal body weight. 		
	 d. The volume of anatomic dead space is approximately 1mL/lb of ideal body weight. 		
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES:	Anatomic Dead Space		
QUESTION TYPE:	Multiple Choice		
HAS VARIABLES:	False		
Convright Cengage Learning, Pow	rered by Cognero		

Copyright Cengage Learning. Powered by Cognero.

Chapter 02: Ventilation					
LEARNING OBJECTIVES:	EARNING OBJECTIVES: 37				
DATE CREATED:	1/30/2019	I/30/2019 2:05 AM			
DATE MODIFIED:	1/30/2019	9 2:07 AM			
	59. What does frequency multiplied by (V_T-V_D) equal?				
a. alveolar dead space c. minute alveolar ventila		physiologic dead space ventilation minute ventilation			
ANSWER:	C C	minute ventilation			
FEEDBACK:	a. The	e minute alveolar ventilation equals the frequency multiplied by (tidal volume nus anatomic dead space).			
	b. The	e minute alveolar ventilation equals the frequency multiplied by (tidal volume nus anatomic dead space).			
		e minute alveolar ventilation equals the frequency multiplied by (tidal volume nus anatomic dead space).			
		e minute alveolar ventilation equals the frequency multiplied by (tidal volume nus anatomic dead space).			
POINTS:	1				
DIFFICULTY:	Recall				
REFERENCES:	Anatomic	Dead Space			
QUESTION TYPE:	Multiple 0	Choice			
HAS VARIABLES:	False				
LEARNING OBJECTIVES:	37				
DATE CREATED:	1/30/2019	9 2:07 AM			
DATE MODIFIED:	1/30/2019	9 2:10 AM			
60. What is the term for alveo	ar ventilati	on without pulmonary capillary perfusion?			
a. alveolar dead space	b. j	physiologic dead space			
c. minute alveolar ventila	tion d. a	anatomic dead space			
ANSWER:	а				
FEEDBACK:		eolar dead space is alveolar ventilation without pulmonary capillary fusion			
		eolar dead space is alveolar ventilation without pulmonary capillary fusion			
		eolar dead space is alveolar ventilation without pulmonary capillary fusion			
		eolar dead space is alveolar ventilation without pulmonary capillary fusion			
POINTS:	1				
DIFFICULTY:	Recall				
REFERENCES:	Anatomic	Dead Space			
QUESTION TYPE:	Multiple (Choice			
HAS VARIABLES:	False				
LEARNING OBJECTIVES:	37				

DATE CREATED: 1/30/2019 2:12 AM

Name:		Class:	Date:	
Chapter 02: Ventilation				
DATE MODIFIED:	1/30/2019 2	:14 AM		
61. What does the sum of ana a. minute ventilationc. physiologic dead spaceANSWER:	b. alveola	ace and alveolar dead space equal? r ventilation as exchange		
FEEDBACK:	b. Anator c. Anator	mic dead space plus alveolar dead sp mic dead space plus alveolar dead sp mic dead space plus alveolar dead sp mic dead space plus alveolar dead sp	ace equals physiologic dead space. ace equals physiologic dead space.	
POINTS:	1			
DIFFICULTY:	Recall			
REFERENCES:		Dead Space		
QUESTION TYPE:	Multiple Cho	DICE		
HAS VARIABLES:	False			
LEARNING OBJECTIVES. DATE CREATED:	1/30/2019 2	-14 004		
DATE CREATED. DATE MODIFIED:	1/30/2019 2			
62. How would the addition of a. It would have no effect spacec. It would decrease the of the space of th	t on dead	bing between a ventilator and the end b. It would have no effect on dead volume d. It would increase the dead space	space but would increase the tidal	
ANSWER:	d			
FEEDBACK:		a length of tubing is added between t ad space increases.	he ventilator and endotracheal tube,	
		a length of tubing is added between t ad space increases.	he ventilator and endotracheal tube,	
	the de	a length of tubing is added between t ad space increases.		
		a length of tubing is added between t ad space increases.	ne ventilator and endotracheal tube,	
POINTS:	1			
DIFFICULTY:	Recall			
REFERENCES:		Dead Space Clinical Connection 2 /s Dead Space Ventilation	-15: A Giraffe's Neck: Alveolar	
QUESTION TYPE:	Multiple Cho	bice		
HAS VARIABLES:	False			
LEARNING OBJECTIVES.				
DATE CREATED:	1/30/2019 2:			
DATE MODIFIED:	1/30/2019 2	:19 AM		

63. Which of the following can cause pulmonary emboli?

Chapter 02: Ventilation				
II. Pregnancy and childbirth				
III. Obesity	ion dicorders			
IV. Hypercoagulati a. I, II, III, and IV	b. I, III, and IV only			
· · · ·				
•	d. I, II, and III only			
ANSWER:	a			
FEEDBACK:	 Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth, obesity, and hypercoagulation disorders. 			
	 b. Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth, obesity, and hypercoagulation disorders. 			
	c. Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth, obesity, and hypercoagulation disorders.			
	 d. Pulmonary emboli can result from prolonged inactivity, pregnancy and childbirth, obesity, and hypercoagulation disorders. 			
POINTS:	1			
DIFFICULTY:	Recall			
REFERENCES:	Physiologic Dead Space Clinical Connection 2-16: Pulmonary Embolus and Dead Space Ventilation			
QUESTION TYPE:	Multiple Choice			
HAS VARIABLES:	False			
LEARNING OBJECTIVE	ES: 41			
DATE CREATED:	1/30/2019 2:24 AM			
DATE MODIFIED:	1/30/2019 2:26 AM			

64. What would the minute alveolar ventilation equal if a 6 ft tall, 170 lb male has a VT of 550 mL and a respiratory rate of 11 breaths/min?

$b.550 - (170/2.2) \times 11 = 4.65 L$
L d. $550 + (170 \text{ x } 11) = 1.87 \text{ L}$
b
 a. The alveolar ventilation would be (550 mL tidal volume-170 anatomic dead space volume) x 11 breaths/min = 4.18 L /min.
b. The alveolar ventilation would be (550 mL tidal volume-170 anatomic dead space volume) x 11 breaths/min = 4.18 L /min.
c. The alveolar ventilation would be (550 mL tidal volume-170 anatomic dead space volume) x 11 breaths/min = 4.18 L /min.
d. The alveolar ventilation would be (550 mL tidal volume-170 anatomic dead space volume) x 11 breaths/min = 4.18 L /min.
1
Application
Anatomic Deadspace
Multiple Choice
False
39
1/30/2019 3:23 AM
1/30/2019 3:26 AM

65 In the uprior	nt position wh	nich portion of the lungs has the most negative pleural pressure?			
a. hilum	65. In the upright position, which portion of the lungs has the most negative pleural pressure?a. hilumb. base				
c. apex					
ANSWER:	-	C			
FEEDBACK:		 a. In the upright position the apex of the lung has a more negative pleural pressure than at the bases. 			
		 b. In the upright position the apex of the lung has a more negative pleural pressure than at the bases. 			
		c. In the upright position the apex of the lung has a more negative pleural pressure than at the bases.			
		 In the upright position the apex of the lung has a more negative pleural pressure than at the bases. 			
POINTS:		1			
DIFFICULTY:		Recall			
REFERENCE	S:	How Normal Pleural Pressure Differences Cause Regional Differences in Normal Lung Ventilation			
QUESTION T	YPE:	Multiple Choice			
HAS VARIABL	.ES:	False			
LEARNING O	BJECTIVES:	42			
DATE CREAT	ED:	1/30/2019 3:27 AM			
DATE MODIFI	IED:	1/30/2019 3:29 AM			
66. In the upright	nt lung, how d	oes compliance vary across the lung?			
	pliance in the	apices is lower than in b. The compliance is higher at the hilum than in the apices or bases.			
c. The comp the apice		bases is lower than in d. The compliance is uniform in all regions of the lung			
ANSWER:		а			
FEEDBACK:		 a. The compliance in the apices of the lungs is lower than the compliance in the bases. 			
		b. The compliance in the apices of the lungs is lower than the compliance in the bases.			
		c. The compliance in the apices of the lungs is lower than the compliance in the bases.			
		 d. The compliance in the apices of the lungs is lower than the compliance in the bases. 			
POINTS:		1			
DIFFICULTY:		Recall			
REFERENCE	S:	How Normal Pleural Pressure Differences Cause Regional Differences in Normal Lung Ventilation			
QUESTION T	YPE:	Multiple Choice			
HAS VARIABL	.ES:	False			
LEARNING O	BJECTIVES:	42			
DATE CREAT	ED:	1/30/2019 3:30 AM			
DATE MODIFI	IED:	1/30/2019 3:33 AM			

Copyright Cengage Learning. Powered by Cognero.

Chapter 02: ventilation	
67. In a healthy adult at rest, a. 5% b. 15 % c. 25% d. 35%	what portion of the total energy output is required for the work of breathing?
ANSWER:	а
FEEDBACK:	 a. In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
	 b. In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
	c. In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
	 In a healthy adult at rest, the work of breathing consumes 5% of the total energy output.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	The Effect of Airway Resistance and Lung Compliance on Ventilatory Pressure
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 43
DATE CREATED:	1/30/2019 3:33 AM
DATE MODIFIED:	1/30/2019 3:36 AM
68. What is the term for alterativea. metabolic efficiencyc. ventilatory efficiency	ation of the ventilatory pattern to minimize dead space ventilation? b. hyperventilation d. Hyperefficiency
ANSWER:	C
FEEDBACK:	a. Alteration of the ventilatory pattern to minimize dead space ventilation is called
	ventilatory efficiency.
	 Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.
	c. Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.
	 d. Alteration of the ventilatory pattern to minimize dead space ventilation is called ventilatory efficiency.
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	The Effect of Airway Resistance and Lung Compliance on Ventilatory Pressure
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES	: 43
	-
DATE CREATED:	1/30/2019 3:36 AM
DATE CREATED:	
DATE CREATED: DATE MODIFIED:	

69. How does the normal adult's respiratory pattern change when lung compliance decreases?

- a. respiratory rate and tidal volume increase
 - c. respiratory rate increases and tidal volume
- b. respiratory rate and tidal volume decrease.
- d. respiratory rate decreases and tidal volume

Chapter 02: Ventilation			
decreases		increase	
ANSWER:	С		
FEEDBACK:	a. When lung com volume decreas	pliance decrease, the respiratory rate increases and tidal ses.	
	b. When lung com volume decreas	pliance decrease, the respiratory rate increases and tidal ses.	
	c. When lung com volume decreas	pliance decrease, the respiratory rate increases and tidal ses.	
	d. When lung com volume decreas	pliance decrease, the respiratory rate increases and tidal ses.	
POINTS:	1		
DIFFICULTY:	Recall		
REFERENCES: The Effect of Airway Resistance and Lung Compliance on Ventilatory Patterns Clinical Connection 2-17: How the Adopted Breathing Pattern 0 COPD when Compromised by a Restrictive Disorder		nnection 2-17: How the Adopted Breathing Pattern Changes in	
QUESTION TYPE: Multiple Choice			
HAS VARIABLES:	False		
LEARNING OBJECTIVES:	44		
DATE CREATED:	1/30/2019 3:39 AM		
DATE MODIFIED:	1/30/2019 3:41 AM		
70. How does the breathing pattern change when a patient with COPD develops a secondary restrictive lung condition such as pneumonia?			
a. respiratory rate increas	es	b. no breathing pattern changes would occur.	
c. respiratory rate and tida	al volume decrease.	d. respiratory rate decreases and tidal volume increase	
ANSWER:	а		
<i>FEEDBACK:</i> a. When a patient with COPD develops pneumonia, one would expect hyperventilation to occur.			
1. When a patient with CODD develops procuration and would expect			

- b. When a patient with COPD develops pneumonia, one would expect hyperventilation to occur.
- c. When a patient with COPD develops pneumonia, one would expect hyperventilation to occur.
- d. When a patient with COPD develops pneumonia, one would expect hyperventilation to occur.

	,, , , , , , , , , , , , , , , , , , ,
POINTS:	1
DIFFICULTY:	Recall
REFERENCES:	The Effect of Airway Resistance and Lung Compliance on Ventilatory Patterns Clinical Connection 2-17: How the Adopted Breathing Pattern Changes in COPD when Compromised by a Restrictive Disorder
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJECTIVES:	44
DATE CREATED:	1/30/2019 3:42 AM
DATE MODIFIED:	1/30/2019 3:44 AM
	DIFFICULTY: REFERENCES: QUESTION TYPE: HAS VARIABLES: LEARNING OBJECTIVES: DATE CREATED:

71. Which ventilatory pattern is defined as the complete absence of spontaneous breathing? *Copyright Cengage Learning. Powered by Cognero.*

Chapter 02: Ventilation				
a. apnea	b. dyspnea	1		
c. apneusis	d. eupnea			
ANSWER:		а		
FEEDBACK:		a. The absence of spontaneous breathing is called apnea.		
		b. The absence of spontaneous breathing is called apnea.		
		c. The absence of spontaneous breathing is called apnea.		
		d. The absence of spontaneous breathing is called apnea.		
POINTS:		1		
DIFFICULTY:		Recall		
REFERENCES:		Overview of Specific Breathing Conditions		
QUESTION TYP	E:	Multiple Choice		
HAS VARIABLES	S:	False		
LEARNING OBJI	ECTIVES:	45		
DATE CREATED) <u>;</u>	1/30/2019 3:45 AM		
DATE MODIFIED):	1/30/2019 3:47 AM		

72. What is the term for the breathing condition in which short episodes of rapid, uniform deep breaths are followed by 10-30 seconds of apnea?

To bo seconds of upned.				
a. Levy's	b. Cheyne-St	okes		
c. Biot's	d. Kussmaul'	S		
ANSWER:	C	c		
FEEDBACK:		 Biot's breathing is characterized by short episodes of uniform, rapid deep breaths followed by 10-30 seconds of apnea. 		
		b. Biot's breathing is characterized by short episodes of uniform, rapid deep breaths followed by 10-30 seconds of apnea.		
		c. Biot's breathing is characterized by short episodes of uniform, rapid deep breaths followed by 10-30 seconds of apnea.		
		d. Biot's breathing is characterized by short episodes of uniform, rapid deep breaths followed by 10-30 seconds of apnea.		
POINTS:		1		
DIFFICULTY:	I	Recall		
REFERENCES:		Overview of Specific Breathing Conditions		
QUESTION TYPE:		Multiple Choice		
HAS VARIABLES:		False		
LEARNING OB	JECTIVES: 4	45		
DATE CREATE	D:	1/30/2019 3:47 AM		
DATE MODIFIE	ED:	1/30/2019 3:49 AM		
73. What is the term for a rapid respiratory rate?				
a. hyperpnea	b. hypervo	entilation		
c. eupnea	d. tachypr	nea		
ANSWER:	(t the second		
FEEDBACK:		a. A rapid respiratory rate is called tachpnea.		

Chapter 02: Ventilat	ion	
	b. A rapid respiratory rate is called tachpnea.	
	c. A rapid respiratory rate is called tachpnea.	
	d. A rapid respiratory rate is called tachpnea.	
POINTS:	1	
DIFFICULTY:	Recall	
REFERENCES:	Overview of Specific Breathing Conditions	
QUESTION TYPE:	Multiple Choice	
HAS VARIABLES:	False	
LEARNING OBJEC	TIVES: 45	
DATE CREATED:	1/30/2019 3:50 AM	
DATE MODIFIED:	1/30/2019 3:52 AM	
74. What is the term for	or the breathing pattern in which the depth of breathing increases?	
a. hyperpnea	b. Kussmaul's	
c. hyperventilation	n d. tachypnea	
ANSWER:	a	
FEEDBACK:	a. Hyperpnea is an increase in the depth of breathing.	
	b. Hyperpnea is an increase in the depth of breathing.	
	c. Hyperpnea is an increase in the depth of breathing.	
	d. Hyperpnea is an increase in the depth of breathing.	
POINTS:	1	
DIFFICULTY:	Recall	
REFERENCES:	Overview of Specific Breathing Conditions	
QUESTION TYPE:	Multiple Choice	
HAS VARIABLES:	False	
LEARNING OBJEC	TIVES: 45	
DATE CREATED:	1/30/2019 3:53 AM	
DATE MODIFIED:	1/30/2019 3:55 AM	
75. In which breathing	pattern is an individual only able to breathe comfortably in the upright position?	
a. tachypnea b	o. orthopnea	
c. eupnea	l. hyperpnea	
ANSWER:	b	
FEEDBACK:	 a. When one can only breathe comfortably while in the upright position, it is ca orthopnea. 	
	b. When one can only breathe comfortably while in the upright position, it is ca orthopnea.	
	c. When one can only breathe comfortably while in the upright position, it is ca orthopnea.	
	 d. When one can only breathe comfortably while in the upright position, it is ca orthopnea. 	
POINTS:	1	

Recall

DIFFICULTY:

Chapter 02: ventha	
REFERENCES: QUESTION TYPE: HAS VARIABLES: LEARNING OBJEC DATE CREATED: DATE MODIFIED:	Overview of Specific Breathing Conditions Multiple Choice False CTIVES: 45 1/30/2019 3:56 AM 1/30/2019 3:58 AM
 76. Which abnormal I a. Cheyne Stokes c. Biot's ANSWER: FEEDBACK: POINTS: 	 d. Kussmaul's a. Kussmaul's breathing is most often associated with ketoacidosis. b. Kussmaul's breathing is most often associated with ketoacidosis. c. Kussmaul's breathing is most often associated with ketoacidosis. d. Kussmaul's breathing is most often associated with ketoacidosis.
	1
DIFFICULTY:	Recall
REFERENCES:	Overview of Specific Breathing Conditions
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False
LEARNING OBJEC	
DATE CREATED:	1/30/2019 3:58 AM
DATE MODIFIED:	1/30/2019 4:01 AM
a. assess the tidal b. ask the patient c. monitor the Pa	CO ₂
d. assess the resp	iratory rate
ANSWER:	C
FEEDBACK:	a. The absolute confirmation of hyperventilation is made by assessing the PaCO2
	b. The absolute confirmation of hyperventilation is made by assessing the PaCO2
	c. The absolute confirmation of hyperventilation is made by assessing the PaCO2
	d. The absolute confirmation of hyperventilation is made by assessing the PaCO2
POINTS:	1
DIFFICULTY:	Recall

REFERENCES:	Overview of Specific Breathing Conditions Clinical Connection 2-18: The Arterial Carbon Dioxide Level and its Relationship to the Clinical Verification of Hyperventilation and Hypoventilation
QUESTION TYPE:	Multiple Choice
HAS VARIABLES:	False

DATE CREATED: 1/30/2019 4:04 AM

Name:_____Class:_____Date:_____

Chapter 02: Ventilation

DATE MODIFIED: 1/30/2019 4:07 AM