Name:	Class:	Date:
chapter 2		
Indicate whether the statement is true	e or false.	
1. Secretory vesicles are about 200 ti	mes larger than transport vesicles.	
a. True		
b. False		
2. Sheets of epithelial cells are joined by	gap junctions.	
a. True		
b. False		
3. The stronger the stimulus, the greater	the frequency of action potentials generat	ted in a neuron.
a. True		
b. False		
•	PSPs from several different excitatory pres	synaptic inputs occur simultaneously.
a. True		
b. False		
-	net diffusion is taking place, there is no n	novement of molecules.
a. True		
b. False		
6. Action potentials can be summed.		
a. True		
b. False		
-	xon hillock region because it has the lowe	est threshold voltage.
a. True		
b. False		
8. The period of time following an action strong the stimulus, is known as the substant True	n potential during which a membrane can minimal response period.	not be restimulated, no matter how
b. False		
If a concentration or electrical gradier the membrane.	nt is present for a given substance, the sub	stance will always passively permeate
a. True		
b. False		
10. A postsynaptic neuron can either exc	cite or inhibit a presynaptic neuron.	
a. True		
b. False		
	ergy to accomplish transport of a substanc	ce across the membrane.
a. True		
b. False		

Name:	Class:	Date:
chapter 2		
12. The cytosol is the gel-like mass of	of the cytoplasm.	
a. True		
b. False		
13. Presynaptic neurons converging upo a. True	on a postsynaptic cell will be either all excita	atory or all inhibitory.
b. False		
of the ion outside and inside the cell inc	he equilibrium potential for a given ion decre creases.	eases as the difference in concentration
a. True		
b. False		
 A given synapse may produce EPSI a. True 	Ps at one time and IPSPs at another time.	
b. False		
16. The only means by which an extraction activate a second messenger system.	ellular chemical messenger can bring about	a desired intracellular response is to
a. True		
b. False		
17. Pinocytosis, or "cell drinking," reference ontents of the cell.	rs to the process of a cell engulfing a large, s	solid particle and bringing it into the
a. True		
b. False		
	el of membrane structure, the plasma membral with an ever-changing mosaic pattern of pr	
b. False		
	occurs passively, whereas net sodium move	ment out of the cell occurs actively.
a. True		
b. False		
20. All cell organelles are renewable	s.	
a. True		
b. False		
<u> </u>	n is most abundant in cells specialized foundant in cells that specialize in lipid me	<u>=</u>
b. False		

22. Schwann cells promote axonal growth, while oligodendrocytes inhibit it.

a. True

Name:	Class:	Date:
<u>chapter 2</u>		
b. False		
23. The large protein anion does not lea outward.	ave the cell because there is no concentration	n or electrical gradient to drive it
a. True		
b. False		
	er the affinity of its binding sites, accompan	ied by a change in its conformation.
a. True		
b. False		
	less than the resting membrane potential.	
a. True		
b. False		
26. Dynein is a mitochondrial enzym	ne.	
a. True		
b. False		
27. The predominant cation in the intrac	cellular fluid is calcium.	
a. True		
b. False		
	entative mixture of proteins present in th	ne Golgi sac before budding off.
a. True		
b. False		
29. Myelinated fibres in both the central a. True	al and the peripheral nervous systems are cap	pable of regenerating when cut.
b. False		
30. The sodium–potassium pump indire a. True	ectly offers the energy source for glucose tra	ansport across intestinal cells.
b. False		
31. Lack of aerobic exercise can hav pressure.	ve negative health implications, such as h	neart disease and high blood
a. True		
b. False		
32. The endoplasmic reticulum is on	ne continuous organelle consisting of ma	ny tubules and cisternae.
a. True		
b. False		
33. During the relative refractory period	d, a neuron is completely refractory.	
a. True		
b. False		

Name:	Class:	Date:
chapter 2		
34. Endocytosis can be accomplished b	by phagocytosis and pinocytosis.	
a. True		
b. False		
35. The nucleus indirectly governs mosenzymes and other proteins that are proached a. True	•	inds and amounts of various
b. False		
36. Gap junctions play an important role in a. True	n transmission of impulses for heart contr	raction.
b. False		
37. A high percentage of sodium and potag	ssium ions move during each action pote	ential.
b. False		
38. The grand postsynaptic potential dependent a. True	nds on the sum of activity of the presyna	ptic inputs.
b. False		
39. The refractory period limits the frequea. Trueb. False	ncy of action potentials.	
40. The axon hillock occurs between the c	ell body and the axon of a neuron.	
a. True b. False		
U. Faise		
41. Anions tend to move toward a negative	ely charged area.	
a. True		
b. False		
42. The carrier molecule actually moves fr	rom side to side through the membrane as	s it transports material across.
a. True		
b. False		
43. In the lipid bilayer of the plasma membrane, away from water.	brane, the hydrophobic tails of the phosp	pholipids orient toward the centre of the
a. True		
b. False		
44. The lysosomes are one site of prote	ein synthesis.	
a. True		
b. False		

Name:	Class:	Date:
<u>chapter 2</u>		
45. The myelin on a myelinated fibre	in the peripheral nervous system consists of S	Schwann cells wrapped around the
axon.		
a. True		
b. False		
46. The passive current flow of a grad	ded potential fades quickly.	
a. True		
b. False		
47. Facilitated diffusion is passive an	d does not require energy.	
a. True		
b. False		
•	of the plasma membrane is established by the	active transport of sodium and
potassium ions.		
a. True		
b. False		
49. Mitochondria are presumed to	be descendants of primitive bacterial cells	S.
a. True		
b. False		
50. During the resting potential, many	y potassium channels are open in the plasma r	membrane.
a. True		
b. False		
51. Fibronectin is the extracellular ma	atrix component that provides tensile strength	
a. True		
b. False		
52. The myelin covering the axon pro	omotes the leakage of ions from the neuron.	
a. True		
b. False		
53. In a graded potential, the direction	n of current flow is designated by the movement	ent of positive charges.
a. True		
b. False		
54. Osmosis does not occur if the con	ncentration gradients for water and solutes are	absent in a system.
a. True		-
b. False		
55. The only way in which a neurotra	ansmitter-receptor combination can influence to	the postsynaptic cell is to directly
its permeability to specific ions.		•
a. True		
b. False		

Name:	Class:	Date:
<u>chapter 2</u>		
56. One chemical messenger molecule can u product by a cell.a. Trueb. False	ltimately induce the production of mi	llions of molecules of a secretory
57. During conduction by local current flow, cell membrane, thereby decreasing the poten a. True b. False		tive and the adjacent inactive area of the
58. At resting potential, the outside of the ce a. True b. False	ll is negative compared to the intracel	lular fluid.
 59. The Na⁺ and K⁺ channels that open and a. True b. False 	close during an action potential are vo	oltage-gated channels.
60. At resting membrane potential, no ionic a. True b. False	fluxes are taking place across the men	nbrane.
61. Rough ER is most abundant in cells s a. True b. False	pecialized for steroid production.	
62. The nerve fibre is another name for the n a. True b. False	ucleus of a neuron.	
63. Glycolysis generates ATP from gluco a. True b. False	se with high efficiency.	
64. Cations are attracted to a more positively a. True b. False	charged area along an electrical grad	ient.
65. The synapse is a specialized part of a neu a. True b. False	iron.	
66. Neuropeptides are mainly neuromodulate a. True b. False	ors.	

67. Spatial summation involves only one neuron influencing one other neuron.

Name:	Class:	Date:
<u>chapter 2</u>		
a. True		
b. False		
separated by a light middle layer. a. True	plasma membrane appears as a trilaminar st	ructure consisting of two dark layers
b. False		
69. Cilia in the respiratory tract bea a. True	at in the same direction to sweep inspired	particles up and out of the airways.
b. False		
70. DNA's genetic code is transcrib a. True b. False	ped into messenger RNA.	
71. Increased permeability of the posts	synaptic cell to Cl ⁻ lessens the likelihood that e potential is moved farther away from thresh	
72. The refractory period prevents acti has just passed. a. True b. False	ion potentials from spreading back over the p	part of the membrane where the impulse
73. At the equilibrium potential for K ⁺ and exactly balance each other so there a. True	$^+$, the concentration and electrical gradients f e is no net movement of K^+ .	For K ⁺ are in opposition to each other
b. False		
74. After an action potential has occur pump activity has taken place). a. True	red, there is more Na ⁺ inside the cell than or	utside the cell (before any Na ⁺ -K ⁺
b. False		
that persists after the surface skin c a. True	er layer of skin is formed by the tough ske cells die.	eleton of the microtrabecular lattice
b. False		
76. A single neuron may be presynaptia. True b. False	ic to one group of neurons and postsynaptic	to another group of neurons.
77. The smooth ER specializes in p	rotein metabolism	
11. The smooth ER specializes in p	rotem metabonsm.	

Name:	Class:	Date:
chapter 2		
a. True		
b. False		
78. The surface carbohydrates within grip one another and surrounding cora. True	the plasma membrane serve as cell adhesion nuective tissue fibres.	molecules (CAMs), which cells use to
b. False		
79. Proteins synthesized by the en as they have been synthesized.	doplasmic reticulum become permanently	y separated from the cytosol as soon
a. True		
b. False		
80. Along a neuron, an action potenti a. True b. False	al normally travels from the dendrites to the	cell body to the axon.
81. Action potentials may result from a. True b. False	n hyperpolarization or depolarization.	
82. Oxygen enters the blood from the a. True b. False	e lungs by net diffusion.	
83. In the plasma membrane, the pola a. True b. False	ar ends of the phospholipid molecules are hyd	drophilic.
84. In secondary active transport, eneconcentration gradient. a. True b. False	ergy is required directly by the carrier to mov	re a substance uphill against a
	otential achieved during an action potential.	
86. Because a solution of lower solut pressure than does a solution with a l a. True b. False	e concentration has a higher concentration of nigher solute concentration.	f water, it exerts a lower osmotic
87. Secretory vesicles are released	to the exterior of the cell by means of the	e process of phagocytosis.

b. False

Name:	Class:	Date:
<u>chapter 2</u>		
88. One extracellular messenger modell. a. True	lecule can ultimately influence the activity of o	only one protein molecule within the
a. True b. False		
b. Paise		
ions across the membrane.	passive and active forces exactly balance each	other so there is no net movement of
a. True		
b. False		
90. Movement of K ⁺ into the cell red a. True	quires energy expenditure, whereas movement	of Na ⁺ into the cell does not.
b. False		
b. Paise		
91. Oligodendrocytes form a regener	ration tube to guide a regenerating nerve fibre	to its proper destination.
a. True		
b. False		
1 1 0	enerates the most ATP per glucose molecul	e.
a. True		
b. False		
93. A single synaptic knob contains a. True	two different transmitters—one that produces	EPSPs and one that produces IPSPs.
b. False		
	tude of triggering is coded for in frequency rat	ther than amplitude of depolarizations.
a. True		
b. False		
95. The diffusion of potassium ions develops an action potential.	re-establishes the resting membrane potential	in a neuron immediately after it
a. True		
b. False		
96. The two dark lines in the trilaming staining of the hydrophilic polar reg	nar appearance of the plasma membrane are being of the membrane constituents.	elieved to be caused by the preferential
a. True		
b. False		
97. If two similar molecules can bot rate of entry of the other.	h combine with the same carrier, the presence	of one of these molecules decreases the
a. True		
b. False		
0. 1 mbc		
98. All molecules greater than 0.8 nm	m in diameter are unable to penetrate the plasn	na membrane unless there is a carrier

for the molecule.

Name:	Class:	Date:
chapter 2		
a. True		
b. False		
99. Amoeboid movement is accompli of alternate assembly and disassembly a. True b. False	shed by transitions of the cytosol between y, respectively, of actin filaments.	een a gel and a solid state as a result
o. ruise		
100. Most intermediary metabolism isa. Trueb. False	accomplished in the cytosol.	
101. Neurotransmitters do not always bir a. True b. False	nd to receptors attached to ion channels.	
	od, the Na ⁺ gates are not capable of openin	ng again in response to another
103. The release of a chemical messenge postsynaptic neuron. a. True b. False	er at the synapse immediately stimulates po	otassium permeability in the
104. Movement of potassium into cells aa. Trueb. False	lways requires energy expenditure.	
105. A first messenger is an intracellular within a cell to bring about a desired respa. True b. False	chemical messenger that triggers a preproponse.	ogrammed series of biochemical events
106. Nerve and muscle cells establish resa. Trueb. False	sting membrane potentials.	
107. Because of the presence of tight junthe cells, not through them.a. Trueb. False	actions, passage of materials across an epitl	helial barrier must take place between
108. The peroxisomes mainly generat a. True b. False	e hydrogen peroxide.	

Name:	Class:	Date:
chapter 2		
109. In active transport, ATP energy a. True b. False	is used in the phosphorylation–dephosphoryl	ation cycle of the carrier.
	uses only an aerobic energy supply.	
a. True	,	
b. False		
111. Cytokinesis is the division of	the nucleus during mitosis.	
a. True		
b. False		
112. The conduction velocity of a ner myelin acts as an insulator that slows a. True	eve impulse is slower in myelinated fibres that the flow of current.	n in unmyelinated fibres because
b. False		
113. The Golgi complex is connec	ted functionally to the ER.	
a. True		
b. False		
-	ut 100 times more powerful than light mi	croscopes.
a. True		
b. False		
	EPSPs determines whether a postsynaptic ne	euron will fire.
a. True b. False		
116. ATP synthase is located in the a. True	e inner mitochondrial membrane.	
b. False		
117. Gap junctions function as chann	els between cells.	
a. True		
b. False		
118. The extracellular matrix and the	local cells that secrete it are collectively kno	wn as connective tissue.
a. True	·	
b. False		
	al arrangement wherein the dendrites diverge	to synapse with as many presynaptic
inputs as possible.		
a. True		
b. False		

Name:	Class:	Date:
chapter 2		
120. The nodes of Ranvier are formeround the axon. a. True	ed by Schwann cells or oligodendrocytes that w	rap themselves "jelly roll fashion"
b. False		
121. An unmyelinated fibre with a la	arge diameter can conduct action potentials mor	re rapidly than an unmyelinated fibre
with a smaller diameter. a. True		
b. False		
122. DNA in the nucleus has the a. True	genetic instructions to make enzymatic prot	teins.
b. False		
123. The dendrites of a presynaptic a. True	neuron directly signal the axon of a postsynapti	c neuron.
b. False		
124. The primary barrier to passage carbohydrates.	of water-soluble substances across the plasma	membrane is the outer layer of
a. True		
b. False		
125. A balance of IPSPs and EPSPs a. True	will negate each other so that the grand postsyn	naptic potential is essentially unaltered.
b. False		
126. A spike is another name for the a. True	e axon of a neuron.	
b. False		
127. A stronger stimulus above three	shold produces a greater action potential in a ne	euron.
b. False		
128. Pinocytosis refers to the procescontents of the cell.	ss of a cell engulfing a large, multimolecular par	rticle and bringing the particle into the
a. True		
b. False		
129. Classical neurotransmitters and a. True	I neuropeptides are sometimes cosecreted from	the same axon terminal.
b. False		
130. A stimulus that is too weak to conormal.	depolarize the membrane to threshold produces	an action potential smaller than
a. True		

Name:	Class:	Date:
chapter 2		
b. False		
131. The carbohydrate found in pla	asma membranes is believed to be involved in the	e aggregation of cells to form tissue.
a. True		
b. False		
132. Sodium and potassium ions a	re highly soluble in lipids.	
a. True		
b. False		
· -	ne lipid bilayer of the plasma membrane blocks t	he passage of water-soluble substances.
a. True		
b. False		
	more positively charged area along an electrical	gradient.
a. True		
b. False		
135. Phagocytosis is a specialize	ed form of endocytosis used for bringing in e	extracellular fluids.
a. True		
b. False		
Indicate the answer choice that	best completes the statement or answers the	question.
136. Select the substance that pron	notes cell adhesion.	
a. calmodulin		
b. collagen		
c. elastin		
d. fibronectin		
9	nents correctly describes carrier-mediated transpo	ort?
•	rane protein that serves as a carrier molecule.	
*	against a concentration gradient.	
c. It always requires energy ex	•	
d. It always moves substances	along a concentration gradient.	
138. Which of these statements	is correct for NADH?	
a. It is an energy carrier.		
b. It plays a role in cellular	respiration.	
c. It is used in glycolysis.		
d. It is used in the citric acid	l cycle.	

139. Which of the following is NOT a neuropeptide?

a. acetylcholineb. dopaminec. epinephrine

Name:	Class:	Date:
<u>chapter 2</u>		
d. glucagon		
140. Which of the following correctly of a. They are local changes in members. They serve as short-distance significant control of the following correctly of a control of the following correctly of the followin	orane potential that occur as all or none.	
c. They serve as long-distance sign d. They are generated after action p		
141. Where is the trigger zone of a neural in the terminal ganglionb. in the hillockc. in the chemically gated channelsd. in dendrites		
142. The falling phase of the action pot a. calcium equilibriumb. potassium effluxc. potassium influxd. sodium efflux	rential is due to which of the following cond	itions?
b. The average human cell is abeeye.	ertain basic functions essential to its own out 100 times smaller than the smallest perfundamentally different in structure and	particle visible by the unaided
144. Which of these statements is correa. They bind to receptors at nonsyrb. They do contribute directly to Ec. They may influence neurotransord. They directly alter membrane per	naptic sites. PSP and IPSP formation. nitter production.	
 145. Which of the following comports a. NADH b. ATP c. pyruvic acid d. FADH₂ 	unds is the carbon-based end product (ch	nain) of glycolysis?
146. Which of these substances is most membrane? a. a cation	likely to passively diffuse across the plasma	a membrane by dissolving in the

b. an anion

d. a polar molecule

c. a nonpolar or nonionized molecule

Name:	_ Class:	Date:
chapter 2		

- 147. Which of the following is the last step for synaptic signalling when the action potential arrives at the axon terminal of a presynaptic neuron?
 - a. A neurotransmitter is released by exocytosis.
 - b. Calcium flows in the synaptic knob.
 - c. The neurotransmitter combines with protein receptor sites on the subsynaptic membrane.
 - d. The permeability is altered in a postsynaptic neuron.
- 148. Which of the following triggers the exocytosis of secretory products by entering a cell in response to a specific neural or hormonal stimulus?
 - a. K⁺
 - b. Na⁺
 - c. Ca²⁺
 - d. ATP
- 149. What is the purpose of glycolysis?
 - a. to produce citric acid
 - b. to liberate energy from glucose
 - c. to produce large numbers of ATP
 - d. to trap energy in FADH2
- 150. Which of the following statements concerning gap junctions is NOT correct?
 - a. Gap junctions are communicating junctions.
 - b. At a gap junction, filaments of unknown composition extend between the plasma membranes of two closely adjacent but not touching cells, acting as "spot rivets" to anchor the cells together.
 - c. Gap junctions are formed by small connecting tunnels that link two adjacent cells and permit exchange of small water-soluble particles between the cells.
 - d. Gap junctions play an important role in transmission of electrical activity throughout an entire muscle mass.
- 151. Which of the following descriptions of movement of molecules across the plasma membrane is correct?
 - a. If two similar molecules can both combine with the same carrier, the presence of one of these molecules increases the rate of entry of the other.
 - b. In simple diffusion, the rate of transport of a molecule is inversely proportional to the molecule's extracellular concentration.
 - c. When a carrier becomes saturated, the maximum rate of transport is reached.
 - d. Large molecules can cross the plasma membrane through nonselective, receptor-mediated endocytosis.
- 152. Which of these terms best describes an excitable condition when a resting membrane potential is present?
 - a. polarized
 - b. depolarized
 - c. hyperpolarized
 - d. repolarized
- 153. Which of the following refers to the form of endocytosis in which whole cells such as bacteria are brought in?

Name:	Class:	Date:
<u>chapter 2</u>		
a. exocytosis		
b. pinocytosis		
c. receptor-mediated endocytosis		
d. phagocytosis		
154. What is the universal energy current	y in cells?	
b. glucose		
c. glycogen		
d. insulin		
155. What is the correct sequence at a synaps	se?	
(1) neurotransmitter diffuses across cleft	•	
(2) calcium induces exocytosis of neurotrans(3) permeability of postsynaptic membrane a		
(4) ion channels open	nered	
(5) neurotransmitter binds to receptor on che	mically gated channel	
a. 1, 2, 3, 5, 4		
b. 1, 4, 3, 2, 5		
c. 2, 1, 5, 4, 3		
d. 3, 1, 4, 5, 2		
156. The cellular component that, once activ activates cyclic AMP is	•	messenger to a surface receptor, in turn
a. phospholipase C		
b. adenylate cyclase		
c. calmodulin		
d. calcium		
157. What accounts for the most ATP pro	oduction?	
a. Krebs cycle		
b. citric acid cycle		
c. NADH		
d. electron transport and oxidative ph	osphorylation	
158. What might happen if niacin is defic	•	
a. Glucose might not be able to be clo	eaved.	
b. Available FAD might decrease.		
c. When the 3-carbon chain is oxidiz	ed in glycolysis, electrons might no	ot be able to be captured.
d. Only fermentation would be possible	ole.	
159. Which of the following is responsible for	or the falling phase of an action potent	ial?
a. opening of Na ⁺ gates		
b. Na ⁺ -K ⁺ pump restoring the ions to th	eir original locations	

Name:	Class:	Date:

- c. greatly increased permeability to Na⁺
- d. opening of K⁺ gates and K⁺ efflux
- 160. What is the primary determinant of a membrane's selective permeability?
 - a. the structures of the membrane phospholipids
 - b. the amount of cholesterol present
 - c. the number and types of membrane proteins
 - d. the charge of the membrane
- 161. Which of the following is the correct statement about passive diffusion?
 - a. It depends on random motion.
 - b. It involves active forces.
 - c. Its rate increases as the temperature decreases.
 - d. Molecules move from a lower concentration to a higher concentration.
- 162. Under which of these circumstances does an action potential develop?
 - a. when threshold voltage is reached
 - b. when voltage-gated K⁺ channels open and the membrane reaches about -40 millivolts
 - c. when spatial and/or temporal summation of graded potentials are cancelled
 - d. when Cl⁻ enters the cell
- 163. Which of these statements describes why myelinated axons conduct impulses much faster than unmyelinated axons?
 - a. because channels have to close at the nodes
 - b. because voltage is not lost along myelinated areas
 - c. because of shorter axons
 - d. because of available energy
- 164. Which of these statements correctly describes what happens when "temporal summation" takes place?
 - a. Two EPSPs from the same presynaptic input occur so closely together in time that they add together, or sum.
 - b. An EPSP and an IPSP occur simultaneously and cancel each other out.
 - c. Two EPSPs that occur simultaneously from different presynaptic inputs add together, or sum.
 - d. Action potentials occurring in two presynaptic inputs simultaneously converge upon the postsynaptic cell, initiating two different action potentials in the postsynaptic cell.
- 165. Which of these statements correctly describes the concentration gradient for Na⁺?
 - a. It favours its movement into the cell at resting potential.
 - b. It favours its movement out of the cell at resting potential.
 - c. Net outward movement is continued until equilibrium.
 - d. Na⁺ equilibrium potential is -60 mV.
- 166. What type of junctions are desmosomes, tight, and gap junctions, respectively?
 - a. adhering, communicating, and impermeable, respectively
 - b. communicating, impermeable, and adhering, respectively
 - c. adhering, impermeable, and communicating, respectively

Name:	Class:	Date:
<u>chapter 2</u>		
d. communicating, adhering, and in	npermeable, respectively	
a. electrical intensity	sys moves to an area of higher	<u>.</u>
b. fluid pressure		
c. mitochondrial activity		
d. solute concentration		
168. Insulin promotes the uptake of gluca. carrier-mediated transport	cose into cells by	
b. endocytosis		
c. exocytosis		
d. osmosis		
169. Which of these statements correctly a. They are sometimes cosecreted a	y describes neuropeptides? long with classical neurotransmitters.	
b. They are synthesized in the cytos		
c. They act at the subsynaptic mem	brane of the postsynaptic neuron.	
d. They usually alter the potential o	f postsynaptic cells by opening specific ion cha	nnels.
170. Which of these organelles is asso	ociated with the rough ER?	
a. chromosomes	<u> </u>	
b. lysosomes		
c. microfilaments		
d. ribosomes		
171 Which one of the following is a fun	nation of mambuons could by duston?	
171. Which one of the following is a fur a. to serve as channels	iction of memorane carbonydrates?	
b. to determine the fluidity of the m	embrane	
c. to assist in the aggregation of cell		
d. to serve as receptor sites	is to form dissues	
a. to serve as receptor sites		
	ne from neuron A and the other from neuron B, elease transmitter, as a result of which an action	• •
a. temporal summation	·	
b. spatial summation		
c. divergence		
d. depolarization		
•		
173. What is cystic fibrosis caused by?		
a. thick mucus build-up	1 6: 1:	
b. salt accumulation by increased le		
c. chloride channels in plasma mem	ibranes	

d. potassium channels in plasma membranes

Name:	Class:	Date:
chapter 2		
174. A leukocyte, a type of white blood cell, fights bact that surround an invading bacterium. The membrane the cell. What is this is an example of?	•	

- a. exocytosis
- b. receptor-mediated endocytosis
- c. pinocytosis
- d. phagocytosis
- 175. Which of the following is the correct statement about membrane permeability and ion potential?
 - a. The concentration of potassium ions is the same extracellularly and intracellularly.
 - b. The concentration of potassium is higher extracellularly than intracellularly.
 - c. The concentration of sodium is higher extracellularly than intracellularly.
 - d. The concentration of sodium is lower extracellularly than intracellularly.
- 176. Which of the following statements about membrane permeability and ion potential is correct?
 - a. The concentration of potassium ions is the same extracellularly and intracellularly.
 - b. The concentration of potassium is higher extracellularly than intracellularly.
 - c. The concentration of sodium is higher extracellularly than intracellularly.
 - d. The concentration of sodium is lower extracellularly than intracellularly.
- 177. Presynaptic facilitation results from which of the following?
 - a. alteration of calcium permeability
 - b. continued EPSP generations
 - c. neuromodulator effects
 - d. increased neurotransmitter production
- 178. What is the function of ATP synthase?
 - a. to act enzymatically
 - b. to build membranes
 - c. to carry hydrogen
 - d. to synthesize ATP
- 179. What happens to an action potential at an excitatory synapse?
 - a. The postsynaptic neuron depolarizes the presynaptic cell membrane.
 - b. The presynaptic neuron increases the permeability of the subsynaptic membrane of the postsynaptic cell to both Na^+ and K^+ .
 - c. The presynaptic neuron increases the permeability of the subsynaptic membrane of the postsynaptic cell to K only.
 - d. A small hyperpolarization occurs.
- 180. Which of these structures is associated with the secretion of proteins produced by the ER?
 - a. Golgi complex
 - b. plasma membrane
 - c. microtubules
 - d. lysosomal membrane

Name:	Class:	Date:
<u>chapter 2</u>		
181. What is the resting membrane pot a. +70 mV	tential of a typical nerve cell?	
b. +50 mV		
c. –50 mV		
d. –70 mV		
182. Which of the following occurs at	an excitatory synapse?	
a. There is increased permeability	of the subsynaptic membrane to both Na ⁺	and K ⁺ .
b. A small hyperpolarization occu	rs.	
c. An action potential in the presy	naptic neuron always causes an action pote	ntial in the postsynaptic neuron.
 d. Presynaptic neuron increases th only. 	e permeability of the subsynaptic membran	ne of the postsynaptic cell to K ⁺
183. Which of the following correctly a. action potential recordings	describes the nodes of Ranvier?	
b. breaks in the myelin covering		
c. lipid paths		
d. spaces between neurons		
104 Wil: 1 - 54	landaratha dha mada 6 a maran haire an	and a second the effect of a feet and
simultaneously?	ly describes the result of a neuron being ex	perimentarity sumurated at both ends
•	ss in the middle and travel to the opposite en	nds.
•	et in the middle and then be propagated bac	
c. The action potentials would sto	p as they met in the middle.	
d. The stronger action potential we	ould override the weaker action potential.	
185. Which of the following is NOT pa	art of the extracellular matrix?	
a. watery, gel-like ground substan	ce	
b. connexon		
c. collagen		
d. elastin		
186. Which of the following organe	lles is NOT membrane bound?	
a. lysosome		
b. ribosome		
c. mitochondrion		
d. peroxisome		
187. Which of the following statement	s does NOT correctly describe cells?	
a. All living cells have a membrar	•	
b. Rapid changes in membrane po	tential in muscle cells trigger abnormal mu	scle twitching.

c. The cell's interior (ICF) is slightly more negative than ECF. d. The cell's membrane is more permeable to K^+ than to Na^+ .

Name: C	Class:	Date:
---------	--------	-------

188. Which of the following refers to the period of time following an action potential during which a membrane cannot be restimulated no matter how strong the stimulus is?

- a. the relative refractory period
- b. the period after the Na⁺ gates have opened and until they are restored to their "closed but capable of opening" conformation
- c. prevents the action potential from spreading back over the part of the membrane where the impulse has just passed
- d. the depolarization period
- 189. Which of the following structures is located in the nucleus of the cell?
 - a. the nuclide
 - b. the lysosome
 - c. the mitochondrion
 - d. the nucleolus
- 190. Which of the following correctly describes divergence?
 - a. Thousands of synapses from many presynaptic neurons end on a single postsynaptic cell.
 - b. The dendrites diverge from the cell body to contact as many presynaptic neurons as possible.
 - c. The action potential initiated in the axon diminishes as it diverges into the axon terminals.
 - d. The axon of a nerve cell branches to synapse with many other cells, so that activity in one neuron influences the excitability of many other cells.

- 191. If presynaptic neurons Y and Z are stimulated simultaneously, what change would you expect to occur in the postsynaptic neuron?
 - a. a single EPSP
 - b. a single IPSP
 - c. temporal summation of EPSPs
 - d. spatial summation of EPSPs
- 192. Which of these statements is correct for nicotinamide adenine dinucleotide (NAD)?
 - a. It converts ADP + Pi to ATP.
 - b. It is found in the cytosol.
 - c. It is a hydrogen carrier molecule.
 - d. It is a hydrogen carrier molecule found in the cytosol.
- 193. Which of the following correct describes the refractory period?
 - a. It promotes the spread of action potentials forward and backward.
 - b. It refers to the time period during which a portion of the membrane that has just undergone an action potential cannot undergo another action potential in response to normal triggering events because the channels opened during the action potential have not been restored to their "closed but capable of opening" conformation.
 - c. It places a lower limit on the frequency with which a neuron cannot conduct action potentials
 - d. It refers to the repolarizing period.

Name:	Class:	Date:
chapter 2		
194. Which of the following can be	e found within the nucleus?	
a. deoxyribonucleic acid		
b. cytosol		
c. plasma membrane		
d. endoplasmic reticulum		
195. The rising phase of the action po	tential is due to which of the following conditi	ions?
a. calcium equilibrium		
b. potassium efflux		
c. potassium influx		
d. sodium influx		
196. A change in a membrane potential.a. depolarization	al from -70 mV to -60 mV is an example of w	which of the following?
b. hyperpolarization		
c. polarization		
d. repolarization		
-		
•	ons is affected by a positive feedback mechanis	sm once threshold is reached?
a. sodium		
b. potassiumc. calcium		
d. chloride		
d. Chioride		
_	ules directly enters the citric acid cycle?	
a. acetyl CoA		
b. adenosine diphosphate		
c. citric acid		
d. oxaloacetic acid		
199. Where is the nucleus of a neuron	housed?	
a. axon		
b. axon hillock		
c. cell body		
d. collaterals		
200. Which of these statements is corn	eect for neural stem cells?	
a. They come from any embryon	c tissues.	
	to promote neurogenesis following injury and	l disease.
c. They are capable of differentia		
d. They cannot be grown in cultu	re for prolonged periods	
201. Which of the following occurs w	then a membrane is stimulated due to opening	of chemically gated Na ⁺ channels?
a. An impulse is propagated.	-	
b. A graded potential is established	ed.	

Name:	Class:	Date:
chapter 2	01033	batc
c. An action potential is established.		
d. The voltage becomes more negative.		
202. What happens during osmosis? a. Water moves down its own concentration gradie	ent.	

- b. Water moves to an area of higher solute concentration.
- c. The solute moves against its concentration gradient.
- d. The solute moves down its own concentration gradient.
- 203. Which of these statements about the action potential is correct?
 - a. It has an all-or-none characteristic.
 - b. It has no refractory period.
 - c. It is triggered by repolarization to threshold.
 - d. It speeds transmission by any type of summation.
- 204. Which of the following is NOT an action of the cytosol?
 - a. duplication of chromosomes
 - b. enzymatic regulation of intermediary metabolism
 - c. storage of fat and glycogen
 - d. synthesis of proteins for use in the cytosol
- 205. What is the definition of aerobic?
 - a. in the blood
 - b. with carbon dioxide
 - c. with oxygen
 - d. without carbon dioxide
- 206. Which statement is NOT correct regarding the Golgi complex?
 - a. It sorts and directs products to their final destination.
 - b. It modifies proteins chemically.
 - c. It produces secretory vesicles.
 - d. It is responsible for protein synthesis.
- 207. Which of the following is NOT a function of membrane proteins?
 - a. to serve as channels
 - b. to determine the fluidity of the membrane
 - c. to serve as carriers
 - d. to serve as receptor sites
- 208. What does chemiosmosis do?
 - a. releases CO₂
 - b. extracts energy from a H⁺ concentration gradient
 - c. reduces NAD

Name:	Class:	Date:

d. ferments pyruvic acid to lactic acid

209. Assume a hypothetical postsynaptic neuron has three presynaptic inputs, X, Y, and Z. When presynaptic neurons X and Y are stimulated simultaneously, the postsynaptic neuron reaches threshold and undergoes an action potential; yet, when presynaptic neurons X and Z are stimulated simultaneously, there is no change in potential of the postsynaptic neuron. Which of these statements correctly describes the presynaptic neurons Y and Z?

- a. Presynaptic neurons Y and Z are both excitatory.
- b. Presynaptic neurons Y and Z are both inhibitory.
- c. Presynaptic neuron Y is excitatory, and presynaptic neuron Z is inhibitory.
- d. Presynaptic neuron Y is inhibitory, and presynaptic neuron Z is excitatory.
- 210. Which of the following does NOT correctly describe graded potential?
 - a. It can be depolarized.
 - b. It can be hyperpolarized.
 - c. It can be summated.
 - d. It has a refractory period.
- 211. Which of the following statements concerning propagation of action potentials is NOT correct?
 - a. Saltatory conduction occurs in myelinated nerve fibres.
 - b. During conduction by local current flow, there is a flow of current between the active and the adjacent inactive area of the cell membrane, thereby decreasing the potential in the inactive area to threshold.
 - c. The action potential jumps from one Schwann cell to the adjacent Schwann cell in a myelinated fibre.
 - d. Saltatory conduction is faster than conduction by local current flow.
- 212. Which of these statements is correct for collagen?
 - a. It provides tensile strength.
 - b. It is most abundant in tissues that must be capable of easily stretching and then recoiling.
 - c. It promotes cell adhesion.
 - d. It is a rubber-like protein fibre.
- 213. Which of these nerve fibres will have the highest conduction velocity?
 - a. an unmyelinated nerve fibre with conduction velocity = 0.35 m/sec
 - b. an unmyelinated nerve fibre smaller than nerve fibre a.
 - c. a myelinated nerve fibre the same size as nerve fibre a.
 - d. a myelinated fibre larger than nerve fibre a.
- 214. Which of these statements is correct for ATP synthase?
 - a. It transports hydrogen ions from the matrix to the intermembrane space of the mitochondrion.
 - b. It is activated by the flow of hydrogen ions from the intermembrane space to the matrix.
 - c. It enzymatically converts ATP to ADP.
 - d. It yields two molecules of ATP.
- 215. Which of the following regarding "saltatory conduction" is correct?
 - a. Saltatory conduction occurs in unmyelinated nerve fibres.
 - b. Saltatory conduction is slower than conduction by local current flow because the myelin acts as an insulator to slow the impulse.

ame:	Class:	Date:
napter 2		
c. Saltatory conduction invol	lves the impulse jumping from one node of Ranv	ier to the adjacent node.
d Caltatory anduation refer	s to the action potential spreading from one Schv	vann cell to the adjacent Schwann

- 216. Which of the following statements correctly describes the electrical gradient for K⁺?
 - a. It favours its movement out of the cell at resting potential.
 - b. It favours its movement into the cell at resting potential.
 - c. It favours the concentration gradient for K⁺ at the equilibrium potential for K⁺.
 - d. The larger the electrical gradient, the lesser is the equilibrium potential.
- 217. A change in a membrane potential from +30 mV to -70 mV is an example of .
 - a. depolarization
 - b. hyperpolarization
 - c. polarization
 - d. repolarization
- 218. Which of the following statements concerning the absolute refractory period is NOT accurate?
 - a. The absolute refractory period refers to the period of time during which another action potential cannot be initiated in a patch of membrane that has just undergone an action potential, no matter how strong the stimulus.
 - b. The absolute refractory period corresponds to the time period during which the Na⁺ gates are first opened and then closed and inactivated.
 - c. Immediately following the absolute refractory period, the patch of nerve fibre membrane that has just undergone an action potential can be restimulated only by a stronger stimulus than is usually necessary.
 - d. The absolute refractory period occurs during the after hyperpolarization phase of the action potential.
- 219. Which of the following statements is correct for glycolysis?
 - a. It yields two molecules of ATP for each molecule of glucose processed.
 - b. It always requires oxygen.
 - c. It takes place in the mitochondrial matrix.
 - d. It takes place in the mitochondrial inner membrane cristae.
- 220. Which of the following decreases the rate of diffusion of a substance through the plasma membrane?
 - a. increasing the concentration gradient
 - b. increasing the molecular weight of the substance
 - c. increasing the permeability of the membrane
 - d. increasing the surface area of the membrane
- 221. Which of the following happens at resting membrane potential?
 - a. The membrane is more permeable to K⁺ than to Na⁺.
 - b. The membrane is more permeable to Na^+ than to K^+ .
 - c. Cl is not at its equilibrium potential.
 - d. The membrane is more permeable to $Cl^-.$

Name:	Class:	Date:

- 222. Why does anaerobic respiration take place when O₂ is unavailable?
 - a. to continue releasing at least some energy from molecules and generate ATP
 - b. to prevent cell death
 - c. to make use of available glucose
 - d. to prevent protein breakdown

- 223. What permeability changes would you expect to occur at the postsynaptic neuron when presynaptic neuron X is stimulated? (Remember that the postsynaptic neuron becomes hyperpolarized by presynaptic neuron X.)
 - a. increased P_{Na+} and P_{K+}
 - b. increased P_{K+} or P_{Cl-}
 - c. increased P_A_
 - d. increased P_{Ca2+}
- 224. Which of the following does NOT require energy expenditure?
 - a. net movement of potassium into the cell
 - b. net movement of sodium into the cell
 - c. iodine uptake by thyroid gland cells
 - d. transport of hydrogen ion into the stomach lumen in association with hydrochloric acid secretion during digestion of a meal
- 225. Extracellular messengers binding on surface receptors may exert effects on cells via all the following means EXCEPT which one?
 - a. opening gated channels
 - b. opening a gated channel through activation of a G protein
 - c. activation of the adenylyl cyclase system
 - d. binding to sites and then being endocytosed
- 226. What does the SNARE complex provide?
 - a. recognition of foreign proteins in the cell
 - b. binding of correct enzyme with correct substrate
 - c. means to deliver vesicles to an appropriate site
 - d. receptor-mediated endocytosis
- 227. Which statement regarding microfilaments is NOT correct?
 - a. They serve as mechanical stiffeners for microvilli.
 - b. They are composed of actin subunits.
 - c. They are the smallest elements of the cytoskeleton.
 - d. They form mitotic spindles.
- 228. Which of the following occurs when an excitatory neurotransmitter binds to a nicotinic receptor?
 - a. Voltage-gated Na⁺ channels open.

Name:	Class:	Date:
chapter 2		
b. Voltage-gated K ⁺ channels open.		
c. Chemically gated Na ⁺ channels of	pen.	
d. Voltage-gated Cl ⁻ channels open.	•	
229. Which of the following channel type	es is sensitive to serotonin?	
a. voltage-gated.		
b. chemically gated.		
c. mechanically gated.		
d. acoustically gated.		
230. In which cells are actin and myos	sin filaments found commonly?	
a. epithelial cells		
b. muscle cells		
c. nerve cells		
d. red blood cells		
231. Which of the following statements of	correct describes IPSP?	
a. It is produced by increased Na ⁺ po	ermeability and K ⁺ permeability.	
b. It is produced by increased K ⁺ per	rmeability or increased Cl ⁻ permeability.	
c. It is a small depolarization of the	postsynaptic neuron.	
d. It is produced by increased Na ⁺ po	ermeability only.	
232. Which of the following statements r	regarding facilitated diffusion is correct?	
a. It involves a carrier molecule.		
b. It requires energy expenditure.		
c. It is how protein enters the cells.		
d. It is about movement of molecule	s against its concentration gradient.	
233. Which of the following concerning	the plasma membrane is correct?	
a. It appears under an electron micro	-	
b. It is composed primarily of a doul phospholipids in a mosaic pattern	ble layer of phospholipid molecules with pro	oteins interspersed throughout the
c. It separates the intra vascular and	extracellular fluid.	
d. It separates the intravascular and i	intracellular fluid.	
234. Where are cristae found?		
a. lysosome		
b. mitochondrion		
c. nucleolus		
d. nucleus		
235. Which of these organelles occurs	s in the lowest numbers within a typical h	numan cell?

a. mitochondria

Name:	_Class:	_ Date:
chapter 2		
b. vaults		

- d. nuclei
- 236. Where do the citric acid cycle reactions occur?
 - a. cytoplasm

c. peroxisomes

- b. cytosol
- c. inner-mitochondrial membrane
- d. mitochondrial matrix
- 237. Which of the following statements is correct about vaults?
 - a. They act as a selective barrier between cellular contents and extracellular fluid.
 - b. Their shape tends to be oval or rounded.
 - c. They serve as cellular trucks for transport from the nucleus to the cytoplasm.
 - d. They store excess nutrients.
- 238. Which of the following statements correctly describes mitochondria?
 - a. They have an inner fluid-filled space called the crista.
 - b. They possess their own DNA.
 - c. They are the site for cell reproduction.
 - d. They serve as workbenches for protein synthesis
- 239. Which of the following statements is correct for the electron transport chains?
 - a. They are "circuits" for small amounts of electricity to pass through.
 - b. They are made of proteins.
 - ^{c.} They deliver energy to cytochrome to pump H⁺ into the intermembrane space.
 - d. They do not need oxygen to be available.
- 240. Which of the following statements correctly describes tetanus toxin?
 - a. It combines with glycine receptors, thus blocking the action of this inhibitory neurotransmitter.
 - b. It destroys dopamine in the region of the brain that is involved in controlling complex movements.
 - c. It prevents the release of gamma-aminobutyric acid from presynaptic inputs terminating on neurons that supply skeletal muscles.
 - d. It promotes presynaptic facilitation.
- 241. Which of the following occurs with presynaptic inhibition in a specific neuron?
 - a. An IPSP occurs on the postsynaptic cells.
 - b. All excitatory information being fed into the cell is depressed.
 - c. The release of excitatory transmitter from a specific presynaptic excitatory input is depressed.
 - d. An EPSP occurs in the postsynaptic cells.
- 242. Which of the following is NOT a graded potential?
 - a. end-plate potential
 - b. action potential

Name:	Class:	Date:	
chapter 2			
c. slow-wave potentiald. receptor potential			
243. During the peak of the action potential, a. sodium	which of these ions has the greatest p	permeability?	
b. potassium			

- 244. A recording electrode is placed into a nerve cell to measure the membrane potential at a particular point. When the physiologist glances at the recording and sees that the membrane at that instant has a potential of +15 mV, she knows that the portion of the membrane being recorded is which of the following?
 - a. in the normal resting state
 - b. in the reversal phase of an action potential when the inside of the cell becomes more positive than the outside
 - c. more permeable to Ca^{2+} than normal
 - d. in the after hyperpolarization phase of an action potential
- 245. What does diffusion result from?
 - a. ATP-driven processes
 - b. ion gradients

c. calciumd. chloride

- c. inherent kinetic energy of matter
- d. selective permeability

- 246. If presynaptic neurons X and Z are stimulated simultaneously, what change would you expect to occur in the postsynaptic neuron?
 - a. a single EPSP
 - b. a single IPSP
 - c. temporal summation of EPSPs
 - d. IPSP and EPSP would cancel each other out, so there would be essentially no change in potential in the postsynaptic neuron.
- 247. The rate of carrier-mediated transport is limited by which one of the following?
 - a. protein location in the membrane
 - b. osmolarity
 - c. tonicity
 - d. competition with other molecules
- 248. If a typical body cell is placed in a 5 percent saline solution, what will happen to the cell?
 - a. It will fill with water.
 - b. It will lyse.
 - c. It will lose water.
 - d. It will remain unchanged.

Name:	Class:	Date:

- 249. Assume that a membrane that is permeable to Na⁺ but not to Cl⁻ separates two solutions. The concentration of sodium chloride on side 1 is much higher than on side 2. Which of the following ionic movements will take place?
 - a. Na⁺ will move until its concentration gradient is dissipated (i.e., until the concentration of Na⁺ on side 2 is the same as the concentration of Na⁺ on side 1).
 - b. Cl⁻ will move down its concentration gradient from side 1 to side 2.
 - c. A membrane potential, negative on side 1, will develop.
 - d. A membrane potential, positive on side 1, will develop.
- 250. Which of the following are receptor sites on the outer surface of the plasma membrane?
 - a. ATP
 - b. carbohydrates
 - c. cyclic AMP
 - d. proteins

- 251. If presynaptic neuron X is stimulated, the postsynaptic cell membrane becomes slightly hyperpolarized. What kind of a synapse is involved between presynaptic neuron X and the postsynaptic neuron?
 - a. excitatory synapse
 - b. inhibitory synapse
 - c. either an excitatory or an inhibitory synapse
 - d. collateral axoaxonic
- 252. Which of the following statements is correct for the Na⁺-K⁺ pump?
 - a. It pumps Na⁺ into the cell.
 - b. It pumps K⁺ into the cell.
 - c. It pumps K⁺ out of the cell.
 - d. It has a higher affinity for K⁺ when the carrier is phosphorylated.
- 253. Which of the following occurs in convergence?
 - a. Thousands of synapses from many different presynaptic cells end on a single postsynaptic cell.
 - b. The axon of a nerve cell branches so that the activity in one neuron influences many other cells.
 - c. The dendrites all converge on the cell body.
 - d. The action potential initiated in the axon diminishes as it diverges into the axon terminals.
- 254. All the following statements concerning the Na⁺–K⁺ pump are correct EXCEPT which one?
 - a. The phosphorylated conformation of the Na⁺-K⁺ pump has high affinity for K⁺ when exposed to the ICF.
 - b. The Na⁺-K⁺ pump has ATPase activity.
 - c. The Na⁺-K⁺ pump establishes Na⁺ and K⁺ concentration gradients across the plasma membrane; these gradients are critically important in the ability of nerve and muscle cells to generate electrical impulses essential to their functioning.
 - d. The Na⁺–K⁺ pump helps regulate cell volume by controlling the concentration of solutes inside the cell to minimize osmotic effects that would induce swelling or shrinking of the cell.

Name:	Class:	Date:
<u>chapter 2</u>		
255. Which of the following is	NOT a correct association?	
a. ATP/high-energy bonds		
b. electron transport chain/	mitochondrion	
c. glycolysis/anaerobic		
d. pyruvic acid/5-carbon m	nolecule	
256. Which statement regardin	g the plasma membrane is NOT correct?	
a. It serves as a mechanica	l barrier to hold in the contents of the cell.	
b. It selectively controls m	ovement of molecules between the ECF and	the ICF.
c. It contains proteins that	provide receptor sites for membrane function	ns.
d. It has cholesterol to dete	ermine the fluidity of the membrane.	
257. What happens during the ris	ing phase of the action potential?	
a. P_{K+} is much greater than I	Na+·	
b. P _{Na+} is much greater than	P_{K+} .	
c. P_{K+} is the same as P_{Na+} .		
258. Which of the following state	ements is NOT correct?	
a. Endocytosis provides a wa	ay to add specific components to the plasma mem	nbrane.
b. Phagocytosis refers to the	endocytosis of large multimolecular particles suc	ch as bacteria or cellular debris.
c. By means of endocytosis, the plasma membrane.	a particle can gain entry to the interior of the cell	without actually passing through
d. Endocytosis can be trigger	red by the binding of a particle to a receptor site of	on the plasma membrane.
•	ements concerning the plasma membrane is correct	
	the plasma membrane appears as a trilaminar stru	
b. The carbohydrates on the messengers in the environ	outer surface of the membrane serve as receptor sment of the cell.	sites for binding chemical
c. The lipid bilayer serves as	a barrier to the passage of H_2O -soluble substance	es through the membrane.
d. Carrier proteins shuttle bato the other.	ck and forth across the membrane as they carry p	assenger molecules from one side
260. For every 3 sodium ions the nto the cell?	sodium-potassium pump moves out of the cell, h	now many potassium ions does it move
a. 3		
b. 2		
c. 1		
d. 0		
261. Which of these statements co	oncerning a threshold potential is correct?	
a. It is the potential achieved	when two opposing forces acting upon an ion (co	oncentration and electrical

gradients) achieve a state of equilibrium.

b. It is the peak potential achieved during an action potential.

^c . It is the point at which there is an explosive increase in Na ⁺ permeability.
d. It is the potential at which K ⁺ permeability increases.
262. Which of the following statements applies to membrane potential?
a. It refers to a separation of charges across the membrane, or to a difference in the relative numbers of + and - charges in the ECF and the ICF.
b. It is measured in units of millivolts with the sign always designating the charge on the outside.
^c . It is less at the equilibrium potential for K ⁺ than at resting membrane potential.
d. It refers to the presence of K ⁺ inside the cell.
263. Which of the following statements is correct for phospholipids?
a. They consist of a polar, hydrophilic, phosphate-bearing head and two nonpolar hydrophobic, fatty-acid tails.
b. They are lined as a single layer in membranes.
c. They serve as carrier molecules.
d. The small amount of membrane carbohydrate is located on the inner surface of the phospholipid layer.
264. Which of the following is correct for tight junctions?
a. They prevent passage of materials between epithelial cells.
b. They force materials to pass between cells.
c. They are commonly found in respiratory tract linings.
d. They serve as avenues for the transfer of small molecules from one cell to the next.
265. Which of the following applies to lysosomes?
a. They contain powerful hydrolytic enzymes.
b. They generate hydrogen peroxide.
c. They facilitate intracellular reactions.
d. They store excess nutrients
266. Which of the following occurs when chemically gated Na ⁺ channels open?
a. The membrane hyperpolarizes.
b. The membrane repolarizes.
c. The membrane depolarizes.
d. The membrane becomes more negative.
267. Because of the presence of both activation and inactivation gates, voltage-gated Na ⁺ channels can be in which of these states?
a. closed but capable of opening
b. inhibited
c. partially closed

268. Which of the following is the normal direction for the movement of an action potential along part of a neuron?

Class:

Date:____

Name:

chapter 2

d. partially opened

a. axon hillock to cell body

b. axon terminals to collateral axon

Name:	Class:	Date:
<u>chapter 2</u>		
c. axon to dendrites		
d. dendrites to cell body		
269. Which organelles contain oxidative	ve enzymes?	
a. peroxisomes and lysosomes		
b. mitochondria and nuclei		
c. lysosomes and vaults		
d. ribosomes and microtubules		
270. Which of the following statement	s is correct for an anaerobic condition	1?
a. Oxygen is plenty.		
b. The degradation of glucose can	not proceed beyond glycolysis.	
c. Mitochondrial processing of nut	rient molecules takes place.	
d. It produces a high yield of oxyg	en molecules.	
For the following questions, assume a hypassume that presynaptic neurons Y and Z		presynaptic inputs: X, Y, and Z. Also
271. If presynaptic neuron Y is stimulated synapse is involved between presynaptic a. excitatory synapse		es slightly depolarized. What kind of
b. inhibitory synapse		
c. either an excitatory or an inhibitory	/ synanse	
d. axosomatic	sy mapse	
272. In the cyclic AMP second messenger of adenylate cyclase, which induces the coa. intracellular ATP		
b. intracellular ADP		
c. extracellular ATP		
d. extracellular ADP		
273. Which of the following is correct	about intermediate filaments?	
a. They comprise mitotic spindles.		
b. They are important in cell regio	ns subject to mechanical stress.	
c. They comprise cilia.		
d. They comprise flagella.		
274. The cells of excitable and nonexcitate a. a threshold potential	ble tissues share which one of these prop	erties?
b. a resting membrane potential		
c. an ability to open the Na ⁺ gates		
d. an ability to open the K ⁺ gates		
275. With secondary active transport, the	movement of	
2.2 iai secondary active transport, the		

chapter 2
a. Na ⁺ into the cell by the cotransport carrier is downhill
b. Na ⁺ into the cell by the cotransport carrier is uphill
c. glucose by the cotransport carrier is uphill
d. Cl ⁻ into the cell by the cotransport carrier is downhill
276. Why can't the large, negatively charged intracellular proteins (A ⁻) permeate the cell membrane? a. They are greater than 0.8 nm in diameter and are not lipid soluble.
b. There are carriers for them.
c. No concentration or electrical gradient exists for them.d. There are no positively charged ions to carry them.
277. Which of the following statements regarding membrane proteins is NOT correct?
a. Membrane protein channels are water-filled pathways.
b. Membrane protein channels may be highly selective.
c. Membrane proteins may catalyze specific reactions.
d. CAMs serve as binding sites for specific ligands.
278. Which of the following statements is correct for integrins? a. They create a filamentous meshwork in the inner surface of the membrane. b. They act as membrane-bounded enzymes.
c. They are used for cell recognition purposes.
d. They span the membrane, providing a mechanical link between the outer membrane and the cell's surrounding.
279. Which of the following is known to be second messengers?
a. cyclic AMP
b. potassium
c. ATP
d. hormone
280. Which of these processes refers to extrusion of materials to the exterior of the cell through the plasma membrane?
a. endocytosis
b. exocytosis
c. phagocytosis
d. pinocytosis

281. Which of these statements is correct for smooth endoplasmic reticulum?

b. It gives rise to transport vesicles containing newly synthesized molecules wrapped in a layer of

a. It is most abundant in cells specialized for protein secretion.

c. It consists of stacks of relatively flattened sacs called cisternae.

smooth ER membrane.

d. It has many ribosomes.

Class:

Date:

Name:

Name:	Class:	Date:

- 282. Which of the following statements correctly describes when spatial summation occurs in a postsynaptic neuron?
 - a. when several EPSPs from a single presynaptic input sum to reach threshold
 - b. when EPSPs from several presynaptic inputs sum to reach threshold
 - c. upon simultaneous interaction of an EPSP and an IPSP
 - d. when several IPSPs from a single presynaptic input sum to hyperpolarize the membrane
- 283. Which of the following is the first step for synaptic signalling when the action potential arrives at the axon terminal of a presynaptic neuron?
 - a. A neurotransmitter is released by exocytosis.
 - b. Calcium flows in the synaptic knob.
 - c. The neurotransmitter combines with protein receptor sites on the subsynaptic membrane.
 - d. The permeability is altered in a postsynaptic neuron.
- 284. Why does the relative refractory period occur after the action potential is complete?
 - a. because of the activation of the voltage-gated Na⁺ channels
 - b. because of the slowness of the voltage-gated channels
 - c. because of the sodium-potassium pump
 - d. because of quick potassium efflux
- 285. Which of these statements is correct for the rough endoplasmic reticulum?
 - a. It does not contain ribosomes.
 - b. It synthesizes proteins for export from the cell or for use in construction of a new cellular membrane.
 - c. It is abundant in cells that specialize in lipid metabolism.
 - d. It is abundant in liver cells.
- 286. Osmosis is which of these types of processes?
 - a. carrier-mediated transport
 - b. diffusion
 - c. exocytosis
 - d. pinocytosis

- 287. If presynaptic neuron Z is repeatedly stimulated very rapidly, what change would you expect to occur in the postsynaptic neuron?
 - a. a single EPSP
 - b. a single IPSP
 - c. temporal summation of EPSPs
 - d. spatial summation of EPSPs
- 288. Glucose is usually reabsorbed from the filtrate in the kidney back into the blood through carrier proteins; hence, glucose in the urine is considered abnormal. What of these conditions can result in glucose in the urine?
 - a. low levels of glucose in the blood
 - b. transport maximum for renal glucose reached or competitors for glucose carriers
 - c. low consumption of glucose

Name: Class: Date:

- d. increased availability of glucose carriers
- 289. Which of the following statements regarding the citric acid cycle is NOT correct?
 - a. It occurs in the mitochondrial matrix.
 - b. Carbon dioxide is released.
 - c. Several ATP molecules are produced for each cycle.
 - d. Acetyl CoA and oxaloacetic CoA initially react to form citric acid.
- 290. In the aerobic respiration process of the cells, when is CO₂ released?
 - a. during glycolysis
 - b. during the electron transport chain of events
 - c. during the Krebs cycle
 - d. during fermentation

- 291. What permeability changes would you expect to occur at the postsynaptic neuron when presynaptic neuron Y is stimulated? (Remember that the postsynaptic neuron becomes depolarized by presynaptic neuron Y.)
 - a. increased P_{Na+} and P_{K+}
 - b. increased P_{K+} or P_{Cl-}
 - c. increased PA-
 - d. increased P_{Ca2+}
- 292. Which of the following are common means by which binding of an extracellular chemical messenger with a cell's receptor brings about a desired intracellular response?
 - a. opening or closing of specific channels to regulate ionic movement across the plasma membrane
 - b. activation of an extracellular second messenger system
 - c. alteration of DNA structure by attaching to the nucleus
 - d. combination with surface receptor
- 293. Which of these statements regarding neuronal integration is NOT correct?
 - a. Inhibitory synapses cause postsynaptic hyperpolarization.
 - b. An inhibitory synapse may result in a postsynaptic sodium channel opening.
 - c. Inhibitory synapse may result in increased postsynaptic potassium efflux.
 - d. An excitatory synapse causes depolarization of postsynaptic membranes.
- 294. Which of the following statements is NOT correct about the plasma membrane?
 - a. Cholesterol contributes to its stability.
 - b. Membrane proteins are inserted in a lipid bilayer.
 - c. It consists mostly of lipids and proteins.
 - d. Membrane carbohydrates are on only its inner surface.
- 295. Which statement is NOT correct regarding ribosomes?

Name:	Class:	Date:	
chapter 2			
a. They are composed of RNA.			
b. They assemble polypeptides.			

d. They are covered by a membrane.

c. They may be bound to endoplasmic reticulum.

- 296. Which of these statements correctly describes the resting membrane potential?
 - a. It is much closer to the equilibrium potential for Na⁺ than to the equilibrium potential for K⁺.
 - b. It is much closer to the equilibrium potential for K⁺ than to the equilibrium potential for Na⁺.
 - c. It is the same as the equilibrium potential for Cl⁻.
 - d. It refers to the presence of Na⁺ inside the cell.
- 297. Which of these statements concerning the plasma membrane is correct?
 - a. Under an electron microscope, the plasma membrane appears as two dark lines with a light space between.
 - b. In its resting state, the plasma membrane is more permeable to Na⁺ than to K⁻.
 - c. The plasma membrane does not contain cholesterol.
 - d. The plasma membrane can be seen under an ordinary light microscope.
- 298. Pinocytosis is a form of which of the following processes?
 - a. active transport
 - b. cytokinesis
 - c. endocytosis
 - d. exocytosis
- 299. Which of the following statements is correct for mitochondria?
 - a. The number of mitochondria per cell is the same for every cell.
 - b. DNA is enclosed within the cell nucleus and the mitochondria.
 - c. The mitochondrial DNA in our cells are copies of our parents' DNA.
 - d. Mitochondrial DNA has unlimited ability to repair.
- 300. Which of the following organelles is NOT covered by a membrane?
 - a. the Golgi body
 - b. the lysosome
 - c. the mitochondrion
 - d. the ribosome
- 301. Which of the following statements concerning neuronal inhibition is NOT correct?
 - a. With presynaptic inhibition, another neuron selectively excites an inhibitory presynaptic input.
 - b. An IPSP depresses information fed into the cell from any excitatory presynaptic input.
 - c. All the axon terminals of an inhibitory neuron will release inhibitory transmitter.
 - d. An IPSP moves the potential of the postsynaptic neuron farther from threshold.
- 302. Which statement regarding graded potentials is NOT correct?
 - a. They are decremental.

Name:	Class:	Date:
chapter 2		
b. They travel only short distances.		
c. They are self-propagating.		
d. They may contribute to the developmen	at of an action potential.	
303. Which of the following components is a. cytosol	NOT always found in a typica	ıl human cell?
b. DNA		
c. flagellum		
d. plasma membrane		
Enter the appropriate word(s) to complete	the statement.	
304. In active transport, a substance moves from concentration.	m an area of	concentration to an area of
305. At the equilibrium potential for an ion, its electrical gradient.	gradien	nt is exactly counterbalanced by its
306. If red blood cells are placed in a	solution, water le	eaves the cells, causing them to crenate.
307. The sarcoplasmic reticulum stores	ions.	
308. In facilitated diffusion, particles move fro concentration.	om a con	acentration to a
309. Insulin is a long	chain.	
310. Repeated firings of one presynaptic neuro	on can produce	summation.
311. Lysosomes containdebris from the cell.	enzymes that are capable	le of digesting and removing unwanted
312. Axon terminals possessneurotransmitter release.	voltage-gated channels th	nat, when operational, induce
313 diffusion allows expenditure of energy.	materials to pass through the men	mbrane by a carrier protein without the
314. When EPSPs originating from a single prosum, thereby bringing the postsynaptic cell to t		
315. In active transport, the stomach pumps	ions into i	ts lumen.
316 refers collect the degradation, synthesis, and transformat	tively to the large set of intrace tion of small organic molecules	ellular chemical reactions that involve s.
317. Large, myelinated fibres can conduct imp	ulses near the rate of	metres per second.
318. During the resting membrane potential, th	ne inside of a neuron is net	by charge.

Name:	Class:	Date:
chapter 2		
	refers to the process of an intracellula emptying its contents to the exterior.	r vesicle fusing with the plasma membrane,
	acteristics that determine the kind and amount of mater	-
321. A/an	solution has the same osmolarity as no	ormal body cells.
	ccurring simultaneously from two different presynapti	c inputs add together or sum to bring the
323	refers to a separation of opposite charges ac	cross the membrane.
324. The membrane via a carr	refers to the maximum amount of a subtier in a given time.	ostance that can be transported across the plasma
325	cells form myelin around neurons in the per	ripheral nervous system.
326	is a positive ion that tends to leak into cells.	
327. Active transpor	rt is a kind of transport.	
328. Endocytosis and	d exocytosis are both kinds of	transport.
329. Foreign mater	rial to be attacked by lysosomal enzymes is brough	ht into the cell by the process of
330. The from the ER.	ER is the central packaging and d	lischarge site for molecules to be transported
331. A plasma mem	brane has a polarization if it separates particles with a	n opposite
332. ADP and P _i ar	re formed from the breakdown of the molecule	
333	is the effector protein in the cyclic AMP pa	thway.
334. The neuronal re	elationship in which a single presynaptic cell branches	to terminate on many other cells is called
	are cave-like indentations on the outer surfa	ace of the plasma membrane.
	s of the rough ER synthesizessential for the synthesis of	
337. Axons can rang	ge in length from less than a millimetre to over one	
338. Lysosomes tha	at have completed their digestive activities are kn	own as
339. Neuropeptides	are large, acting molecules.	
340. The neuronal re	elationship in which many presynaptic cells terminate	on a single postsynaptic cell is called

Name:	Class:	Date:
<u>chapter 2</u>		
	n all the cells of the body is known collectifier to as	ively as, and
342. When a neuron starts to dep	olarize,ions move in	nto the cell.
343. The conducts action potentials away f	, or, of a nerve cell from the cell body and eventually terminates a	is a single, elongated tubular process that tother cells.
344. At the end of repolarization,	, the newly opened channels for	ions close.
345. Myelinated fibres conduct in diameter.	mpulses about times	faster than unmyelinated fibres of the same
346. At the synapse, a presynapti	c neuron signals ane	euron.
347. The metabolism of acetyl for the	CoA into the citric acid cycle depends on he cell.	the availability of
348. The decomposition of hyd molecules.	drogen peroxide produces	and
349. In a(n)	transport, materials may be moved "uphi	ll" and are concentrated in a cell.
350 alo	ong axons reduces resistance and, hence, increa	ases impulse velocity.
	otein recognizes both thene ER, then delivers the proper ribosome to	
352. At	potential, typically around -55 mV, rapid dep	polarization occurs.
353. A single nerve cell, also call	led a(n), typically co	nsists of the following three basic parts:
354. The resting membrane poten	ntial of a typical nerve cell is about	millivolts.
355is	the hindrance to electrical charge movement.	
	at exists when the concentration and electrical given as the	gradients for a given ion exactly
357. Net diffusion of water down	n its own concentration gradient toward an area	a of higher solute concentration is known as
	e chemical messengers that bind to neuronal recactivity.	eceptors at nonsynaptic sites and alter the
359. Electrical quantities called _ membrane potentials.	are gated in the plasm	na membrane for the development of

Name:	Class:		Date:
<u>chapter 2</u>			
360. A neuron fires an impulse by the	law.		
361 is a protein res	ponsible for pinching	off an endocytic vesicl	e.
362. An increase in the size of the	of a nerve fib	ore increases its rate of co	onduction.
363. The two major parts of the cell's interior	are the	and the	·
364. The three major subdivisions of a cell are the	e the	, the	, and
365. When a neuron fires a signal, a resting mem	brane potential is conver	rted into a(n)	potential.
366. A given synapse is always excitatory or	·		
367. An action potential in a presynaptic neuron is the synaptic knob, which triggers exocytosis of sy	1 0	ige-gated	channels in
368. Neurotransmitters are small,	acting molecu	les.	
369. Products destined for intracellular transpexport are packaged in			, whereas products for
370 is a peroxisoma	al enzyme that breaks	down hydrogen peroxi	de.
371. The equation equal difference outside and inside the cell.	tes the equilibrium poter	ntial for an ion with the i	on's concentration
372. If red blood cells are placed in a	solution, v	water enters, causing the	m to swell.
373. Neuropeptides are stored in	vesicles.		
374 join the lateral edg passage of materials between the cells.	es of epithelial cells tog	ether near their luminal b	porders, thus preventing
375, an enzyme for peroxide.	and in peroxisomes, de	ecomposes potentially t	toxic hydrogen
376 are molecules prod	duced by nerve cells and	that bind to nonsynaptic	receptors.
377. Communication between neurons occurs by	the release of	, which a	re chemical messengers.
378 is a positive ion the	at tends to leak out of ce	ells passively.	
379 RNA carries an	mino acids to the sites	of protein synthesis in	the cell.
380. One glucose molecule is converted into glycolysis.	two molecules of	b	y the end of
381. The plasma membrane is not impermeable,	but it is		

Name:	Class:	Date:
chapter 2		
382. The junction between two neurons is known	own as a(n)	
Match the terms, labelled a. through d., to all.) a. microtubules b. microfilaments c. intermediate filaments d. micro trabecular lattice	their descriptions. (Options may	be used more than once or not at
383. the largest of the cytoskeletal element	ts	
384. present in parts of the cell subject to r	mechanical stress	
385. smallest element visible with a conve	ntional electron microscope	
386. consist of actin		
387. organizes the glycolytic enzymes in a	sequential alignment	
388. form the mitotic spindle		
389. essential for creating and maintaining	g an asymmetrical cell shape	
390. composed of tubulin		
391. provide a pathway for axonal transpor	rt	
392. visible only with a high-voltage electronic state.	ron microscope	
393. play(s) a key role in muscle contraction	on	
394. slide past each other to cause ciliary b	pending	
Match the terms, labelled a. through f., to not at all.) a. plasma membrane b. nucleus c. cytoplasm d. cytosol e. organelles f. cytoskeleton	their correct descriptions. (Optio	ons may be used more than once or
395. houses the cell's DNA		

396. responsible for cell shape and movement

Name:	Class:	Date:
chapter 2		
397. highly organized membrane-b	oound intracellular structures	
398. selectively controls movemen	t of molecules between the intracellular f	luid and the extracellular fluid
399. consists of organelles and cyto	osol	
400. site of intermediary metabolis	em	
·	reactions to occur simultaneously in the	cell
402. separates contents of the cell t	from its surroundings	
403. site of fat and glycogen storag	ge	
	parative concentrations, permeabilities, and positems, A. and B, with the qualifications lo	
404. A. concentration of K^+ in the extension of K^+ in the intracellation of K^+ in the intracellation.		
405. A. concentration of Na ⁺ in the ex B. concentration of Na ⁺ in the intrace		
406. A. concentration of A^- in the extension A^- in the intracell		
407. A. permeability of a resting nerv B. permeability of a resting nerve cell		
408. A. permeability of a resting nerv B. permeability of a resting nerve cell		
409. A. concentration gradient for K^+ B. electrical gradient for K^+ at the equ		
410. A. resting membrane potential in B. equilibrium potential for K^+	n a typical nerve cell	
411. A. amount of Na^+ transported ou B. amount of K^+ transported into the		

Match the ions, labelled a. through d., with their various roles. (Options may be used more than once or not at all.)

a. Na^+

Name:	Class:	Date:
chapter 2	_	-
b. K ⁺		
c. A ⁻		
d. Cl ⁻		
412. cation in greatest concentration in the ICF		
413. cation in greatest concentration in the ECF		
414. anion in greatest concentration in the ICF		
415. anion in greatest concentration in the ECF		
416. ion whose equilibrium potential is greater than the re	sting membrane potential	
417. ion whose equilibrium potential is opposite in charge	of the resting membrane potential	
418. ion whose equilibrium potential is exactly equal to the	e resting membrane potential	
419. cation to which the membrane is most permeable unc	ler resting conditions	
420. anion to which the membrane is impermeable		
421. ion that has the predominant influence on the resting	membrane potential	
422. ion that is actively transported out of the cell		
423. ion that is actively transported into the cell		
424. ion whose concentration gradient is established by th	e membrane potential	
Match the terms, labelled a. through i., to their descrall.)	iptions. (Options may be used more to	han once or not at
a. endoplasmic reticulum (ER)		
b. Golgi complex		
c. lysosome		
d. peroxisome		
e. mitochondrion		
f. vault		
g. free ribosome		
h. microtubule		
i. microfilament		
425. contains powerful oxidative enzymes important	in detoxifying various wastes	
426. an important component of cilia and flagella		
427. one continuous extensive organelle consisting of	a network of tubules and flattened fi	lament

Name:	Class:	Date:
chapter 2		
428. removes unwanted cellular debris an	nd foreign material	
429. the powerhouse of the cell		
430. acts as a mechanical stiffener		
431. synthesizes proteins for use in the c	ytosol	
432. consists of stacks of flattened sacs		
433. shaped like an octagonal barrel		
Match the terms, labelled a. through c., all.) a. flagella b. cilia c. microvilli	to their descriptions. (Options may	be used more than once or not at
434. hair-like motile protrusions		
435. increase the surface area of the sma	ll intestine's epithelium	
436. sweep mucus and debris out of resp	iratory airways	
437. increase the surface area of the kidn	ney tubules	
438. enable sperm to move		
439. whip-like appendages		
440. guide egg to oviduct		
Match the result, labelled a. or b., with the f not at all.) a. The ion tends to be moved into the cell by b. The ion tends to be moved out of the cell	y this force.	tions may be used more than once or
441. concentration gradient for K^+ at resting	g potential	
442. electrical gradient for K ⁺ at resting potential	ential	
443. electrical gradient for K^+ at E_{K^+}		
444. concentration gradient for Na ⁺ at restin	ng potential	
445. electrical gradient for Na ⁺ at resting po	otential	
446. electrical gradient for Na ⁺ at E _{Na+}		

Name:	Class:	Date:
<u>chapter 2</u>		
447. Na ⁺ –K ⁺ pump for Na ⁺		
448. Na ⁺ –K ⁺ pump for K ⁺		
Match the cellular proteins, labelled a. thra. dynamin b. tubulin c. kinesin d. actin e. ribophorin	cough e., with their correct chard	acteristic.
449. causes pinching off of endocytic vesic	eles	
450. serves as binding site for ribosomes		
451. comprises intermediate filaments		
452. comprises microtubules		
453. provides for transport of vesicles		
Match the vesicles, labelled a. through c., not at all.) a. transport vesicles b. coated vesicles c. secretory vesicles	with their characteristics. (Opti	ons may be used more than once or
454. originate from the Golgi complex		
455. originate from the endoplasmic reticu	lum	
456. contain newly synthesized molecules		
457. contents emptied to the exterior by ex	ocytosis	
458. enclosed in a clathrin framework		
459. fuse with and enter the Golgi complex	K	
460. contents become concentrated over tin	me	
461. contents are unloaded at a specific int	racellular compartment	
Match the terms, labelled a. through c., wi	ith their characteristics, labellea	l 1. (Options may be used more than

once or not at all.)

b. citric acid cycle

a. glycolysis

Name:	Class:	Date:
<u>chapter 2</u>		
c. oxidative phosphorylation		
462. directly uses inspired oxygen		
463. does not directly use inspired oxyg	gen	
464. takes place in the cytosol		
465. takes place in the mitochondrial m	atrix	
466. takes place on the inner mitochono	lrial membrane	
467. low yield of ATP		
468. high yield of ATP		
469. Describe the differences between 1	ough ER and smooth ER.	
470. Michael is using the electron micronotices that the skeletal muscle cells ha	1	
471. Describe the structure and function	n of cilia and flagella.	
472. How are action potentials propagated	?	
473. Describe the major aspects of the	cytoskeleton.	
474. How is ATP synthesized via electr	on transport and oxidative phosphory	lation?
475. Describe neuronal integration.		
476. Describe aerobic cellular respiration	on from a mechanistic point of view.	
477. Describe the pathway that newly s	ynthesized polypeptides take en route	e for secretion.
478. Discuss the role of channel proteins in	establishment of resting and action pote	entials.
479. Describe some of the ways in which of	lrugs or disease can influence the nervou	s system at the neuronal level.
480. Compare and contrast neuromodulation	on and presynaptic inhibition/facilitation	

Name:	_Class:	Date:
chapter 2		
Answer Key		
1. True		
2. False		
3. True		
4. False		
5. False		
6. False		
7. True		
8. False		
9. False		
10. False		
11. False		
12. True		
13. False		
14. False		
15. False		
16. False		
17. False		
18. True		
19. True		
20. True		
21. True		
22. True		
23. False		
24. True		
25. False		

26. False

Name:	Class:	Date:
<u>chapter 2</u>		
27. False		
27. False		
28. False		
29. False		
30. True		
31. True		
32. True		
33. False		
34. True		
35. True		
36. True		
37. False		
38. True		
39. True		
40. True		
41. False		
42. False		
43. True		
44. False		
45. True		
46. True		
47. True		
48. True		
49. True		
50. True		
51. False		
52. False		

Name:	Class:	Date:
<u>chapter 2</u>		
53. True		
54. True		
55. False		
56. True		
57. True		
58. False		
59. True		
60. False		
61. False		
62. False		
63. False		
64. False		
65. False		
66. True		
67. False		
68. True		
69. True		
70. True		
71. True		
72. True		
73. True		
74. False		
75. False		
76. True		
77. False		
78. False		

Name:	_Class:	Date:
chapter 2		
79. True		
80. True		
81. False		
82. True		
83. True		
84. False		
85. False		
86. True		
87. False		
88. False		
89. True		
90. True		
91. False		
92. True		
93. False		
94. False		
95. True		
96. True		
97. True		
98. False		
99. True		
100. True		
101. True		
102. True		
103. False		

104. True

Name:	_ Class:	Date:
<u>chapter 2</u>		
105. False		
106. True		
107. True		
108. True		
109. True		
110. False		
111. False		
112. False		
113. True		
114. True		
115. True		
116. True		
117. True		
118. True		
119. False		
120. False		
121. True		
122. True		
123. False		
124. False		
125. True		
126. False		
127. False		
128. False		
129. True		
130. False		

Name:	Class:	Date:
<u>chapter 2</u>		
131. True		
132. False		
133. True		
134. True		
135. False		
136. d		
137. a		
138. a		
139. d		
140. b		
141. b		
142. b		
143. b		
144. c		
145. c		
146. c		
147. d		
148. c		
149. b		
150. b		
151. c		
152. a		
153. d		
154. a		
155. c		
156. b		

Name:	Class:	Date:
chapter 2		
157. d		
158. c		
159. d		
160. c		
161. a		
162. d		
163. b		
164. a		
165. a		
166. c		
167. d		
168. a		
169. a		
170. d		
171. c		
172. b		
173. c		
174. d		
175. c		
176. c		
177. a		
178. d		
179. b		
180. a		
181. d		
182. a		

Name:	Class:	Date:
chapter 2		
183. b		
184. c		
185. b		
186. b		
187. b		
188. d		
189. d		
190. d		
191. d		
192. c		
193. b		
194. a		
195. d		
196. a		
197. a		
198. a		
199. c		
200. b		
201. b		
202. c		
203. a		
204. a		
205. c		
206. d		
207. b		
208. b		

Name:	Class:	Date:
<u>chapter 2</u>		
209. c		
210. d		
211. c		
212. a		
213. d		
214. b		
215. c		
216. b		
217. d		
218. d		
219. a		
220. b		
221. a		
222. a		
223. b		
224. b		
225. d		
226. c		
227. d		
228. c		
229. b		
230. b		
231. b		
232. a		
233. b		
234. b		

Name:	Class:	Date:
<u>chapter 2</u>		
235. d		
236. d		
237. с		
238. b		
239. с		
240. с		
241. c		
242. b		
243. b		
244. b		
245. c		
246. d		
247. d		
248. c		
249. с		
250. d		
251. b		
252. b		
253. a		
254. a		
255. d		
256. a		
257. b		
258. a		
259. c		
260. b		

Name:	Class:	Date:
<u>chapter 2</u>		
261. c		
262. a		
263. a		
264. a		
265. a		
266. c		
267. a		
268. d		
269. a		
270. b		
271. a		
272. a		
273. b		
274. b		
275. a		
276. a		
277. d		
278. d		
279. a		
280. b		
281. b		
282. b		
283. b		
284. b		
285. b		
286. b		

Name:	Class:	Date:
<u>chapter 2</u>		
287. c		
288. b		
289. c		
290. c		
291. a		
292. a		
293. b		
294. d		
295. d		
296. b		
297. a		
298. с		
299. b		
300. d		
301. a		
302. c		
303. c		
304. lower; higher		
305. concentration		
306. hypertonic		
307. calcium		
308. higher; lower		
309. polypeptide		
310. temporal		
311. hydrolytic		

312. calcium

Name:	Class:	_ Date:
<u>chapter 2</u>		
313. Facilitated		
314. temporal summation		
315. hydrogen		
316. Intermediary metabolism		
317. 120		
318. negative		
319. Exocytosis		
320. competition; saturation; specificity (in any order)		
321. isotonic		
322. spatial summation		
323. Membrane potential		
324. transport maximum T _m		
325. Schwann		
326. Sodium		
327. carrier-mediated		
328. vesicular		
329. endocytosis		
330. smooth		
331. charge		
332. adenosine triphosphate ATP		
333. Adenylate cyclase		
334. divergence		
335. Caveolae		
336. proteins; lipids		

337. metre

Name:
<u>chapter 2</u>
338. residual bodies
339. slow
340. convergence
341. intracellular fluid; extracellular fluid
342. sodium
343. axon; nerve fibre nerve fibre; axon
344. potassium
345. 50 fifty
346. postsynaptic
347. oxygen
348. water; oxygen oxygen; water
349. active
350. Myelin
351. leader sequence; ribophorin
352. threshold
353. neuron axon; cell body; dendrites (in any order)
354. –70
355. Resistance
356. equilibrium potential
357. osmosis
358. Neuromodulators
359. voltages
360. all-or-none

361. Dynamin

____ Class:__

Date:___

Name:	Class:	Date:
<u>chapter 2</u>		
362. diameter		
363. nucleus; cytoplasm cytoplasm; nucleus		
364. plasma membrane; nucleus; cytoplasm nucleus; cytoplasm; plasma membrane cytoplasm; plasma membrane; nucleus		
365. action		
366. inhibitory		
367. Na ⁺ sodium ion		
368. rapid		
369. coated vesicles; secretory vesicles		
370. Catalase		
371. Nernst		
372. hypotonic		
373. dense-core		
374. Tight junctions		
375. Catalase		
376. Neuromodulators		
377. neurotransmitters		
378. Potassium		
379. Messenger		
380. pyruvic acid		
381. semipermeable		
382. synapse		
383. a		
384. c		

385. b

Name:	_Class:	Date:
chapter 2		
386. b		
387. d		
388. a		
389. a		
390. a		
391. a		
392. d		
393. b		
394. a		
395. b		
396. f		
397. e		
398. a		
399. c		
400. d		
401. e		
402. a		
403. d		
404. b		
405. a		
406. b		
407. a		
408. a		
409. c		
410. b		
411. a		

Name:	Class:	Date:
<u>chapter 2</u>		
412. b		
413. a		
414. c		
415. d		
416. b		
417. a		
418. d		
419. b		
420. c		
421. b		
422. a		
423. b		
424. d		
425. d		
426. h		
427. a		
428. c		
429. e		
430. i		
431. g		
432. b		
433. f		
434. b		
435. c		
436. b		
437. c		

Name:	Class:	Date:
<u>chapter 2</u>		
438. a		
439. a		
440. b		
441. b		
442. a		
443. a		
444. a		
445. a		
446. b		
447. b		
448. a		
449. a		
450. e		
451. d		
452. b		
453. c		
454. b		
455. a		
456. a		
457. c		
458. b		
459. a		
460. c		
461. b		
462. c		
463. a		

Name:	_Class:	Date:
chapter 2		
464. a		
465. b		
466. c		
467. a		
468. c		
469. Answers will vary.		
470. Answers will vary.		
471. Answers will vary.		
472. Answers will vary.		
473. Answers will vary.		
474. Answers will vary.		
475. Answers will vary.		
476. Answers will vary.		
477. Answers will vary.		
478. Answers will vary.		
479. Answers will vary.		
480. Answers will vary.		