MULTIPLE CHOICE

- 1. Which of the following statements about atomic orbitals is *false*?
 - a. A 1s orbital is spherically symmetrical.
 - b. An atomic orbital may contain zero, one, or two electrons.
 - c. A 2s orbital and a 2p orbital are equal in energy.
 - d. A $2p_x$ orbital and a $2p_y$ orbital are equal in energy.
 - e. A 2p orbital is not spherically symmetrical.

ANS: C DIF: Easy REF: 1.1

OBJ: Understand properties of atomic orbitals

MSC: Remembering

- 2. Which of the following statements is true?
 - a. Ionization potential decreases going across a row left to right.
 - b. Ionization potential increases going down a group.
 - c. Electron affinity increases going across a row left to right.
 - d. Electron affinity increases going down a group.
 - e. Atoms with high ionization potentials have correspondingly high electron affinities.

ANS: CDIF: EasyREF: 1.2OBJ: Evaluate trends in IP, EA in periodic tableMSC: Remembering

3. What is the total number of occupied *p* orbitals in a neutral phosphorus atom?

a.	2		d.	9	
b.	3		e.	12	
c.	6				
AN	IS: C	DIF: Easy	REF:	1.2	

	-)		
OBJ:	Determine	e atomic orbita	1 structure	MSC:	Analyzing

4. Which one of the following sets of quantum numbers is impossible?

a. $n = 1, l = 0, m_l = 0, s =$	$+\frac{1}{2}$	d.	$n = 2, l = 1, m_l = -1, s = -\frac{1}{2}$
b. $n = 1, l = 1, m_l = 0, s =$	+1/2	e.	$n = 3, l = 0, m_l = 0, s = -\frac{1}{2}$
c. $n = 2, l = 1, m_l = 1, s =$	+1/2		
ANS: B DIF: OBJ: Apply rules for quan	Easy tum numbers	REF: MSC:	1.2 Applying

5. Which of these sets of quantum numbers would define an electron in the 5d subshell?

a. $n = 5; l = 2,$	$m_l = -3, s = \frac{1}{2}$	d. $n = 5; l =$	$2, m_l = -2, s = 1$
b. $n = 5; l = 2,$	$m_l = -2, s = \frac{1}{2}$	e. $n = 5; l =$	$1, m_l = 0, s = -\frac{1}{2}$
c. $n = 5; l = 4,$	$m_l = -2, s = -\frac{1}{2}$		
ANS: B	DIF: Easy	REF: 1.2	
OBJ: Apply rul	es for quantum numbers	MSC: Applying	

6.	The rule or principle that states that the electronic will have the lowest energy is called	ic state with the greatest number of unpaired spins
	a. the Pauli principle	d. Hund's rule
	b. the aufbau principle e	e. the octet rule
	c. the Heisenberg uncertainty principle	
	ANS: D DIF: Easy REF	F: 1.2
	OBJ: Understand the rules for quantum mechan	nics MSC: Remembering
7	<i>d</i> -orbitals have two nodal planes. How many spl	<i>herical</i> nodes will a 5 <i>d</i> orbital contain?
7.	a 1	d 4
	b. 2 e	e. 5
	c. 3	
	ANS: B DIF: Difficult REF	F: 1.2
	OBJ: Derive nodes based on quantum numbers	MSC: Analyzing
8.	 Which of the following statements accurately de a. There are zero nodes in a 2s orbital. b. A 2s orbital has one spherical node. c. A 2s orbital has one nodal plane. d. A 2s orbital has one spherical node and one e. A 2s orbital has two spherical nodes. 	escribes the node(s) in a 2 <i>s</i> orbital? nodal plane.
	ANS:BDIF:MediumREFOBJ:Derive nodes based on quantum numbers	F: 1.2 MSC: Analyzing
9.	 Which of the following statements accurately de a. There are zero nodes in a 2p orbital. b. A 2p orbital has one spherical node. c. A 2p orbital has one nodal plane. d. A 2p orbital has one spherical node and one e. A 2p orbital has two spherical nodes. 	escribes the node(s) in a $2p$ orbital? e nodal plane.

ANS:CDIF:MediumREF:1.2OBJ:Derive nodes based on quantum numbers

MSC: Analyzing

10. Which of the Lewis structures shown below is *incorrect*?

- ANS: DDIF: MediumREF: 1.3OBJ: Apply rules for Lewis structuresMSC: Analyzing
- 11. Indicate which of the species shown are expected to have a net dipole moment.

ANS: A DIF: Difficult REF: 1.3 OBJ: Determine polarity based on 3D structure, bond dipoles MSC: Analyzing

4 • CHAPTER 1

12. Which of the following Lewis structures shows an *incorrectly* drawn bond dipole?

ANS: ADIF: EasyREF: 1.3OBJ: Determine a dipole moment from a structureMSC: Analyzing

13. In which of the following Lewis structures does the nitrogen atom have a formal charge of 1+?

ANS: B DIF: Easy REF: 1.3 OBJ: Calculate formal charge MSC: Applying

15. Which of the following Lewis structures contains an oxygen atom with a 1+ formal charge?

- 16. Which of the following structures is the best Lewis structure for hypochlorous acid, HOCl?
 - a. HHH<t

17. Which of the following molecules has a net dipole moment?

ANS: ADIF: MediumREF: 1.3OBJ: Determine a dipole moment from a structureMS

MSC: Applying

- 18. In which of the following structures does the carbon atom have a formal charge that is not zero?
 - a. $H \longrightarrow N \equiv C \longrightarrow \ddot{O}$: b. $H \longrightarrow \ddot{N} = C = \ddot{O}$ c. $H \longrightarrow \ddot{N} = C \longrightarrow \ddot{O}$: d. $H \longrightarrow \ddot{N} \longrightarrow \ddot{C} \longrightarrow \ddot{O}$: e. Both c and d

ANS: C DIF: Medium REF: 1.3 OBJ: Calculate formal charge MSC: Applying

19. Which of the following resonance forms would be expected to be the most important contributor for the anionic species?

ANS: A DIF: Easy OBJ: Identify resonance structures REF: 1.4 MSC: Remembering 21. Which two of the following structures are *equivalent* resonance contributors?

22. Which of the following pairs are *not* related as resonance structures?

ANS: C DIF: Medium OBJ: Identify resonance structures

REF: 1.4 MSC: Analyzing

23. Which of the following pairs are related as resonance structures? All nonzero formal charges are shown.

ANS: B DIF: Medium OBJ: Identify resonance structures

REF: 1.4 MSC: Analyzing

24. Which of the structures shown is not related to Structure A as a resonance contributor?

REF: 1.4 MSC: Analyzing

MSC: Applying

25. In the orbital interaction diagram for ground state H₂, how many electrons occupy the antibonding molecular orbital?

a.	0			d.	3
b.	1			e.	4
c.	2				
AN OB	S: J:	A DIF: Construct molecular	Easy orbital diagram	REF: s	1.5

26.	How many molecular orbitals are generated from combining one $2p$ orbital on carbon and one $2p$ orbital on oxygen?
	a. 0 d. 3
	b. 1 e. 4 c. 2
	ANS: CDIF: EasyREF: 1.5OBJ:Apply rules for molecular orbital constructionMSC: Applying
27.	How many antibonding molecular orbitals are generated from combining one $2p$ orbital on nitrogen and one $2p$ orbital on carbon?
	a. 0 d. 3
	b. 1 e. 4 c. 2
	ANS: B DIF: Easy REF: 1.5
	OBJ: Apply rules for molecular orbital construction MSC: Applying
28.	 A certain orbital interaction diagram has four bonding molecular orbitals and four antibonding molecular orbitals. How many atomic orbitals were mixed to create all these orbitals? a. 2 b. 4 c. 8 d. 16 e. It cannot be determined from the information given.
	ANS: CDIF: EasyREF: 1.5OBJ:Apply rules for molecular orbital constructionMSC: Applying
29.	 Which of the following statements about the molecular orbital diagram for H₂⁻ is <i>false</i>? a. There are two atomic orbitals that mix to produce molecular orbitals. b. There is one bonding molecular orbital. c. There is one antibonding molecular orbital. d. All bonding orbitals are occupied. e. All antibonding orbitals are unoccupied.
	ANS: EDIF: MediumREF: 1.5OBJ: Apply rules for molecular orbital constructionMSC: Applying
30.	Which of the following molecular orbitals is the highest in energy? (All were generated by the mixing of four $2p$ orbitals.)
	b. $\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup$

- c.
- d.

e. All four orbitals shown are equal in energy.

ANS: CDIF: DifficultREF: 1.5OBJ: Apply rules for molecular orbital constructionMSC: Applying

31. Each of the chemical events shown represents a mechanistic step in a reaction you will learn this semester. Which of the following pictures represents the heterolytic cleavage of a carbon–oxygen bond?

ANS: C DIF: Medium REF: 1.6 OBJ: Identify types of bond cleavage MSC: Analyzing

- 32. Which of these orbital interactions would be expected to form a covalent bond with the highest BDE?
 - a. H atom 1s with H⁺ cation 1s

b.

He atom 1s with He atom 1s

- d. H^+ cation 1s with He⁺ cation 1s
- e. H^+ cation 1s with He atom 1s
- c. He atom 1s with H atom 1s

ANS: E DIF: Difficult REF: 1.6 OBJ: Apply rules for molecular orbital construction

MSC: Applying

- 33. Which of the following statements is true about Lewis acids and bases?
 - a. Lewis acids are also called nucleophiles.
 - b. A Lewis base always accepts a proton from a Lewis acid.
 - c. The interaction between a Lewis acid and a Lewis base leads to a covalent bond.
 - d. A Lewis base accepts an electron pair from a Lewis acid.
 - e. Homolytic bond cleavage leads to the formation of a Lewis acid/base pair.

ANS:	С	DIF:	Easy	REF:	1.7
OBJ:	Understand Le	ewis ac	ids and bases	MSC:	Remembering

SHORT ANSWER

1. State the Heisenberg uncertainty principle.

ANS:

It is not possible to determine simultaneously both the position and momentum of an electron.

DIF: Easy REF: 1.1 OBJ: Understand the rules for quantum mechanics MSC: Remembering

2. Explain what is meant by the term quantized as it applies to the energy of an electron.

ANS:

A property such as the energy of an electron is quantized when it is restricted to certain values.

DIF: Medium REF: 1.1 OBJ: Understand the rules for quantum mechanics MSC: Remembering

3. What is the relationship between the principal quantum number *n* and the number of nodes in an orbital?

ANS:

The number of nodes in an orbital is one less than the principal quantum number *n*.

DIF: Easy REF: 1.2 OBJ: Apply rules and properties for atomic orbitals MSC: Applying

4. Write the lowest-energy electron configuration for a neutral, ground-state oxygen atom.

ANS: $1s^22s^22p_x^22p_y^{-1}2p_z^{-1}$

DIF:	Easy	REF:	1.2	OBJ:	Write electron configurations
MSC:	Creating				

5. A student wrote the following electron configuration for a ground state, neutral nitrogen atom: $1s^22s^22p_x^22p_y^1$. Explain why the configuration does not describe the lowest energy state of a ground-state nitrogen atom and provide the lowest-energy electron configuration for nitrogen.

ANS:

Nitrogen has seven electrons (Z = 7). The student violated Hund's rule by pairing two electrons in the same p orbital instead of placing an unpaired electron in each of the three available p orbitals, as Hund's rule states that for a given electron configuration, the state with the greatest number of parallel spins has the lowest energy. The lowest-energy electron configuration is $1s^22s^22p_x^{-1}2p_y^{-1}2p_z^{-1}$.

DIF:	Medium	REF: 1.2	OBJ:	Understand the rules for quantum mechanics
MSC:	Applying			