Solutions - Problems in Statistics

Section 1 Measures of Center and Variation

1. (a) The mean is

$$
\bar{x}=\frac{-4-6+2.5+3+8+5-3-4+8+3+2.2}{11}=1.3364 .
$$

For the median, write the list in nondecreasing order:

$$
-6,-4,-4,-3,2.2,2.5,3,3,5,8,8
$$

With an odd number $N=11$ of numbers in the list, the median is the sixth number, 2.5. Here, 6 is obtained as

$$
\frac{N+1}{2}=\frac{12}{2}=6 .
$$

There are five numbers of the list to the left of 2.5 , and five numbers of the set to the right.
The standard deviation s is

$$
s=\sqrt{\frac{239.44}{10}}=4.8933
$$

(b) The mean is

$$
\bar{x}=\frac{1+1+1-1+2+3-1+4+2}{9}=1.3333 .
$$

Arranged in nondecreasing order, the sequence is

$$
-1,-1,1,1,1,2,2,3,4
$$

With $N=9$ numbers, the median is the fifth number from the left. This is 1 (not just any 1 , but the third of three ones, from the left). There are four numbers of the set to the left of this 1 , and four numbers to the right.
The standard deviation is

$$
s=\sqrt{\frac{22}{8}}=1.6583
$$

(c) The mean is

$$
\bar{x}=\frac{3-4+2+1.5-4-4+2+1+7}{9}=0.5 .
$$

In nondecreasing order, the list is

$$
-4,-4,-4,1,1.5,2,2,3,7
$$

The median is 1.5 .
The standard deviation is

$$
s=\sqrt{\frac{115}{8}}=3.7914
$$

(d) The mean is

$$
\bar{x}=\frac{9.3+9.5+9.7+10+8.4+8.7+8.8+8.8+4.1}{9}=8.5889
$$

As a nondecreasing list, we have

$$
4.1,8.4,8.7,8.8,8.8,9.3,9.5,9.7,10
$$

The median is 8.8 . This is the fifth number from the left in the list, and is the second 8.8 from the left.
The standard deviation is

$$
s=\sqrt{\frac{24,849}{8}}=1.7624
$$

(e) The mean is

$$
\bar{x}=\frac{-16-14-10+0+0+1+1+3+5+7}{10}=-2.3 .
$$

The data is already listed in nondecreasing order. the median is the average of the fifth and sixth numbers in this list. This median is

$$
\frac{0+1}{2}=\frac{1}{2} .
$$

In this case that the number of data points is even, the median need not be a number in the set.
The standard deviation is

$$
s=\sqrt{\frac{584.1}{9}}=8.0561
$$

2. Making use of the frequency table, compute the mean as

$$
\bar{x}=\frac{4(-12)+2(-9.7)+6(-8)+4(-7.6)+12(-5.1)+3(4)}{31}=-6.2903
$$

The data is given in nondecreasing order. The number of entries is an odd number, 31 , so the median is the sixteenth number from the left, -7.6 (the right-most -7.6 in the list). This is obtained by using the frequencies to count up to the sixteenth number from the left.
The standard deviation is

$$
s=\sqrt{\frac{512.73}{30}}=4.1341
$$

$$
\begin{array}{|c|c|c|r|r|r|}
2 & 3 & 4 & 5 & 6 & 7 \\
3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 6 & 7 & 8 & 9 \\
5 & 6 & 7 & 8 & 9 & 10 \\
6 & 7 & 8 & 9 & 10 & 11 \\
7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

Table 1: Sums of pairs of dice, Problem 1, Section 2.
3. The mean is

$$
\bar{x}=\frac{4(-3)+2(-1)+6(0)+4(1)+12(3)+3(4)}{31}=1.2258 .
$$

The median is the sixteenth number from the left, or 1 (the last 1 to the right in the ordered list).
The standard deviation is

$$
s=\sqrt{\frac{151.42}{30}}=2.2466
$$

Section 2 Random Variables and Probability Distributions

1. If we roll two dice, there are thirty-six possible outcomes. The sums of the numbers that can come up on the two dice are listed in Table 1.
For example, if o is the outcome that one die comes up 2 and the other 3, then the sum of the dice is 5 , so $X(o)=5$.
The table gives all of the values that $X(o)$ can take on, over all outcomes o of the experiment. Each value is listed as often as it occurs as a value of X. For example, 4 occurs three times, because $X(o)=4$ for three different outcomes (namely $(2,2),(1,3)$ and $(3,1))$.
Define a probability distribution P on X by by letting $P(x)$ be the probability of x, for each value x that X can assume.
For example, since 2 occurs once out of 36 entries in this table, assign to this value of X the probability

$$
P(2)=\frac{1}{36} .
$$

Similarly, 11 occurs twice, so give the value 11 of X the probability

$$
P(11)=\frac{2}{36} .
$$

Since 3 occurs twice in the table, $P(3)=2 / 36$, and so on.
Calculating $P(n)$ for each n in the table, we obtain

$$
\begin{aligned}
& P(2)=P(12)=\frac{1}{36}, P(3)=P(11)=\frac{2}{36} \\
& P(4)=P(10)=\frac{3}{36}, P(5)=P(9)=\frac{4}{36} \\
& P(6)=P(8)=\frac{5}{36}, P(7)=\frac{6}{36}
\end{aligned}
$$

Notice that $\sum_{x} P(x)=1$, as required for a probability function.
The mean of X is

$$
\begin{aligned}
& \mu=\sum_{x} x P(x) \\
&=2\left(\frac{1}{36}\right)+3\left(\frac{2}{36}\right)+4\left(\frac{3}{36}\right)+5\left(\frac{4}{36}\right)+6\left(\frac{5}{36}\right)+7\left(\frac{6}{36}\right) \\
&+8\left(\frac{5}{36}\right)+9\left(\frac{4}{36}\right)+10\left(\frac{3}{36}\right)+11\left(\frac{2}{36}\right)+12\left(\frac{1}{36}\right) \\
&=7
\end{aligned}
$$

This is interpreted to mean that, on average, we expect to come up with a seven if we roll two dice. This is a reasonable expectation in view of the fact that there are more ways to roll 7 than any other sum with two dice. The standard deviation is

$$
\sigma=\sqrt{\sum_{x}(x-7)^{2} P(x)}
$$

To compute this, first compute

$$
\begin{aligned}
& \sum_{x}(x-7)^{2} P(x) \\
& =(2-7)^{2}\left(\frac{1}{36}\right)+(3-7)^{2}\left(\frac{2}{36}\right)+(4-7)^{2}\left(\frac{3}{36}\right) \\
& +(5-7)^{2}\left(\frac{4}{36}\right)+(6-7)^{2}\left(\frac{5}{36}\right)+(7-7)^{2}\left(\frac{6}{36}\right) \\
& +(8-7)^{2}\left(\frac{5}{36}\right)+(9-7)^{2}\left(\frac{4}{36}\right)+(10-7)^{2}\left(\frac{3}{36}\right) \\
& +(11-7)^{2}\left(\frac{2}{36}\right)+(12-7)^{2}\left(\frac{1}{36}\right) \\
& =5.8333 .
\end{aligned}
$$

Then

$$
\sigma=\sqrt{5.8333}=2.4152
$$

2. Flip four coins, with sixteen possible outcomes. If o is an outcome, $X(o)$ can have only two values, namely 1 if two, three, or four tails are in o, or 3 otherwise (one tail or no tails in o). There are five outcomes with one tail or no tail, and eleven with two or more tails, so

$$
P(1)=\frac{11}{16} \text { and } P(3)=\frac{5}{16} .
$$

The mean is

$$
\mu=\sum_{x} x P(x)=1\left(\frac{11}{16}\right)+3\left(\frac{5}{16}\right)=\frac{26}{16}=1.625
$$

For the standard deviation of X, compute

$$
\begin{aligned}
& \sum_{x}(x-\mu)^{2} P(x) \\
& =(1-1.625)^{2}\left(\frac{11}{16}\right)+(3-1.625)^{2}\left(\frac{5}{16}\right) \\
& =0.85938
\end{aligned}
$$

Then

$$
\sigma=\sqrt{0.85938}=0.92703
$$

3. We have

$$
\begin{aligned}
& X(1)=0 \\
& X(2)=X(3)=X(5)=X(7)=X(11)=X(13)=X(17)=X(19)=1, \\
& X(4)=X(6)=X(9)=X(10)=X(14)=X(15)=2 \\
& X(8)=X(12)=X(18)=X(20)=3 \\
& X(16)=4
\end{aligned}
$$

The values assumed by X are $0,1,2,3,4$. From the list of values, we get

$$
P(0)=\frac{1}{20}, P(1)=\frac{8}{20}, P(2)=\frac{6}{20}, P(3)=\frac{4}{20}, P(4)=\frac{1}{20} .
$$

These are the probabilities of the values of the random variable X.
The mean of X is

$$
\begin{aligned}
\mu & =\sum_{x} x P(x) \\
& =0\left(\frac{1}{20}\right)+1\left(\frac{8}{20}\right)+2\left(\frac{6}{20}\right) \\
& +3\left(\frac{4}{20}\right)+4\left(\frac{1}{20}\right) \\
& =1.8
\end{aligned}
$$

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Table 2: Outcomes of rolling two dice, Problem 4, Section 2.

For the standard deviation of X, first compute

$$
\begin{aligned}
& \sum_{x}(x-\mu)^{2} P(x) \\
& =(0-1.8)^{2}\left(\frac{1}{20}\right)+(1-1.8)^{2}\left(\frac{8}{20}\right) \\
& +(2-1.8)^{2}\left(\frac{6}{20}\right)+(3-1.8)^{2}\left(\frac{4}{20}\right) \\
& +(4-1.8)^{2}\left(\frac{1}{20}\right)=0.9600
\end{aligned}
$$

Then

$$
\sigma=\sqrt{(0.9600)}=0.9798
$$

4. The outcomes of two rolls of the dice are displayed in Table 2.

Then

$$
\begin{aligned}
& X(n, n)=n \text { for } n=1,2,3,4,5,6 \\
& X(1,2)=X(2,1)=X(2,4)=X(4,2)=X(3,6)=X(6,3)=2 \\
& X(1,3)=X(3,1)=X(2,6)=X(6,2)=3 \\
& X(1,4)=X(4,1)=4, X(1,5)=X(5,1)=5, X(1,6)=X(6,1)=6 \\
& X(2,3)=X(3,2)=X(4,6)=X(6,4)=3 / 2 \\
& X(2,5)=X(5,2)=5 / 2, X(3,4)=X(4,3)=4 / 3 \\
& X(5,3)=X(3,5)=5 / 3, X(4,5)=X(5,4)=5 / 4 \\
& X(5,6)=X(6,5)=6 / 5
\end{aligned}
$$

Using this list to compute probabilities, we find that

$$
\begin{aligned}
& P(1)=\frac{1}{36}, P(2)=\frac{7}{36}, P(3)=\frac{5}{36}, \\
& P(4)=\frac{3}{36}, P(5)=\frac{3}{36}, P(6)=\frac{3}{36} .
\end{aligned}
$$

The mean of X is

$$
\begin{aligned}
\mu & =\sum_{x} P(x) \\
& =1\left(\frac{1}{36}\right)+2\left(\frac{7}{36}\right)+3\left(\frac{5}{36}\right)+4\left(\frac{3}{36}\right)+5\left(\frac{3}{36}\right)+6\left(\frac{3}{36}\right) \\
& +\frac{3}{2}\left(\frac{4}{36}\right)+\frac{5}{2}\left(\frac{2}{36}\right)+\frac{4}{3}\left(\frac{2}{36}\right)+\frac{5}{3}\left(\frac{2}{36}\right)+\frac{5}{4}\left(\frac{2}{36}\right)+\frac{6}{5}\left(\frac{2}{36}\right) \\
& =2.6916 .
\end{aligned}
$$

Using μ, we can compute the standard deviation of X :

$$
\begin{aligned}
& \sum_{x}(x-\mu)^{2} P(x) \\
& =(1-2.6916)^{2}\left(\frac{1}{36}\right)+(2-2.6916)^{2}\left(\frac{7}{36}\right)+(3-2.6916)^{2}\left(\frac{5}{36}\right) \\
& +(4-2.6916)^{2}\left(\frac{3}{36}\right)+(5-2.6916)^{2}\left(\frac{3}{36}\right)+(6-2.6916)^{2}\left(\frac{3}{36}\right) \\
& +(3 / 2-2.6916)^{2}\left(\frac{4}{36}\right)+(5 / 2-2.6916)^{2}\left(\frac{2}{36}\right)+(4 / 3-2.6916)^{2}\left(\frac{2}{36}\right) \\
& +(5 / 3-2.6916)^{2}\left(\frac{2}{36}\right)+(5 / 4-2.6916)^{2}\left(\frac{2}{36}\right)+(6 / 5-2.6916)^{2}\left(\frac{21}{36}\right) \\
& =2.2442 .
\end{aligned}
$$

Then

$$
\sigma=\sqrt{2.2442}=1.4981
$$

5. Draw cards from a (fifty-two card) deck. There are ${ }_{52} C_{2}$ ways to do this, disregarding order. If o is an outcome in which both cards are numbered, then $X(o)$ equals the sum of the numbers on the cards. If exactly one of the cards is a face card or ace, then $X(o)=11$, and if both cards are chosen from the face cards or aces, then $X(o)=12$. Therefore the values of $X(o)$ for all possible outcomes are $4,5, \cdots, 20$. By a routine but tedious counting of the ways the numbered cards can take on various possible totals, we obtain

$$
\begin{aligned}
P(4) & =\frac{6}{1326}, P(5)=\frac{16}{1326}, P(6)=\frac{22}{1326}, P(7)=\frac{32}{1326}, \\
P(8) & =\frac{38}{1326}, P(9)=\frac{48}{1326}, P(10)=\frac{54}{1326}, P(11)=\frac{640}{1326}, \\
P(12) & =\frac{190}{1326}, P(13)=\frac{64}{1326}, P(14)=\frac{54}{1326}, P(15)=\frac{48}{1326}, \\
P(16) & =\frac{38}{1326}, P(17)=\frac{32}{1326}, P(18)=\frac{22}{1326}, P(19)=\frac{16}{1326}, \\
& P(20)=\frac{6}{1326} .
\end{aligned}
$$

Using these, compute the mean of X :

$$
\mu=\sum_{x} x P(x)=11.566
$$

and the standard deviation of X :

$$
\sigma=\sqrt{\sum_{x}(x-\mu)^{2} P(x)}=\sqrt{5.4289}=2.33
$$

6. X takes on values $1,2, \pi$. In particular,

$$
\begin{aligned}
X(1) & =X(5)=X(7)=X(11)=X(13)=X(17) \\
& =X(19)=X(23)=X(25)=X(29)=\pi \\
X(2) & =X(4)=\cdots=X(\text { even integer })=1, \\
X(3) & =X(9)=X(15)=X(21)=X(27)=2 .
\end{aligned}
$$

These enable us to write the probability distribution

$$
P(1)=\frac{15}{30}=\frac{1}{2}, P(2)=\frac{5}{30}=\frac{1}{6}, P(\pi)=\frac{10}{30}=\frac{1}{3} .
$$

The mean of X is

$$
\mu=1\left(\frac{1}{2}\right)+2\left(\frac{1}{6}\right)+\pi\left(\frac{1}{3}\right)=\frac{5}{6}+\frac{\pi}{3},
$$

and this is approximately 1.8805 .
The standard deviation of X is the square root of

$$
\begin{aligned}
& \sum_{x}(x-\mu)^{2} P(x) \\
& =(1-1.8805)^{2}\left(\frac{1}{2}\right)+(2-1.8805)^{2}\left(\frac{1}{6}\right)+(\pi-1.8805)^{2}\left(\frac{1}{3}\right)
\end{aligned}
$$

which is approximately 0.92014 . Then

$$
\sigma=\sqrt{92014}=0.95924
$$

Section 3 The Binomial and Poisson Distributions

1. (a)

$$
P(2)=\binom{8}{2}(0.43)^{2}(1-0.43)^{6}=0.17756
$$

(b)

$$
P(3)=\binom{4}{3}(0.7)^{3}(1-0.7)=0.4116
$$

(c)

$$
P(3)=\binom{6}{3}(0.5)^{3}(1-0.5)^{3}=0.3125
$$

(d)

$$
\begin{aligned}
& P(2)+P(3)+P(4)+P(5) \\
& =\binom{10}{2}(0.6)^{2}(0.4)^{8}+\binom{10}{3}(0.6)^{3}(0.4)^{7} \\
& +\binom{10}{4}(0.6)^{4}(0.4)^{6}+\binom{10}{5}(0.6)^{5}(0.4)^{5} \\
& =0.36521
\end{aligned}
$$

(e)

$$
\begin{aligned}
P(7)+P(8) & =\binom{8}{7}(0.4)^{7}(0.6)+\binom{8}{8}(0.4)^{8} \\
& =0.0085197
\end{aligned}
$$

(f)

$$
\begin{aligned}
& P(2)+P(3)+P(4) \\
& =\binom{10}{2}(0.58)^{2}(0.42)^{8}+\binom{10}{3}(0.58)^{3}(0.42)^{7}+\binom{10}{4}(0.58)^{4}(0.42)^{6} \\
& =0.19908
\end{aligned}
$$

(g)

$$
\begin{aligned}
P(3)+P(7) & =\binom{10}{3}(0.35)^{3}(0.65)^{7}+\binom{10}{7}(0.35)^{7}(0.65)^{3} \\
& =0.27342
\end{aligned}
$$

(h)

$$
\begin{aligned}
& P(1)+P(3)+P(5) \\
& =\binom{7}{1}(0.24)(0.76)^{6}+\binom{7}{3}(0.24)^{3}(0.76)^{4}+\binom{7}{5}(0.24)^{5}(0.76)^{2} \\
& =0.49481
\end{aligned}
$$

