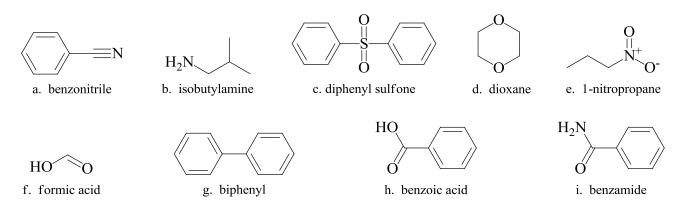
CHAPTER 2

2.1 $v = \frac{1}{2\pi c} \sqrt{k \left(\frac{m1m2}{m1+m2}\right)}$ (k) force constant = $4\pi^2 c^2 v^2 m_{eff}$ $m_{eff} = \left(\frac{m1m2}{m1+m2}\right)$ $m_{eff} = (^1H^{19}F) = \frac{(1.0078 \times 18.9984)}{(1.0078 + 18.9984)} = 0.9570 \mu$ $m_{eff} = (^1H^{19}F) = \frac{(1.0078 \times 18.9984)}{(1.0078 + 18.9984)} = 0.9570 \mu$ $m_{eff} = (^1H^{19}F) = 0.9796 \mu$ $m_{eff} = (^1H^{127}I) = 0.9999 \mu$ (k) ($^1H^{19}F$) = 4 x 3.14² x (2.997 x 10¹⁰ cm s⁻¹)² x (4148.2 cm⁻¹)² x (0.9570 x 1.66 x 10⁻²⁷kg) = 968.3 kg s⁻² = 968.3 N/m (k) ($^1H^{35}Cl$) = 514.6 N/m (k) ($^1H^{81}Br$) = 410.9 N/m (k) ($^1H^{127}I$) = 313.6 N/m

Assume that the force constant for halides are the same when substituting the deuterium -- the calculated bond stretch frequency for halides:

$$v = \frac{1}{2\pi c} \sqrt{k \left(\frac{m1m2}{m1+m2}\right)}$$

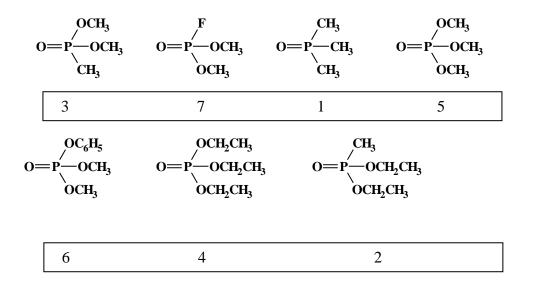
2.2. The gross selection rule for infrared activity is that motion corresponding to a normal mode should be accompanied by a change of dipole moment. So those molecules in which a vibration gives rise to a change in dipole moment are infrared active compounds:

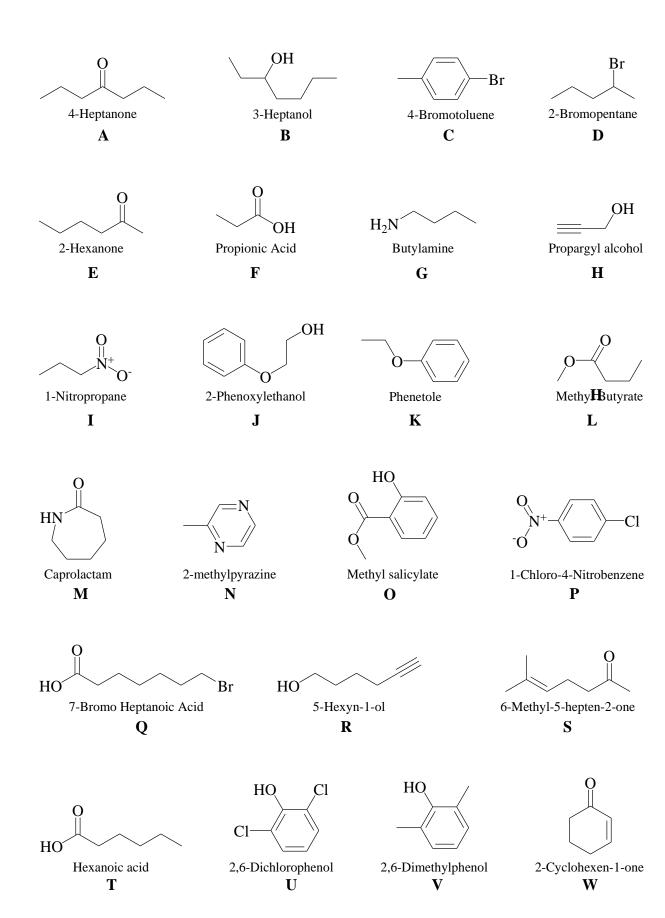

(a) CH₃CH₃, (b) CH₄, (c) CH₃Cl.

It is helpful to write down the structural formulas of the compounds

- 2.3. A nonlinear molecule has 3N-6 normal modes of vibration, where N is the number of atoms in the molecule; a linear molecule has 3N-5.
 - (a) C_6H_6 has 3(12) 6 = 30 normal modes
 - (b) $C_6H_6CH_3$ has 3(16) 6 = 42 normal modes
 - (c) HC=C-C=CH is linear; it has 3(6) 5 = 13 normal modes

CHAPTER 2


2.5.


- 2.6. For butyric acid and ethyl butyrate, the carbonyl stretching band is a result of a simple fundamental stretching mode. Butyric anhydride, on the other hand, exhibits 2 carbonyl stretching frequencies due to coupling of the carbonyls through the common oxygen atom of the anhydride functional group. The 2 frequencies are respectively the symmetric and asymmetric stretching frequencies.
- 2.7. Combination bands are a result of complex interactions between 2 or more fundamental vibration modes. For instance, if a fundamental vibration does not occur because of the wrong symmetry, it can combine with another fundamental frequency of proper symmetry to produce one or more combination band. A series of useful combination bands is often found between 1700 and 2000 cm⁻¹ for aromatic compounds.

For an oscillator, the lowest "natural" frequency is called the fundamental frequency (n=1). Higher order frequencies are called "overtones". The first overtone (n=2) can be found at approximately twice the frequency of the fundamental frequency. Higher overtones are possible but rarely seen. A common overtone band found in IR spectra is the first overtone band of the carbonyl stretch of ketones. The fundamental frequency is typically found at 1715 cm⁻¹ while the first overtone is often seen at approximately 3420 cm⁻¹.

2.8. Table 2.10 is used to determine this answer. The more electronegative the functional groups are, the higher the P-O IR stretching frequency.

CHAPTER 2

2.9