MULTIPLE CHOICE

1. Which of the following statements about atomic orbitals is false?
a. A $1 s$ orbital is spherically symmetrical.
b. An atomic orbital may contain zero, one, or two electrons.
c. A $2 s$ orbital and a $2 p$ orbital are equal in energy.
d. A $2 p_{\mathrm{x}}$ orbital and a $2 p_{\mathrm{y}}$ orbital are equal in energy.
e. A $2 p$ orbital is not spherically symmetrical.
ANS: C
DIF: Easy
REF: 1.1

OBJ: Understand properties of atomic orbitals
MSC: Remembering
2. Which of the following statements is true?
a. Ionization potential decreases going across a row left to right.
b. Ionization potential increases going down a group.
c. Electron affinity increases going across a row left to right.
d. Electron affinity increases going down a group.
e. Atoms with high ionization potentials have correspondingly high electron affinities.
ANS: C
DIF: Easy
REF: 1.2

OBJ: Evaluate trends in IP, EA in periodic table
MSC: Remembering
3. What is the total number of occupied p orbitals in a neutral phosphorus atom?
a. 2
b. 3
c. 6
d. 9
e. 12
ANS: C
DIF: Easy
REF: 1.2
OBJ: Determine atomic orbital structure
MSC: Analyzing
4. Which one of the following sets of quantum numbers is impossible?
a. $\quad n=1, l=0, m_{l}=0, s=+1 / 2$
b. $\quad n=1, l=1, m_{l}=0, s=+1 / 2$
c. $n=2, l=1, m_{l}=1, s=+1 / 2$
d. $\quad n=2, l=1, m_{l}=-1, s=-1 / 2$
e. $n=3, l=0, m_{l}=0, s=-1 / 2$
ANS: B
DIF: Easy
REF: 1.2
OBJ: Apply rules for quantum numbers
MSC: Applying
5. Which of these sets of quantum numbers would define an electron in the $5 d$ subshell?
a. $n=5 ; l=2, m_{l}=-3, s=1 / 2$
b. $\quad n=5 ; l=2, m_{l}=-2, s=1 / 2$
c. $n=5 ; l=4, m_{l}=-2, s=-1 / 2$
d. $n=5 ; l=2, m_{l}=-2, s=1$
e. $n=5 ; l=1, m_{l}=0, s=-1 / 2$

ANS: B
DIF: Easy
REF: 1.2
OBJ: Apply rules for quantum numbers
MSC: Applying
6. The rule or principle that states that the electronic state with the greatest number of unpaired spins will have the lowest energy is called
a. the Pauli principle
d. Hund's rule
b. the aufbau principle
e. the octet rule
c. the Heisenberg uncertainty principle
ANS: D
DIF: Easy
REF: 1.2

OBJ: Understand the rules for quantum mechanics
MSC: Remembering
7. d-orbitals have two nodal planes. How many spherical nodes will a $5 d$ orbital contain?
a. 1
b. 2
c. 3
d. 4
e. 5
ANS: B
DIF: Difficult
REF: 1.2

OBJ: Derive nodes based on quantum numbers MSC: Analyzing
8. Which of the following statements accurately describes the node(s) in a $2 s$ orbital?
a. There are zero nodes in a $2 s$ orbital.
b. A $2 s$ orbital has one spherical node.
c. A $2 s$ orbital has one nodal plane.
d. A $2 s$ orbital has one spherical node and one nodal plane.
e. A $2 s$ orbital has two spherical nodes.

ANS: B DIF: Medium REF: 1.2
OBJ: Derive nodes based on quantum numbers MSC: Analyzing
9. Which of the following statements accurately describes the node(s) in a $2 p$ orbital?
a. There are zero nodes in a $2 p$ orbital.
b. A $2 p$ orbital has one spherical node.
c. A $2 p$ orbital has one nodal plane.
d. A $2 p$ orbital has one spherical node and one nodal plane.
e. A $2 p$ orbital has two spherical nodes.

ANS: C DIF: Medium REF: 1.2
OBJ: Derive nodes based on quantum numbers MSC: Analyzing
10. Which of the Lewis structures shown below is incorrect?
a.

d.

b.

e.

c.

ANS: D
DIF: Medium
REF: 1.3
OBJ: Apply rules for Lewis structures
MSC: Analyzing
11. Indicate which of the species shown are expected to have a net dipole moment.
a.

d.

b.

e.

c.

ANS: A
DIF: Difficult
REF: 1.3
OBJ: Determine polarity based on 3D structure, bond dipoles MSC: Analyzing
12. Which of the following Lewis structures shows an incorrectly drawn bond dipole?
a.

d.

b.

e.

c.

ANS: A
DIF: Easy
REF: 1.3
OBJ: Determine a dipole moment from a structure MSC: Analyzing
13. In which of the following Lewis structures does the nitrogen atom have a formal charge of $1+$?
a.

d.

b.

e.

c.

ANS: B
DIF: Easy
REF: 1.3
OBJ: Calculate formal charge
MSC: Applying
14. What is the formal charge on the oxygen atom in each of the following Lewis structures?

Structure A

Structure B

Structure C
a. $\mathbf{A}: 0, \mathbf{B}: 1-, \mathbf{C}: 1+$
b. $\mathbf{A}: 1+, \mathbf{B}: 1-\mathbf{C}: 0$
c. $\mathbf{A}: 1-, \mathbf{B}: 1+, \mathbf{C}: 0$
d. $\mathbf{A}: 1-, \mathbf{B}: 1-, \mathbf{C}: 1-$
e. $\mathbf{A}: 1+, \mathbf{B}: 1+, \mathbf{C}: 1-$

ANS: B DIF: Easy REF: 1.3 OBJ: Calculate formal charge
MSC: Applying
15. Which of the following Lewis structures contains an oxygen atom with a $1+$ formal charge?
a.

d.

b.

e.

ANS: D DIF: Easy REF: 1.3 OBJ: Calculate formal charge
MSC: Applying
16. Which of the following structures is the best Lewis structure for hypochlorous acid, HOCl ?
a. $\mathrm{H}-\ddot{\mathrm{O}}-\ddot{\mathrm{C}}:$
d.

b. $\quad \ddot{\mathrm{O}}=\mathrm{Cl}-\mathrm{H}$
e. $: \ddot{\mathrm{O}}-\mathrm{H}-\ddot{\mathrm{Cl}}$:
c. $\mathrm{H}-\ddot{\mathrm{O}}=\ddot{\mathrm{C}} \mathrm{l}$:

ANS: A
DIF: Medium
REF: 1.3
OBJ: Apply rules for Lewis structures
MSC: Analyzing
17. Which of the following molecules has a net dipole moment?
a.

d.

b.

e.

c.

ANS: A DIF: Medium REF: 1.3
OBJ: Determine a dipole moment from a structure MSC: Applying
18. In which of the following structures does the carbon atom have a formal charge that is not zero?
a. $\mathrm{H}-\mathrm{N}=\mathrm{C}-\ddot{\mathrm{O}}:$
d.

b.

e. Both c and d
c. $\mathrm{H}-\ddot{\mathrm{N}}=\mathrm{C}-\ddot{\mathrm{O}}:$

ANS: C DIF: Medium REF: $1.3 \quad$ OBJ: Calculate formal charge
MSC: Applying
19. Which of the following resonance forms would be expected to be the most important contributor for the anionic species?
a.

d.

b.

e.

c.

ANS: B
DIF: Medium
REF: 1.4
OBJ: Analyze resonance forms for stability
MSC: Analyzing
20. Which of the following arrow conventions is used to show the relationship of two chemical species as resonance structures?
a.

b.
e. Both a and b
c. \longrightarrow
d.

ANS: A DIF: Easy
OBJ: Identify resonance structures
REF: 1.4
MSC: Remembering
21. Which two of the following structures are equivalent resonance contributors?

Structure A
a. $\quad \mathbf{A}$ and \mathbf{B}

Structure B

Structure C

Structure D
b. $\quad \mathbf{A}$ and \mathbf{C}
d. \mathbf{A} and \mathbf{D}
c. B and C

ANS: B
DIF: Easy
OBJ: Identify resonance structures
e. All the structures are equivalent.

REF: 1.4
MSC: Analyzing
22. Which of the following pairs are not related as resonance structures?
a.

and

b.

and

c.

and

d.

and

e.

and

ANS: C
DIF: Medium
REF: 1.4
OBJ: Identify resonance structures
MSC: Analyzing
23. Which of the following pairs are related as resonance structures? All nonzero formal charges are shown.
a.

b.

c.
 and

and

d.

e.

ANS: B
DIF: Medium
OBJ: Identify resonance structures

REF: 1.4
MSC: Analyzing
24. Which of the structures shown is not related to Structure A as a resonance contributor?
\oplus

Structure A

a.

b.

c.

d.

e.

ANS: B
DIF: Medium
REF: 1.4
OBJ: Identify resonance structures
MSC: Analyzing
25. In the orbital interaction diagram for ground state H_{2}, how many electrons occupy the antibonding molecular orbital?
a. 0
b. 1
c. 2
d. 3
e. 4

ANS: A
DIF: Easy
REF: 1.5
OBJ: Construct molecular orbital diagrams
MSC: Applying
26. How many molecular orbitals are generated from combining one $2 p$ orbital on carbon and one $2 p$ orbital on oxygen?
a. 0
b. 1
c. 2
d. 3
e. 4

ANS: C DIF: Easy REF: 1.5
OBJ: Apply rules for molecular orbital construction
MSC: Applying
27. How many antibonding molecular orbitals are generated from combining one $2 p$ orbital on nitrogen and one $2 p$ orbital on carbon?
a. 0
b. 1
c. 2
d. 3
e. 4
ANS: B
DIF: Easy
REF: 1.5

OBJ: Apply rules for molecular orbital construction
MSC: Applying
28. A certain orbital interaction diagram has four bonding molecular orbitals and four antibonding molecular orbitals. How many atomic orbitals were mixed to create all these orbitals?
a. 2
b. 4
c. 8
d. 16
e. It cannot be determined from the information given.
ANS: C
DIF: Easy
REF: 1.5

OBJ: Apply rules for molecular orbital construction
MSC: Applying
29. Which of the following statements about the molecular orbital diagram for $\mathrm{H}_{2}{ }^{-}$is false ?
a. There are two atomic orbitals that mix to produce molecular orbitals.
b. There is one bonding molecular orbital.
c. There is one antibonding molecular orbital.
d. All bonding orbitals are occupied.
e. All antibonding orbitals are unoccupied.

ANS: E DIF: Medium REF: 1.5
OBJ: Apply rules for molecular orbital construction MSC: Applying
30. Which of the following molecular orbitals is the highest in energy? (All were generated by the mixing of four $2 p$ orbitals.)
a. 808

0000
b. 0008
c. 0008
d. 0080
e. All four orbitals shown are equal in energy.

ANS: C DIF: Difficult REF: 1.5
OBJ: Apply rules for molecular orbital construction
MSC: Applying
31. Each of the chemical events shown represents a mechanistic step in a reaction you will learn this semester. Which of the following pictures represents the heterolytic cleavage of a carbon-oxygen bond?
a.

d.

b.

e.

c.

ANS: C
DIF: Medium
REF: 1.6
OBJ: Identify types of bond cleavage
MSC: Analyzing
32. Which of these orbital interactions would be expected to form a covalent bond with the highest BDE?
a. H atom $1 s$ with H^{+}cation $1 s$
d. H^{+}cation $1 s$ with He^{+}cation $1 s$
b. He atom $1 s$ with He atom $1 s$
e. H^{+}cation $1 s$ with He atom $1 s$
c. He atom $1 s$ with H atom $1 s$

ANS: E DIF: Difficult REF: 1.6
OBJ: Apply rules for molecular orbital construction MSC: Applying
33. Which of the following statements is true about Lewis acids and bases?
a. Lewis acids are also called nucleophiles.
b. A Lewis base always accepts a proton from a Lewis acid.
c. The interaction between a Lewis acid and a Lewis base leads to a covalent bond.
d. A Lewis base accepts an electron pair from a Lewis acid.
e. Homolytic bond cleavage leads to the formation of a Lewis acid/base pair.
ANS: C
DIF: Easy
REF: 1.7
OBJ: Understand Lewis acids and bases
MSC: Remembering

SHORT ANSWER

1. State the Heisenberg uncertainty principle.

ANS:
It is not possible to determine simultaneously both the position and momentum of an electron.
DIF: Easy REF: 1.1 OBJ: Understand the rules for quantum mechanics
MSC: Remembering
2. Explain what is meant by the term quantized as it applies to the energy of an electron.

ANS:
A property such as the energy of an electron is quantized when it is restricted to certain values.
DIF: Medium REF: 1.1 OBJ: Understand the rules for quantum mechanics
MSC: Remembering
3. What is the relationship between the principal quantum number n and the number of nodes in an orbital?

ANS:
The number of nodes in an orbital is one less than the principal quantum number n.
DIF: Easy REF: 1.2 OBJ: Apply rules and properties for atomic orbitals
MSC: Applying
4. Write the lowest-energy electron configuration for a neutral, ground-state oxygen atom.

ANS:
$1 s^{2} 2 s^{2} 2 p_{\mathrm{x}}{ }^{2} 2 p_{\mathrm{y}}{ }^{1} 2 p_{\mathrm{z}}{ }^{1}$
DIF: Easy
MSC: Creating
5. A student wrote the following electron configuration for a ground state, neutral nitrogen atom: $1 s^{2} 2 s^{2} 2 p_{x}{ }^{2} 2 p_{y}{ }^{1}$. Explain why the configuration does not describe the lowest energy state of a ground-state nitrogen atom and provide the lowest-energy electron configuration for nitrogen.

ANS:
Nitrogen has seven electrons ($Z=7$). The student violated Hund's rule by pairing two electrons in the same p orbital instead of placing an unpaired electron in each of the three available p orbitals, as Hund's rule states that for a given electron configuration, the state with the greatest number of parallel spins has the lowest energy. The lowest-energy electron configuration is $1 s^{2} 2 s^{2} 2 p_{\mathrm{x}}{ }^{1} 2 p_{\mathrm{y}}{ }^{1} 2 p_{\mathrm{z}}{ }^{1}$.

DIF: Medium REF: 1.2 OBJ: Understand the rules for quantum mechanics MSC: Applying

