
2

Preliminary calculus

2.2 Find from first principles the first derivative of (x + 3)2 and compare your

answer with that obtained using the chain rule.

Using the definition of a derivative, we consider the difference between (x+∆x+3)2

and (x+ 3)2, and determine the following limit (if it exists):

f′(x) = lim
∆x→0

(x+ ∆x+ 3)2 − (x+ 3)2

∆x

= lim
∆x→0

[(x+ 3)2 + 2(x+ 3)∆x+ (∆x)2] − (x+ 3)2

∆x

= lim
∆x→0

(2(x+ 3)∆x+ (∆x)2

∆x

= 2x+ 6.

The limit does exist, and so the derivative is 2x+ 6.

Rewriting the function as f(x) = u2, where u(x) = x+3, and using the chain rule:

f′(x) = 2u× du

dx
= 2u× 1 = 2u = 2x+ 6,

i.e. the same, as expected.

2.4 Find the first derivatives of

(a) x/(a+ x)2, (b) x/(1 − x)1/2, (c) tanx, as sin x/ cosx,

(d) (3x2 + 2x+ 1)/(8x2 − 4x+ 2).
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In each case, using (2.13) for a quotient:

(a) f′(x) =
[ (a+ x)2 × 1 ] − [ x× 2(a+ x) ]

(a+ x)4
=
a2 − x2

(a+ x)4
=

a− x

(a+ x)3
;

(b) f′(x) =
[ (1 − x)1/2 × 1 ] − [ x× − 1

2 (1 − x)−1/2 ]

1 − x
=

1 − 1
2x

(1 − x)3/2
;

(c) f′(x) =
[ cosx× cosx ] − [ sinx× (− sinx) ]

cos2 x
=

1

cos2 x
= sec2 x;

(d) f′(x) =
[(8x2 − 4x+ 2) × (6x+ 2)] − [(3x2 + 2x+ 1) × (16x− 4)]

(8x2 − 4x+ 2)2

=
x3(48 − 48) + x2(16 − 24 + 12 − 32) + · · ·

(8x2 − 4x+ 2)2

· · · + x(−8 + 12 + 8 − 16) + (4 + 4)

(8x2 − 4x+ 2)2

=
−28x2 − 4x+ 8

(8x2 − 4x+ 2)2
=

−7x2 − x+ 2

(4x2 − 2x+ 1)2
.

2.6 Show that the function y(x) = exp(−|x|) defined as

exp x for x < 0,

1 for x = 0,

exp(−x) for x > 0,

is not differentiable at x = 0. Consider the limiting process for both ∆x > 0 and

∆x < 0.

For x > 0, let ∆x = η. Then,

y′(x > 0) = lim
η→0

e−0−η − 1

η

= lim
η→0

1 − η + 1
2!
η2 · · · − 1

η
= −1.

For x < 0, let ∆x = −η. Then,

y′(x > 0) = lim
η→0

e0−η − 1

−η

= lim
η→0

1 − η + 1
2!
η2 · · · − 1

−η = 1.

The two limits are not equal, and so y(x) is not differentiable at x = 0.

16



PRELIMINARY CALCULUS

2.8 If 2y + sin y + 5 = x4 + 4x3 + 2π, show that dy/dx = 16 when x = 1.

For this equation neither x nor y can be made the subject of the equation, i.e

neither can be written explicitly as a function of the other, and so we are forced

to use implicit differentiation. Starting from

2y + sin y + 5 = x4 + 4x3 + 2π

implicit differentiation, and the use of the chain rule when differentiating sin y

with respect to x, gives

2
dy

dx
+ cos y

dy

dx
= 4x3 + 12x2.

When x = 1 the original equation reduces to 2y + sin y = 2π with the obvious

(and unique, as can be verified from a simple sketch) solution y = π. Thus, with

x = 1 and y = π,

dy

dx

∣∣∣∣
x=1

=
4 + 12

2 + cosπ
= 16.

2.10 The function y(x) is defined by y(x) = (1 + xm)n.

(a) Use the chain rule to show that the first derivative of y is nmxm−1(1+xm)n−1.

(b) The binomial expansion (see section 1.5) of (1 + z)n is

(1 + z)n = 1 + nz +
n(n− 1)

2!
z2 + · · · +

n(n− 1) · · · (n− r + 1)

r!
zr + · · · .

Keeping only the terms of zeroth and first order in dx, apply this result twice

to derive result (a) from first principles.

(c) Expand y in a series of powers of x before differentiating term by term.

Show that the result is the series obtained by expanding the answer given

for dy/dx in part (a).

(a) Writing 1 + xm as u, y(x) = un, and so dy/du = nun−1, whilst du/dx = mxm−1.

Thus, from the chain rule,

dy

dx
= nun−1 × mxm−1 = nmxm−1(1 + xm)n−1.

17
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(b) From the defining process for a derivative,

y′(x) = lim
∆x→0

[1 + (x+ ∆x)m]n − (1 + xm)n

∆x

= lim
∆x→0

[1 + xm(1 + ∆x
x

)m]n − (1 + xm)n

∆x

= lim
∆x→0

[1 + xm(1 + m∆x
x

+ · · · )]n − (1 + xm)n

∆x

= lim
∆x→0

(1 + xm + mxm−1∆x+ · · · )n − (1 + xm)n

∆x

= lim
∆x→0

[
(1 + xm)

(
1 + mxm−1∆x

1+xm
+ · · ·

)]n
− (1 + xm)n

∆x

= lim
∆x→0

(1 + xm)n
(
1 + mnxm−1∆x

1+xm + · · ·
)

− (1 + xm)n

∆x

= lim
∆x→0

mn(1 + xm)n−1xm−1∆x+ · · ·

∆x

= nmxm−1(1 + xm)n−1,

i.e. the same as the result in part (a).

(c) Expanding in a power series before differentiating:

y(x) = 1 + nxm +
n(n− 1)

2!
x2m + · · ·

+
n(n− 1) · · · (n− r + 1)

r!
xrm + · · · ,

y′(x) = mnxm−1 +
2mn(n− 1)

2!
x2m−1 + · · ·

+
rm n(n− 1) · · · (n− r + 1)

r!
xrm−1 + · · · .

Now, expanding the result given in part (a) gives

y′(x) = nmxm−1(1 + xm)n−1

= nmxm−1

(
1 + · · · +

(n− 1)(n− 2) · · · (n− s)

s!
xms + · · ·

)

= nmxm−1 + · · · +
mn(n− 1)(n− 2) · · · (n− s)

s!
xms+m−1 + · · · .

This is the same as the previous expansion of y′(x) if, in the general term, the

index is moved by one, i.e. s = r − 1.
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2.12 Find the positions and natures of the stationary points of the following func-

tions:

(a) x3 − 3x+ 3; (b) x3 − 3x2 + 3x; (c) x3 + 3x+ 3;

(d) sin ax with a 6= 0; (e) x5 + x3; (f) x5 − x3.

In each case, we need to determine the first and second derivatives of the function.

The zeros of the 1st derivative give the positions of the stationary points, and the

values of the 2nd derivatives at those points determine their natures.

(a) y = x3−3x+3; y′ = 3x2−3; y′′ = 6x.

y′ = 0 has roots at x = ±1, where the values of y′′ are ±6. Therefore, there is a

minimum at x = 1 and a maximum at x = −1.

(b) y = x3−3x2+3x; y′ = 3x2−6x+3; y′′ = 6x−6.

y′ = 0 has a double root at x = 1, where the value of y′′ is 0. Therefore, there

is a point of inflection at x = 1, but no other stationary points. At the point of

inflection, the tangent to the curve y = y(x) is horizontal.

(c) y = x3+3x+3; y′ = 3x2+3; y′′ = 6x.

y′ = 0 has no real roots, and so there are no stationary points.

(d) y = sin ax; y′ = a cos ax; y′′ = −a2 sin ax.

y′ = 0 has roots at x = (n+ 1
2
)π/a for integer n. The corresponding values of y′′

are ∓a2, depending on whether n is even or odd. Therefore, there is a maximum

for even n and a minimum where n is odd.

(e) y = x5+x3; y′ = 5x4+3x2; y′′ = 20x3+6x.

y′ = 0 has, as its only real root, a double root at x = 0, where the value of y′′ is 0.

Thus, there is a (horizontal) point of inflection at x = 0, but no other stationary

point.

(f) y = x5−x3; y′ = 5x4−3x2; y′′ = 20x3−6x.

y′ = 0 has a double root at x = 0 and simple roots at x = ±( 3
5
)1/2, where the

respective values of y′′ are 0 and ±6( 3
5
)1/2. Therefore, there is a point of inflection

at x = 0, a maximum at x = −( 3
5 )

1/2 and a minimum at x = ( 3
5 )

1/2.
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Figure 2.1 The solutions to exercise 2.14.

2.14 By finding their stationary points and examining their general forms, deter-

mine the range of values that each of the following functions y(x) can take. In

each case make a sketch-graph incorporating the features you have identified.

(a) y(x) = (x− 1)/(x2 + 2x+ 6).

(b) y(x) = 1/(4 + 3x− x2).

(c) y(x) = (8 sin x)/(15 + 8 tan2 x).

See figure 2.1 (a)–(c).

(a) Some simple points to calculate for

y =
x− 1

x2 + 2x+ 6

are y(0) = − 1
6 , y(1) = 0 and y(±∞) = 0, and, since the denominator has no real

roots (22 < 4 × 1 × 6), there are no infinities. Its 1st derivative is

y′ =
−x2 + 2x+ 8

(x2 + 2x+ 6)2
=

−(x+ 2)(x− 4)

(x2 + 2x+ 6)2
.

Thus there are turning points only at x = −2, with y(−2) = − 1
2
, and at x = 4,

with y(4) = 1
10

. The former must be a minimum and the latter a maximum. The

range in which y(x) lies is − 1
2 ≤ y ≤ 1

10 .

20



PRELIMINARY CALCULUS

(b) Some simple points to calculate for

y =
1

4 + 3x− x2
.

are y(0) = 1
4 and y(±∞) = 0, approached from negative values. Since the

denominator can be written as (4−x)(1+x), the function has infinities at x = −1

and x = 4 and is positive in the range of x between them.

The 1st derivative is

y′ =
2x− 3

(4 + 3x− x2)2
.

Thus there is only one turning point; this is at x = 3
2
, with corresponding

y( 3
2 ) = 4

25 . Since 3
2 lies in the range −1 < x < 4, at the ends of which the function

→ +∞, the stationary point must be a minimum. This sets a lower limit on the

positive values of y(x) and so the ranges in which it lies are y < 0 and y ≥ 4
25 .

(c) The function

y =
8 sinx

15 + 8 tan2 x

is clearly periodic with period 2π.

Since sinx and tan2 x are both symmetric about x = 1
2π, so is the function. Also,

since sinx is antisymmetric about x = π whilst tan2 x is symmetric, the function

is antisymmetric about x = π.

Some simple points to calculate are y(nπ) = 0 for all integers n. Further, since

tan(n+ 1
2 )π = ∞, y((n+ 1

2 )π) = 0. As the denominator has no real roots there are

no infinities.

Setting the derivative of y(x) ≡ 8u(x)/v(x) equal to zero, i.e. writing vu′ = uv′,
and expressing all terms as powers of cosx gives (using tan2 z = sec2 z − 1 and

sin2 z = 1 − cos2 z)

(15 + 8 tan2 x) cosx = 16 sinx tanx sec2 x,

15 +
8

cos2 x
− 8 =

16(1 − cos2 x)

cos4 x
,

7 cos4 x+ 24 cos2 x− 16 = 0.

This quadratic equation for cos2 x has roots of 4
7 and −4. Only the first of these

gives real values for cosx of ± 2√
7
. The corresponding turning values of y(x) are

± 8
7
√

21
. The value of y always lies between these two limits.
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2.16 The curve 4y3 = a2(x+3y) can be parameterised as x = a cos 3θ, y = a cos θ.

(a) Obtain expressions for dy/dx (i) by implicit differentiation and (ii) in param-

eterised form. Verify that they are equivalent.

(b) Show that the only point of inflection occurs at the origin. Is it a stationary

point of inflection?

(c) Use the information gained in (a) and (b) to sketch the curve, paying par-

ticular attention to its shape near the points (−a, a/2) and (a,−a/2) and to

its slope at the ‘end points’ (a, a) and (−a,−a).

(a) (i) Differentiating the equation of the curve implicitly:

12y2 dy

dx
= a2 + 3a2 dy

dx
, ⇒ dy

dx
=

a2

12y2 − 3a2
.

(ii) In parameterised form:

dy

dθ
= −a sin θ,

dx

dθ
= −3a sin 3θ, ⇒ dy

dx
=

−a sin θ

−3a sin 3θ
.

But, using the results from section 1.2, we have that

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ + (2 cos2 θ − 1) sin θ

= sin θ(4 cos2 θ − 1),

thus giving dy/dx as

dy

dx
=

1

12 cos2 θ − 3
=

a2

12a2 cos2 θ − 3a2
,

with a cos θ = y, i.e. as in (i).

(b) At a point of inflection y′′ = 0. For the given function,

d2y

dx2
=

d

dy

(
dy

dx

)
× dy

dx
= − a2

(12y2 − 3a2)2
× 24y × a2

12y2 − 3a2
.

This can only equal zero at y = 0, when x = 0 also. But, when y = 0 it follows

from (a)(i) that dy/dx = 1/(−3) = − 1
3 . As this is non-zero the point of inflection

is not a stationary point.

(c) See figure 2.2. Note in particular that the curve has vertical tangents when

y = ±a/2 and that dy/dx = 1
9

at y = ±a, i.e. the tangents at the end points of

the ‘S’-shaped curve are not horizontal.
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x = a cos 3θ

y = a cos θ

a

a−a

−a

Figure 2.2 The parametric curve described in exercise 2.16.

2.18 Show that the maximum curvature on the catenary y(x) = a cosh(x/a) is

1/a. You will need some of the results about hyperbolic functions stated in sub-

section 3.7.6.

The general expression for the curvature, ρ−1, of the curve y = y(x) is

1

ρ
=

y′′

(1 + y′2)3/2
,

and so we begin by calculating the first two derivatives of y. Starting from

y = a cosh(x/a), we obtain

y′ = a
1

a
sinh

x

a
,

y′′ =
1

a
cosh

x

a
.

Therefore the curvature of the catenary at the point (x, y) is given by

1

ρ
=

1

a
cosh

x

a[
1 + sinh2 x

a

]3/2 =
1

a

cosh
x

a

cosh3 x

a

=
a

y2
.

To obtain this result we have used the identity cosh2 z = 1 + sinh2 z. We see that

the curvature is maximal when y is minimal; this occurs when x = 0 and y = a.

The maximum curvature is therefore 1/a.
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p
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Figure 2.3 The coordinate system described in exercise 2.20.

2.20 A two-dimensional coordinate system useful for orbit problems is the tangential-

polar coordinate system (figure 2.3). In this system a curve is defined by r, the

distance from a fixed point O to a general point P of the curve, and p, the per-

pendicular distance from O to the tangent to the curve at P . By proceeding as

indicated below, show that the radius of curvature at P can be written in the form

ρ = r dr/dp.

Consider two neighbouring points P and Q on the curve. The normals to the curve

through those points meet at C , with (in the limit Q → P) CP = CQ = ρ. Apply

the cosine rule to triangles OPC and OQC to obtain two expressions for c2, one

in terms of r and p and the other in terms of r+∆r and p+∆p. By equating them

and letting Q → P deduce the stated result.

We first note that cos OPC is equal to the sine of the angle between OP and the

tangent at P , and that this in turn has the value p/r. Now, applying the cosine

rule to the triangles OCP and OCQ, we have

c2 = r2 + ρ2 − 2rρ cosOPC = r2 + ρ2 − 2ρp

c2 = (r + ∆r)2 + ρ2 − 2(r + ∆r)ρ cosOQC

= (r + ∆r)2 + ρ2 − 2ρ(p+ ∆p).

Subtracting and rearranging then yields

ρ =
r∆r + 1

2 (∆r)
2

∆p
,

or, in the limit Q → P , that ρ = r(dr/dp).
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2.22 If y = exp(−x2), show that dy/dx = −2xy and hence, by applying Leibnitz’

theorem, prove that for n ≥ 1

y(n+1) + 2xy(n) + 2ny(n−1) = 0.

With y(x) = exp(−x2),

dy

dx
= −2x exp(−x2) = −2xy.

We now take the nth derivatives of both sides and use Leibnitz’ theorem to find

that of the product xy, noting that all derivatives of x beyond the first are zero:

y(n+1) = −2[ (y(n))(x) + n(y(n−1))(1) + 0 ].

i.e.

y(n+1) + 2xy(n) + 2ny(n−1) = 0,

as stated in the question.

2.24 Determine what can be learned from applying Rolle’s theorem to the following

functions f(x): (a)ex; (b)x2 +6x; (c)2x2 +3x+1; (d)2x2 +3x+2; (e)2x3 −21x2 +

60x + k. (f)If k = −45 in (e), show that x = 3 is one root of f(x) = 0, find the

other roots, and verify that the conclusions from (e) are satisfied.

(a) Since the derivative of f(x) = ex is f′(x) = ex, Rolle’s theorem states that

between any two consecutive roots of f(x) = ex = 0 there must be a root

of f′(x) = ex = 0, i.e. another root of the same equation. This is clearly a

contradiction and it is wrong to suppose that there is more than one root of

ex = 0. In fact, there are no finite roots of the equation and the only zero of ex

lies formally at x = −∞.

(b) Since f(x) = x(x+ 6), it has zeros at x = −6 and x = 0. Therefore the (only)

root of f′(x) = 2x + 6 = 0 must lie between these values; it clearly does, as

−6 < −3 < 0.

(c) With f(x) = 2x2 + 3x + 1 and hence f′(x) = 4x + 3, any roots of f(x) = 0

(actually −1 and − 1
2
) must lie on either side of the root of f′(x) = 0, i.e. x = − 3

4
.

They clearly do.

(d) This is as in (c), but there are no real roots. However, it can be more generally

stated that if there are two values of x that give 2x2 + 3x + k equal values then

they lie one on each side of x = − 3
4 .
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(e) With f(x) = 2x3 − 21x2 + 60x+ k,

f′(x) = 6x2 − 42x+ 60 = 6(x− 5)(x− 2)

and f′(x) = 0 has roots 2 and 5. Therefore, if f(x) = 0 has three real roots αi
with α1 < α2 < α3, then α1 < 2 < α2 < 5 < α3.

(f) When k = −45, f(3) = 54 − 189 + 180 − 45 = 0 and so x = 3 is a root of

f(x) = 0 and (x − 3) is a factor of f(x). Writing f(x) = 2x3 − 21x2 + 60x − 45

as (x − 3)(a2x
2 + a1x + a0) and equating coefficients gives a2 = 2, a1 = −15 and

a0 = 15. The other two roots are therefore

15 ±
√

225 − 120

4
=

1

4
(15 ±

√
105) = 1.19 or 6.31.

Result (e) is verified in this case since 1.19 < 2 < 3 < 5 < 6.31.

2.26 Use the mean value theorem to establish bounds

(a) for − ln(1 − y), by considering lnx in the range 0 < 1 − y < x < 1,

(b) for ey − 1, by considering ex − 1 in the range 0 < x < y.

(a) The mean value theorem applied to ln x within limits 1 − y and 1 gives

ln(1) − ln(1 − y)

1 − (1 − y)
=

d

dx
(lnx) =

1

x
(∗)

for some x in the range 1 − y < x < 1. Now, since 1 − y < x < 1 it follows that
1

1 − y
>

1

x
> 1,

⇒ 1

1 − y
>

− ln(1 − y)

y
> 1,

⇒ y

1 − y
> − ln(1 − y) > y.

The second line was obtained by substitution from (∗).

(b) The mean value theorem applied to ex − 1 within limits 0 and y gives

ey − 1 − 0

y − 0
= ex for some x in the range 0 < x < y.

Now, since 0 < x < y it follows that

1 < ex < ey ,

⇒ 1 <
ey − 1

y
< ey ,

⇒ y < ey − 1 < yey .
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Again, the second line was obtained by substitution for x from the mean value

theorem result.

2.28 Use Rolle’s theorem to deduce that if the equation f(x) = 0 has a repeated

root x1 then x1 is also a root of the equation f′(x) = 0.

(a) Apply this result to the ‘standard’ quadratic equation ax2 + bx + c = 0, to

show that a necessary condition for equal roots is b2 = 4ac.

(b) Find all the roots of f(x) = x3 + 4x2 − 3x− 18 = 0, given that one of them

is a repeated root.

(c) The equation f(x) = x4 + 4x3 + 7x2 + 6x + 2 = 0 has a repeated integer

root. How many real roots does it have altogether?

If two roots of f(x) = 0 are x1 and x2, i.e. f(x1) = f(x2) = 0, then it follows

from Rolle’s theorem that there is some x3 in the range x1 ≤ x3 ≤ x2 for which

f′(x3) = 0. Now let x2 → x1 to form the repeated root; x3 must also tend to the

limit x1, i.e. x1 is a root of f′(x) = 0 as well as of f(x) = 0.

(a) A quadratic equation f(x) = ax2 + bx + c = 0 only has two roots and so if

they are equal the common root α must also be a root of f′(x) = 2ax+ b = 0, i.e.

α = −b/2a. Thus

a
b2

4a2
+ b

−b
2a

+ c = 0.

It then follows that c− (b2/4a) = 0 and that b2 = 4ac.

(b) With f(x) = x3 + 4x2 − 3x− 18, the repeated root must satisfy

f′(x) = 3x2 + 8x− 3 = (3x− 1)(x+ 3) = 0 i.e. x =
1

3
or x = −3.

Trying the two possibilities: f( 1
3 ) 6= 0 but f(−3) = −27 + 36 + 9 − 18 = 0. Thus

f(x) must factorise as (x + 3)2(x − b), and comparing the constant terms in the

two expressions for f(x) immediately gives b = 2. Hence, x = 2 is the third root.

(c) Here f(x) = x4 + 4x3 + 7x2 + 6x + 2. As previously, we examine f′(x) = 0,

i.e. f′(x) = 4x3 + 12x2 + 14x + 6 = 0. This has to have an integer solution and,

by inspection, this is x = −1. We can therefore factorise f(x) as the product

(x + 1)2(a2x
2 + a1x + a0). Comparison of the coefficients gives immediately that

a2 = 1 and a0 = 2. From the coefficients of x3 we have 2a2 + a1 = 4; hence

a1 = 2. Thus f(x) can be written

f(x) = (x+ 1)2(x2 + 2x+ 2) = (x+ 1)2[ (x+ 1)2 + 1 ].
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The second factor, containing only positive terms, can have no real zeros and

hence f(x) = 0 has only two real roots (coincident at x = −1).

2.30 Find the following indefinite integrals:

(a)
∫

(4 + x2)−1 dx; (b)
∫

(8 + 2x− x2)−1/2 dx for 2 ≤ x ≤ 4;

(c)
∫

(1 + sin θ)−1 dθ; (d)
∫
(x

√
1 − x)−1 dx for 0 < x ≤ 1.

We make reference to the 12 standard forms given in subsection 2.2.3 and, where

relevant, select the appropriate model.

(a) Using model 9, ∫
1

4 + x2
dx =

1

2
tan−1 x

2
+ c.

(b) We rearrange the integrand in the form of model 12:
∫

1√
8 + 2x− x2

dx =

∫
1√

8 + 1 − (x− 1)2
dx = sin−1 x− 1

3
+ c.

(c) See equation (2.35) and the subsequent text.
∫

1

1 + sin θ
dθ =

∫
1

1 +
2t

1 + t2

2

1 + t2
dt

=

∫
2

(1 + t)2
dt

= − 2

1 + t
+ c

= − 2

1 + tan
θ

2

+ c.

(d) To remove the square root, set u2 = 1 − x; then 2u du = −dx and
∫

1

x
√

1 − x
dx =

∫
1

(1 − u2)u
× −2u du

=

∫ −2

1 − u2
du

=

∫ ( −1

1 − u
+

−1

1 + u

)
du

= ln(1 − u) − ln(1 + u) + c

= ln
1 −

√
1 − x

1 +
√

1 − x
+ c.
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2.32 Express x2(ax+b)−1 as the sum of powers of x and another integrable term,

and hence evaluate ∫ b/a

0

x2

ax+ b
dx.

We need to write the numerator in such a way that every term in it that involves

x contains a factor ax+ b. Therefore, write x2 as

x2 =
x

a
(ax+ b) − b

a2
(ax+ b) +

b2

a2
.

Then,
∫ b/a

0

x2

ax+ b
dx =

∫ b/a

0

(
x

a
− b

a2
+

b2

a2(ax+ b)

)
dx

=

[
x2

2a
− bx

a2
+
b2

a3
ln(ax+ b)

]b/a

0

=
b2

a3

(
ln 2 − 1

2

)
.

An alternative approach, consistent with the wording of the question, is to use

the binomial theorem to write the integrand as

x2

ax+ b
=
x2

b

(
1 +

ax

b

)−1

=
x2

b

∞∑

n=0

(
−ax

b

)n
.

Then the integral is

∫ b/a

0

x2

ax+ b
dx =

1

b

∫ b/a

0

∞∑

n=0

(−1)n
(a
b

)n
xn+2 dx

=
1

b

∞∑

n=0

(−1)n
(a
b

)n 1

n+ 3

(
b

a

)n+3

=
b2

a3

∞∑

n=0

(−1)n

n+ 3
.

That these two solutions are the same can be seen by writing ln 2 − 1
2 as

ln 2 − 1

2
=

(
1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

)
− 1

2

=
1

3
− 1

4
+

1

5
− · · · =

∞∑

n=0

(−1)n

n+ 3
.
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2.34 Use logarithmic integration to find the indefinite integrals J of the following:

(a) sin 2x/(1 + 4 sin2 x);

(b) ex/(ex − e−x);
(c) (1 + x lnx)/(x lnx);

(d) [x(xn + an)]−1.

To use logarithmic integration each integrand needs to be arranged as a fraction

that has the derivative of the denominator appearing in the numerator.

(a) Either by noting that sin 2x = 2 sinx cosx and so is proportional to the

derivative of sin2 x or by recognising that sin2 x can be written in terms of cos 2x

and constants and that sin 2x is then its derivative, we have

J =

∫
sin 2x

1 + 4 sin2 x
dx

=

∫
2 sinx cosx

1 + 4 sin2 x
dx =

1

4
ln(1 + 4 sin2 x) + c,

or

J =

∫
sin 2x

1 + 2(1 − cos 2x)
dx =

1

4
ln(3 − 2 cos 2x) + c.

These two answers are equivalent since 3 − 2 cos 2x = 3 − 2(1 − 2 sin2 x) =

1 + 4 sin2 x.

(b) This is straightforward if it is noticed that multiplying both numerator and

denominator by ex produces the required form:

J =

∫
ex

ex − e−x dx =

∫
e2x

e2x − 1
dx =

1

2
ln(e2x − 1) + c.

An alternative, but longer, method is to write the numerator as coshx + sinhx

and the denominator as 2 sinhx. This leads to J = 1
2 (x+ ln sinhx), which can be

re-written as

J = 1
2 (ln e

x + ln sinhx) = 1
2 ln(ex sinhx) = 1

2 ln(e2x − 1) + 1
2 ln 1

2 .

The 1
2
ln 1

2
forms part of c.

(c) Here we must first divide the numerator by the denominator to produce two

separate terms, and then twice apply the result that 1/z is the derivative of ln z:

J =

∫
1 + x lnx

x lnx
dx =

∫ (
1

x lnx
+ 1

)
dx = ln(lnx) + x+ c.

(d) To put the integrand in a form suitable for logaritmic integration, we must

first multiply both numerator and denominator by nxn−1 and then use partial
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fractions so that each denominator contains x only in the form xm, of which

mxm−1 is the derivative.

J =

∫
dx

x(xn + an)
=

∫
nxn−1

nxn(xn + an)
dx

=
1

nan

∫ (
nxn−1

xn
− nxn−1

xn + an

)
dx

=
1

nan
[ n lnx− ln(xn + an) ] + c

=
1

nan
ln

(
xn

xn + an

)
+ c.

2.36 Find the indefinite integrals J of the following functions involving sinusoids:

(a) cos5 x− cos3 x;

(b) (1 − cosx)/(1 + cosx);

(c) cosx sinx/(1 + cosx);

(d) sec2 x/(1 − tan2 x).

(a) As the integrand contains only odd powers of cosx, take cosx out as a

common factor and express the remainder in terms of sin x, of which cosx is the

derivative:

cos5 x− cos3 x = [ (1 − sin2 x)2 − (1 − sin2 x) ] cosx

= (sin4 x− sin2 x) cosx.

Hence,

J =

∫
(sin4 x− sin2 x) cosx dx =

1

5
sin5 x− 1

3
sin3 x+ c.

A more formal way of expressing this approach is to say ‘set sinx = u with

cosx dx = du.’

(b) This integral can be found either by writing the numerator and denominator

in terms of sinusoidal functions of x/2 or by making the substitution t = tan(x/2).

Using first the half-angle identities, we have

J =

∫
1 − cosx

1 + cosx
dx =

∫
2 sin2 x

2

2 cos2 x
2

=

∫
tan2 x

2
dx =

∫ (
sec2 x

2
− 1
)
dx = 2 tan

x

2
− x+ c.
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The second approach (see subsection 2.2.7) is

J =

∫ 1 − 1 − t2

1 + t2

1 +
1 − t2

1 + t2

2 dt

1 + t2

=

∫
2t2

1 + t2
dt

=

∫
2 dt−

∫
2

1 + t2
dt

= 2t− 2 tan−1 t+ c = 2 tan
x

2
− x+ c.

(c) This integrand, containing only sinusoidal functions, can be converted to an

algebraic one by writing t = tan(x/2) and expressing the functions appearing in

the integrand in terms of it,

cosx sinx

1 + cosx
dx =

1 − t2

1 + t2
2t

1 + t2
2

1 + t2

1 +
1 − t2

1 + t2

dt

=
2t(1 − t2)

(1 + t2)2
dt

= 2t

[
A

(1 + t2)2
+

B

1 + t2

]
dt,

with A+ B(1 + t2) = 1 − t2, implying that B = −1 and A = 2.

And so, recalling that 1 + t2 = sec2(x/2) = 1/[cos2(x/2)],

J =

∫ (
4t

(1 + t2)2
− 2t

1 + t2

)
dt

= − 2

1 + t2
− ln(1 + t2) + c

= −2 cos2 x

2
+ ln(cos2 x

2
) + c.

(d) We can either set tan x = u or show that the integrand is sec 2x and then use

the result of exercise 2.35; here we use the latter method.

∫
sec2 x

1 − tan2 x
dx =

∫
1

cos2 x− sin2 x
dx =

∫
sec 2x dx.

It then follows from the earlier result that J = 1
2
ln(sec 2x+ tan 2x) + c. This can

also be written as 1
2 ln[(1 + tanx)/(1 − tan x)] + c.
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2.38 Determine whether the following integrals exist and, where they do, evaluate

them:

(a)

∫ ∞

0

exp(−λx) dx; (b)

∫ ∞

−∞

x

(x2 + a2)2
dx;

(c)

∫ ∞

1

1

x+ 1
dx; (d)

∫ 1

0

1

x2
dx;

(e)

∫ π/2

0

cot θ dθ; (f)

∫ 1

0

x

(1 − x2)1/2
dx.

(a) This is an infinite integral and so we must examine the result of letting the

range of a finite integral go to infinity:

∫ ∞

0

e−λx dx = lim
R→∞

[
e−λx

−λ

]R

0

= lim
R→∞

[
1

λ
− e−λR

λ

]
.

The limit as R → ∞ does exist if λ > 0 and is then equal to λ−1.

(b) This is also an infinite integral. However, because of the antisymmetry of the

integrand, the integral is zero for all finite values of R. It therefore has a limit as

R → ∞ of zero, which is consequently the value of the integral.
∫ ∞

−∞

x

(x2 + a2)2
dx = lim

R→∞

[ −1

2(x2 + a2)

]R

−R
= lim

R→∞
[0] = 0.

(c) The integral is elementary over any finite range (1, R) and so we must examine

its behaviour as R → ∞:
∫ ∞

1

1

x+ 1
dx = lim

R→∞
[ln(1 + x)]R1 = lim

R→∞
ln

1 + R

2
= ∞.

The limit is not finite and so the integral does not exist.

(d) The integrand, 1/x2 is undefined at x = 0 and so we must examine the

behaviour of the integral with lower limit ǫ as ǫ → 0.

∫ 1

0

1

x2
dx = lim

ǫ→0

[
− 1

x

]1

ǫ

= lim
ǫ→0

(
−1 +

1

ǫ

)
= ∞.

As the limit is not finite the integral does not exist.

(e) Again, a infinite quantity (cot 0) appears in the integrand and the limit test

has to be applied.
∫ π/2

0

cot θ dθ =

∫ π/2

0

cos θ

sin θ
dθ

= lim
ǫ→0

[ ln(sin θ) ]π/2ǫ = lim
ǫ→0

[ 0 − ln(sin ǫ) ] = −(−∞).

The limit is not finite and so the integral does not exist.
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(f) Yet again, the integrand has an infinity (at x = 1) and the limit test has to be

applied
∫ 1

0

x

(1 − x2)1/2
dx = lim

z→1

[
−(1 − x2)1/2

]z
0

= 0 + 1 = 1.

This time the limit does exist; the integral is defined and has value 1.

2.40 Show, using the following methods, that the indefinite integral of x3/(x+1)1/2

is

J = 2
35 (5x

3 − 6x2 + 8x− 16)(x+ 1)1/2 + c.

(a) Repeated integration by parts.

(b) Setting x+ 1 = u2 and determining dJ/du as (dJ/dx)(dx/du).

(a) Evaluating the successive integrals produced by the repeated integration by

parts:

∫
x3

(x+ 1)1/2
dx = 2x3

√
x+ 1 −

∫
3x2 2

√
x+ 1 dx,

∫
x2

√
x+ 1 dx =

2

3
x2(x+ 1)3/2 −

∫
2x

2

3
(x+ 1)3/2 dx,

∫
x(x+ 1)3/2 dx =

2

5
x(x+ 1)5/2 −

∫
2

5
(x+ 1)5/2 dx,

∫
(x+ 1)5/2 dx =

2

7
(x+ 1)7/2.

And so, remembering to carry forward the multiplicative factors generated at

each stage, we have

J =
√
x+ 1

[
2x3 − 4x2(x+ 1) +

16

5
x(x+ 1)2 − 32

35
(x+ 1)3

]
+ c

=
2
√
x+ 1

35

[
5x3 − 6x2 + 8x− 16

]
+ c.

(b) Set x+ 1 = u2, giving dx = 2u du, to obtain

J =

∫
(u2 − 1)3

u
2u du

= 2

∫
(u6 − 3u4 + 3u2 − 1) du.
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This integral is now easily evaluated to give

J = 2

(
1

7
u7 − 3

5
u5 + u3 − u

)
+ c

=
2u

35
(5u6 − 21u4 + 35u2 − 35) + c

=
2u

35
[ 5(x3 + 3x2 + 3x+ 1) − 21(x2 + 2x+ 1) + 35(x+ 1) − 35 ] + c

=
2
√
x+ 1

35
[ 5x3 − 6x2 + 8x− 16 ] + c.

i.e. the same final result as for method (a).

2.42 Define J(m, n), for non-negative integers m and n, by the integral

J(m, n) =

∫ π/2

0

cosm θ sinn θ dθ.

(a) Evaluate J(0, 0), J(0, 1), J(1, 0), J(1, 1), J(m, 1), J(1, n).

(b) Using integration by parts prove that, for m and n both > 1,

J(m, n) =
m− 1

m+ n
J(m− 2, n) and J(m, n) =

n− 1

m+ n
J(m, n− 2).

(c) Evaluate (i) J(5, 3), (ii) J(6, 5), (iii) J(4, 8).

(a) For these special values of m and/or n the integrals are all elementary, as

follows.

J(0, 0) =

∫ π/2

0

1 dθ =
π

2
,

J(0, 1) =

∫ π/2

0

sin θ dθ = 1,

J(1, 0) =

∫ π/2

0

cos θ dθ = 1,

J(1, 1) =

∫ π/2

0

cos θ sin θ dθ =

[
sin2 θ

2

]π/2

0

=
1

2
,

J(m, 1) =

∫ π/2

0

cosm θ sin θ dθ =
1

m+ 1
,

J(1, n) =

∫ π/2

0

cos θ sinn θ dθ =
1

n+ 1
.

(b) In order to obtain a reduction formula, we ‘sacrifice’ one of the cosine factors
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so that it can act as the derivative of a sine function, so allowing sinn θ to be

integrated. The two extra powers of sin θ generated by the integration by parts

are then removed by writing them as 1 − cos2 θ.

J(m, n) =

∫ π/2

0

cosm−1 θ sinn θ cos θ dθ

=

[
cosm−1 θ sinn+1 θ

n+ 1

]π/2

0

−
∫ π/2

0

(m− 1) cosm−2 θ(− sin θ) sinn+1 θ

n+ 1
dθ

= 0 +
m− 1

n+ 1

∫ π/2

0

cosm−2 θ(1 − cos2 θ) sinn θ dθ

=
m− 1

n+ 1
J(m− 2, n) − m− 1

n+ 1
J(m, n).

J(m, n) =
m− 1

m+ n
J(m− 2, n).

Similarly, by ‘sacrificing’ a sine term to act as the derivative of a cosine term,

J(m, n) =
n− 1

m+ n
J(m, n− 2).

(c) For these specific cases we apply the reduction formulae in (b) to reduce them

to one of the forms evaluated in (a).

(i) J(5, 3) =
2

8
J(5, 1) =

2

8

1

6
=

1

24
,

(ii) J(6, 5) =
4

11

2

9
J(6, 1) =

4

11

2

9

1

7
=

8

693
,

(iii) J(4, 8) =
3

12

1

10
J(0, 8) =

3

12

1

10

7

8

5

6

3

4

1

2

π

2
=

7π

2048
.

2.44 Evaluate the following definite integrals:

(a)
∫ ∞

0 xe−x dx; (b)
∫ 1

0

[
(x3 + 1)/(x4 + 4x+ 1)

]
dx;

(c)
∫ π/2

0 [a+ (a− 1) cos θ]−1 dθ with a > 1
2 ; (d)

∫ ∞
−∞(x2 + 6x+ 18)−1 dx.

(a) Integrating by parts:
∫ ∞

0

xe−x dx =
[
−xe−x]∞

0
−
∫ ∞

0

−e−x dx = 0 +
[
−e−x]∞

0
= 1.
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(b) This is a logarithmic integration:
∫ 1

0

x3 + 1

x4 + 4x+ 1
dx =

1

4

∫ 1

0

4x3 + 4

x4 + 4x+ 1
=

1

4

[
ln(x4 + 4x+ 1)

]1
0

=
1

4
ln 6.

(c) Writing t = tan(θ/2):

∫ π/2

0

1

a+ (a− 1) cos θ
dθ =

∫ 1

0

1

a+ (a− 1)

(
1 − t2

1 + t2

) 2 dt

1 + t2

=

∫ 1

0

2

2a− 1 + t2
dt

=
2√

2a− 1

[
tan−1 t√

2a− 1

]1

0

=
2√

2a− 1
tan−1 1√

2a− 1
.

(d) The denominator has no real zeros (62 < 4 × 1 × 18) and so, completing the

square, we have:
∫ ∞

−∞

1

x2 + 6x+ 18
dx =

∫ ∞

−∞

1

(x+ 3)2 + 9
dx

=
1

3

[
tan−1

(
x+ 3

3

)]∞

−∞

=
1

3

[π
2

−
(

−π

2

)]
=
π

3
.

2.46 Find positive constants a, b such that ax ≤ sinx ≤ bx for 0 ≤ x ≤ π/2. Use

this inequality to find (to two significant figures) upper and lower bounds for the

integral

I =

∫ π/2

0

(1 + sinx)1/2 dx.

Use the substitution t = tan(x/2) to evaluate I exactly.

Consider f(x) = (sinx)/x. Its derivative is

f′(x) =
x cosx− sinx

x2
=
x− tanx

x2
cosx,

which is everwhere negative (or zero) in the given range. This shows that f(x) is

a monotonically decreasing function in that range and reaches its lowest value at

the end of the range. This value must therefore be sin(π/2)/(π/2), i.e. 2/π.
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From the standard Maclaurin series for sinx (subsection 4.6.3)

f(x) =
sin x

x
= 1 − x2

3!
+
x4

5!
− · · · ,

and the limit of f(x) as x → 0 is 1. In summary,

2

π
≤ sinx

x
≤ 1 for 0 ≤ x ≤ π

2
.

It then follows that
∫ π/2

0

(1 +
2

π
x)1/2 dx ≤

∫ π/2

0

(1 + sinx)1/2 dx ≤
∫ π/2

0

(1 + x)1/2 dx,

[
π

2

2

3
(1 +

2

π
x)3/2

]π/2

0

≤ I ≤
[
2

3
(1 + x)3/2

]π/2

0

,

π

3

[
(2)3/2 − 1

]
≤ I ≤ 2

3

[
(1 +

π

2
)3/2 − 1

]
,

1.91 ≤ I ≤ 2.08.

For an exact evaluation we use the standard half-angle formulae:

t = tan
x

2
, sin x =

2t

1 + t2
, dx =

2

1 + t2
dt.

Substitution of these gives

∫ π/2

0

(1 + sinx)1/2 dx =

∫ 1

0

(
1 +

2t

1 + t2

)1/2
2

1 + t2
dt

=

∫ 1

0

2 + 2t

(1 + t2)3/2
dt

=

∫ 1

0

2

(1 + t2)3/2
dt+ 2

[
− 1

(1 + t2)1/2

]1

0

.

To evaluate the first integral we turn it back into one involving sinusoidal

functions and write t = tan θ with dt = sec2 θ dθ. Then the original integral

becomes
∫ π/2

0

(1 + sinx)1/2 dx =

∫ π/4

0

2 sec2 θ

sec3 θ
dθ + 2

[
1 − 1√

2

]

=

∫ π/4

0

2 cos θ dθ + 2 −
√

2

= 2[ sin θ ]
π/4
0 + 2 −

√
2

=
√

2 − 0 + 2 −
√

2 = 2.
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An alternative evaluation can be made by setting x = (π/2) − y and then writing

1 + cos y in the form 2 cos2(y/2). This gives the final value of 2 more directly.

Whichever method is used in (b), we note that, as it must (or at least should!)

the exact value of the integral lies between our calculated bounds.

2.48 Show that the total length of the astroid x2/3 + y2/3 = a2/3, which can be

parameterised as x = a cos3 θ, y = a sin3 θ, is 6a.

We first check that x2/3 + y2/3 = a2/3 can be parameterised as x = a cos3 θ and

y = a sin3 θ. This is so, since a2/3 cos2 θ + a2/3 sin2 θ = a2/3 is an identity.

Now the element of length of the curve ds is given by ds2 = dx2 + dy2 or, using

the parameterisation,

ds =

[(
dx

dθ

)2

+

(
dy

dθ

)2
]1/2

dθ

=
[(

−3a cos2 θ sin θ
)2

+
(
3a sin2 θ cos θ

)2]1/2
dθ

= 3a cos θ sin θ dθ.

The total length of the asteroid curve is four times its length in the first quadrant

and therefore given by

s = 4 × 3a

∫ π/2

0

cos θ sin θ dθ = 12a

[
sin2 θ

2

]π/2

0

= 6a.

2.50 The equation of a cardioid in plane polar coordinates is

ρ = a(1 − sinφ).

Sketch the curve and find (i) its area, (ii) its total length, (iii) the surface area of

the solid formed by rotating the cardioid about its axis of symmetry and (iv) the

volume of the same solid.

For a sketch of the ‘heart-shaped’ (actually more apple-shaped) curve see figure

2.4.

To avoid any possible double counting, integrals will be taken from φ = π/2 to

φ = 3π/2 and symmetry used for scaling up.
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a

2a

ρ φ

Figure 2.4 The cardioid discussed in exercise 2.50.

(i) Area. In plane polar coordinates this is straightforward.

∫
1

2
ρ2 dφ = 2

∫ 3π/2

π/2

1

2
a2(1 − sinφ)2 dφ

= a2

∫ 3π/2

π/2

(1 − 2 sinφ+ sin2 φ) dφ

= a2(π − 0 + 1
2π)

=
3πa2

2
.

The third term in the integral was evaluated using the standard result that the

average value of the square of a sinusoid over a whole number of quarter cycles

is 1
2
.

(ii) Length. Since ds2 = dρ2 + ρ2dφ2, the total length is

L = 2

∫ 3π/2

π/2

[(
dρ

dφ

)2

+ ρ2

]1/2

dφ

= 2

∫ 3π/2

π/2

(a2 cos2 φ+ a2 − 2a2 sinφ+ a2 sin2 φ)1/2 dφ

= 2a
√

2

∫ 3π/2

π/2

(1 − sinφ)1/2 dφ

= 2a
√

2

∫ −π

0

(1 − cosφ′)1/2(−dφ′) where φ =
1

2
π − φ′.
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Using the trigonometric half-angle formula 1 − cos θ = 2 sin2(θ/2), this integral

is easily evaluated to give

L = 2a
√

2

∫ 0

−π

√
2 sin

φ′

2
dφ′

= 4a

[
−2 cos

φ′

2

]0

−π
= −8a.

The negative sign is irrelevant and merely reflects the (inappropriate) choice of

taking the positive square root of sin2(φ′/2). The total length of the curve is thus

8a.

(iii) Surface area of the solid of rotation.

The elemental circular strip at any given value of ρ and φ has a total length of

2πρ cosφ and a width ds (on the surface) given by (ds)2 = (dρ)2 + (ρdφ)2. This

strip contributes an elemental surface area 2πρ cosφds and so the total surface

area S of the solid is given by

S =

∫ 3π/2

π/2

2πρ cosφ

[(
dρ

dφ

)2

+ ρ2

]1/2

dφ

= 2
√

2πa2

∫ 3π/2

π/2

(1 − sinφ)3/2 cosφdφ [ using the result from (ii) ]

= 2
√

2πa2

[
−2

5
(1 − sinφ)5/2

]3π/2

π/2

= −32πa2

5
.

Again, the minus sign is irrelevant and arises because, in the range of φ used, the

elemental strip radius is actually −ρ cosφ.

(iv) Volume of the solid of rotation.

The height above the origin of any point is ρ sinφ and so, for π/2 ≤ φ ≤ 3π/2,

the thickness of any elemental disc is −d(ρ sinφ) whilst its area is πρ2 cos2 φ.

It should be noted that this formulation allows correctly for the ‘missing’ part of

the body of revolution – as it were, for the air that surrounds the ‘stalk of the

apple’. Whilst φ is in the range π/2 ≤ φ ≤ 5π/6 (the upper limit being found

by maximising y = ρ sinφ = a(1 − sinφ) sinφ), negative volume is being added

to the solid, representing ‘the air’. For 5π/6 ≤ φ ≤ π the solid acquires volume

as if there were no air core. For the rest of the range, π ≤ φ ≤ 3π/2, such

considerations do not arise.
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