CHAPTER 3

3.1) FREE ENERGY FOR TWO STATE SYSTEM

(a) By inserting (13) into (55):
F = -t log Z = -1 log[l+exp(-e/1)]
(b) Inserted into (49),

= -(3F/31) = log[l+exp(-e/1)] + (e¢/1)/[1+exp(e/T)], (S1)

U=F+ 10 = ¢/[1l+exp(e/T)] ,

the same as (14) obtained directly from Z.

Comment. As 1t » 0 and hence exp(-&/t) > 0, the logarithm
in (S1) may be expanded: log[l+exp(-&/t)] > exp(-&/t).
Then o > (l+e/t) exp(-¢/t) > O. The exponential factor
goes to zero faster than any inverse power of 1 goes to
infinity: Both o and all derivatives of ¢ vanish when
1 > 0, as shown in Fig. 11. The high-temperature limit of
o is obtained by letting exp(-&/t) > 1, in (S1l): o » log 2
+ ¢/21 > log 2.

3.2) MAGNETIC SUSCEPTIBILITY

(a) For a single magnet, with &¢ = ¥mB:
Z1 = exp(mB/t) + exp(-mB/t) = 2 cosh(mB/t) , (s1)
<m> = [m exp(+mB/T) - m exp(-mB/t)]/Z1 = m tanh(mB/t).

The magnetization M is obtained by multiplying by the

particle concentration n:
M = n<m> = nm tanh(mB/1)
For weak fields, mB << t:

M = nm’B/t . (s2)
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For strong fields, mB >> 1:
M = nm.

These two limits are seen in Fig. 3.12.

(b) Inserting (S1) into (55) and multiplying by n:
F = -nt log Zl = -nt log[2 cosh(mB/1)]

To express cosh(mB/t) as a function of X = M/mm =
tanh(mB/1) = tanh y we use the relation

1/cosh2y = (coshzy - sinhzy)/coshzy =1- tanhzy =1 - x°.
We next write
log[2 cosh y] = -% log(l/4cosh®y) = - % log[(1-x?)/4].
With this:

F = +(nt/2) log[(1-x%)/4]
(c) The susceptibility is defined as

x = dM/dB.

In the limit mB << 1, from (S2):

X = nmz/t

3.3) FREE ENERGY OF AN HARMONIC OSCILLATOR

The partition function is a geometric series:

0

z = D exp(-shu/t) = 1/[1-exp(-Hw/1)].

s=0
(a) Inserted into (55):

F=-11log Z2=r1 log[l-exp(-Hw/t)] . (87)
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At high temperatures, Hw/t << 1, so that l-exp(-Hw/t) =
Hw/t. Hence from (S1l):

F

IR

T log(Hw/t) . (s2)

(b) The expression (88) follows directly by inserting
(87) into (49), o = -(dF/dt).

Comment. The low-temperature (1 << Mw) behavior of the
harmonic oscillator is the same as for the two state
system with & = Hw, as is apparent from comparing Figs.
3.13 and 3.14 with Figs. 3.11 and 3.4: Only the two
lowest states matter. The high-temperature behavior
(t > Hw) is quite different, because the number of acces-
sible states is not limited to 2. In this 1limit, from
(s2):

g = =(3F/3t) » 1 + log(t/Hw).
If this is inserted into (17a):
CV = 1(d90/91) » 1,

in fundamental units.

3.4) ENERGY FLUCTUATIONS

Note first that
<(e-<e>)2> = <52 - 2e<e> + <g>2> = <52> - <g>2

Next write the partition function as a function of

B = 1/t:

Z2 =2 exp(-Be,)
2

Then
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Comment. Manipulations involving temperature differ-
entials of the partition functions are frequently simpli-
fied by using B = 1/t rather than t as independent vari-
able.

3.5) OVERHAUSER EFFECT

Let U0 be the energy of the reservoir when the energy of
the system is zero. Then, when the system has the energy
¢, the reservoir has, by our supposition, the energy
UO - & + ag = Uo - (l-a)e. The probability P(ss) to find
the system in a particular state with energy €g is then
proportional to the number of states of the reservoir with

the energy U0 - (1-u)es,
P(SS) x gR[UO'(l'a)ES]:

with the same proportionality factor for all states.
Hence, instead of (2) and (3):

P(al) _ gR[UO‘(l'U)El] _ exp{oR[Uo-(l-a)el]}
P(sz) - gR[UO_(l_u)EZ] - eXP{CR[UO-(l_a)Ez]}

If the entropy of the reservoir is expanded about U = U
as in (7):
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OR[UO-(l-a)a] = O‘R(Uo) - (80R/8U)(1-01)e +

If this is inserted into (S1), one obtains, instead of

(9),

P(eq) exp[-(l-a)el/r]
P(ez) - exp[-(l-a)sz/t] ’

which is equivalent to (91).

3.6) ROTATION OF DIATOMIC MOLECULE

(a) There are 2j+1 states at energy j(j+1l)e hence

0’

Zp = L exp(meg/T) =§(2j+1) exp[-3(i+1)ey/T]

where the sum over all states has been converted into a

sum over all energy levels.

(b) The sum may be viewed as a sum over the areas of
rectangles with the width Aj = 1 and with the height
fj = (2j+1) exp[—j(j+1)eo/t], as shown below. Also shown
is the curve f(j), with j treated as a continuous rather
than discrete variable. Note that this curve goes through

the middle of the upper edge of each rectangle.

[
fj,f(j)
/ II\ EO/T—Ol
1 ]
i ! F\\
| I
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! |
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When 1 >> ¢ the slope of the continuous curve £(j)

OI
varies only very little within each rectangle, and the sum

can be approximated by the integral

o

Z =./;(jﬂﬁ

=%

Note that the lower integration limit is not zero; this is
important. Substitute new variable: X = j(j+1)ao/r,
dx = (2j+1)(eo/r)dj:

z = exp(-x)dx = r [1-exp(~-x,)] , (S1)
80 il. 80 0

0

where x, = -eo/4r is the wvalue of X corresponding to

0
j = -1/2. Wwhen t>>so, xo<<1, and the exponential may be

expanded: exp(—xo) x 1 - Xg + ... . If this is inserted
into (sS1),

Z = t/eo + 1/4 + ... , (sS2)

where all omitted terms decrease at least as rapidly as

1/t when 1 » ®.

A more careful treatment of the sum (see below) yields the

slightly different result

2 = t/eo +1/3 + ... . (S3)
This is the form we will use in what follows.
(c) 2=1+ 3 exp(—ZSO/r) + ..., (s4)

where the omitted terms vanish more rapidly than the

second term when t > 0.

(d) Insert z into (12), U(t) = t2(92/91)/2:
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2

> U(t) = 17e, 2 = I/(l+80/3t)

0 0
= tx(l—eo/3t) =1 - 50/3 . (S5)
C(t) =21
r<<50: U(t) = 650 exp(—Zao/r)/Z
~ 650 exp(-Zso/r) << 650 . (S6)

C(t)

R

(1250/12) exp(-2¢ /1)

Note that, as in Problems 3.1 and 3.3, the exponential
factor goes to zero much faster than l/r2 goes to in-
finity, when t » 0

(e) See drawings on next page. The approximation (S6)
dips below (S5), suggesting that U(t) approaches the
asymptote (S5) from below. This means that C = 3U/dt > 1
above some temperature, that is, the heat capacity goes
through a maximum. An accurate calculation confirms this

prediction.
The instructor should check that the student drawings show
correctly the vanishing slope of both U(r) and C(t) as

T » 0, rather than exhibiting a non-descript behavior.

Discussion and Elaborations. Unless forewarned, many

students are likely to replace the sum by an integral with
a lower integration limit of zero. As the graphs of fj
and f(j) show, this is invalid. This pitfall may be taken
as the point of departure for a classroom discussion on
several mathematical points concerning the summation of
series, starting with a warning against the purely formal
replacement of sums by integrals without a graphical

visualization of the difference between the two.

The difference between (S2) and (S3) arises from the
non-zero second derivative of the continuous function
£f(j), which integrates to a finite error in (S2). The

formal tool for a more systematic accurate replacement of

-13- [3.6]



[3.6]

k 80 2€0

All derivatives are zero

1 1

\\\\\- 90 2¢
All derivatives are zero

-14-



sums by integrals is the Euler-McLaurin summing formula.
The Supplementary Material to this Chapter gives a simple
derivation that does not draw on the properties of the
Euler polynomials, which are commonly utilized in the
proofs found in most textbooks.

If the Euler-McLaurin expansion is applied to our parti-
tion function, one can obtain an expansion of Z by powers
of n = so/t,

z=2+2+L+00? , (s7)

15

[N ——

where 0O(n”) stands for omitted terms of order n2 or high-
er. To obtain all contributions of order n, the Euler-
McLaurin expansion must be carried up to the term (1/720)
£63) (0).

From (S7) one obtains, by standard methods,

U(t) = - ¢, d(logZ)/dn = 1t - 80/3 - 802/45r + 0(1/12) ,

0
c(t) = 1 + (1/45)(80/1)2 + o(1/t3)

The details are left to the reader.

These results do indeed indicate that U(t) approaches its
asymptote from below and that C(t) approaches its limiting

value from above.

As an alternative to these analytical treatments, it is
not difficult to sum the partition function numerically on
a programmable calculator. The summation is greatly
speeded up by calculating the Boltzmann factors recursive-

ly:

B, = exp[-j(j+1l)ey/1] = B, x C. ,

] J-1 J
Cj = exp[-ZJeo/t] = Cj-1 X B1 ,
BO = C0 =1
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In this way only one exponential must be evaluated for
each 1; the remaining exponentials in the series follow by
simple multiplications, at a large saving in calculation

time.

If Z is summed numerically, the energy is most conve-
niently obtained from the first equality in (3.12), by

also summing
u=1 > e exp(-g_/1)
2z S s S

In this way the differentiation of numerical data is
avoided. Similarly, the heat capacity can be obtained
without differentiation from

oU 1 1 2 2
C = 5c = ;5 [EE:SS exp(-as/t) - U ]

3.7) ZIPPER PROBLEM

(a) A state in which s links are open can be realized in

only one way. Thus the partition function is

Z =1+ exp(-¢/t) + exp(-2e/1) + ... + exp(=-Ne/1)
N s 1_xN+l
= Zx = Hx where x = exp(-g/1) . (93)
s=0 -X

(b) The average number of open links is

1 N S d
<s> = Z ;é%sx =X 3% log 2 . (S1)

If ¢ > 1, then x << 1, and we may neglect the term xN+1

in (93) to obtain

[«
dx

log(l-x) = =2~ = 1/[exp(e/T) - 1]

<s> = = X T-%

This is of the form of the Planck distribution.
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Extension. Our assumption that each link has only one
open state is an unrealistic assumption, which neglects
that the two halves of an open link may have many differ-
ent orientations relative to each other. It is instruc-
tive to generalize the problem by assuming that each open
link has G open states with the energy €. The change has
far-reaching consequences. A state of the zipper with s
open links is then G°-fold degenerate, and the partition

function now becomes

2 =1+ G exp(-¢/1) + G2exp(-25/r) +
N N+1
N _ s _ 1-X
-+ * Glexp(-Nesr) =3, xT = SHTo—
s=0
where
X = G exp(-g/1) ,

which differs from the earlier form only by the factor
G > 1 in the definition of x. Because of this factor,
values X > 1 are now possible. This has drastic conse-
quences 1if the total number of 1links is very large,
N >> 1. In this case the opening of the zipper approaches
the behavior of an abrupt phase transition at the sharp

transition temperature
g = €/log G ,

which is the temperature for which x = 1. For tempera-

tures very little below 1 only a very small fraction of

the links are open, for tgmperatures very little above o
almost all links are open. The larger N, the narrower the
temperature interval over which the opening takes place.
We give here only the key points in the derivation of this

result.

It is not difficult to show that the expression (S1) for

<s> can be written as
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<s> = (N+1) [m - %’] (s2)
where
y = =(N+1) x ¢ X A(1/t) & +(N+1)(log G)2(AI/IO) (S3)

and where in the 1/y-term in (S2) we assumed |y| << N+1.
If N is very large, this does not exclude values |ly| >> 1.
If |y| >> 1 the squére bracket in (S2) is easily seen to
have the limits

1/\y| for -y >> 1 ,
1-1/y for +y >> 1

For example, for y = ¥ 100, we have <s>/(N+l1) = 0.01 and
0.99, corresponding to 1Y% or 99% open links. But if N is
much larger than |y|, these values of y correspond to a
very small temperature deviation from Ty- Suppose N+1 =
1000 and log G = 10. Then, from (S3), y = + 100 corres-
ponds to Ar/to = ¥ 10'5, a very narrow transition interval

indeed.

3.8) QUANTUM CONCENTRATION

According to (59) the energies of the states of the system
2 2 + ni), where €4 = hznz/ZMLz, and where

are g€ = SIX(nX + ny
D, ny and n, are independent positive integers. Each
distinguishable triplet (n ,ny,nz) represents one orbital.

B

In the ground orbital n, n_=n_ =1, ¢ = 3g,. We have

) =2 Dy 1
351 = 1t when 1/L° = 2Mt/3n“{“, hence
3/2
n = 1/t3 = (a/31)372 x (Mt 2nK%) = 0.28n,

3.9) PARTITION FUNCTION FOR TWO SYSTEMS

can be com-
27 to
form the different states s of the combined system, with

Every state sl of system 1, with energy €517

bined with every state s2 of system 2, with energy g

energy e, = £, * £,
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2(1+2) = Y expl-e /1] = 2 Lexpl-(s  +e ,)/T]
S sl s2

[E: exp(-ssl/r)] [Ejexp(-esz/r)]
sl s2

Z(1)z(2) . (94)

3.10) ELASTICITY OF POLYMERS

(a) The problem is formally almost the same as the model
spin system of chapter 1. Suppose that the molecular
structure of each link is not invariant under inversion
(example: ABC # CBA). We may then associate a vector with
each 1link, pointing either to the left or to the right,
analogously to the spin vector pointing up or down. If N,
and N_ are the numbers of links with vectors pointing to
the left and to the right, we may define a "length excess"
2s analogously to the spin excess of (1.11): 2s = N, + N_.
The number of states with a given length excess 1is the
same as g(N,s) in (1.15):

g(N,s) = N!/[(3N+s)!(3N-s)!] , N=N_+ N_ . (S1)

>

The value of g(N,s) does not change when the sign of s
changes. The number of states with a given magnitude of s
is obtained by adding g(N,s) + g(N,-s), which yields (97).

(b) By inserting (1.36) into (S1), and by setting

s2 = 22/8p%:

g(N,s) + g(N,-s) = 2g(N,0) exp(-2s2/N) ,

o(2) = log[g(N,s) + g(N,-s)] = log[2g(N,0)] - 2s°/N

. = loglg(N,0)] - 22/2np% . (98)
(c) (s0/02)y = - 2/Np?

£=- t(20/02) = + L1/Np® . (99)

Discussion. The problem contains two subtle points that
may lead to questions from some students even though they

do not influence the final result (99). They were inten-
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tionally omitted from the problem statement, but 1lend

themselves to a classroom discussion.

If the individual 1links do not have a built-in direc-
tionality, states with positive and negative s are indis-
tinguishable and should not be counted separately. The
factor 2 in (97) should then be omitted, but only if the
chain is free to move in space. To exert an external
mechanical force, the two ends must be held. This re-
establishes a directionality along the chain even if the
individual links are invariant under inversion. But in
this case the states with positive values of s and those
with negative values are not accessible from each other
while the length of the chain is kept fixed. Hence only
half the states counted in (97) matter for the entropy of
the tied-down chain. This reduces the entropy by log 2,
but it has no effect on the force calculation, because
such a constant difference does not change the derivative

of the entropy.

Comment: Temperature Effects in a Rubber Band. According

to (98), the configurational entropy of a polymer chain
decreases as the chain is stretched. But if the polymer
is kept thermally isolated, the total entropy in a revers-
ible process must remain constant. The decrease in con-
figurational entropy must then be compensated by an in-
crease of the entropy of the purely thermal degrees of
freedom, that is, by an increase in temperature of the
polymer. Conversely, if a previously stretched polymer is
released, its temperature decreases. The effect is easily
demonstrated on rubber bands, and it lends itself to a
demonstration experiment. Every student is given a fairly
thick rubber band and is asked to hold its two ends firmly
with two hands in such a way that the central portion of
the band touches the student's forehead, a region of the
body quite sensitive to temperature changes. If the band
is suddenly stretched to about twice its length, the tem-
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perature of the band increases perceptibly. The band is
held stretched for a while, to permit temperature equilib-
rium with the "temperature sensor" to be achieved. On
removing the tension, the band will then cool perceptibly.
While neither the heating nor the cooling effect are very
strong by themselves, the difference between the two is
very perceptible, provided the rubber band is one with
sufficient heat capacity. We owe this little experiment
to Prof. W.G. May of the University of Colorado. -- The
instructor should make absolutely sure that the rubber

band is sufficiently strong, is held firmly enough, and is
not overstretched, to avoid any possibility of eye injury.

3.11) ONE-DIMENSIONAL GAS

In one dimension, the orbital energies are, from (58) and

(59), &, =e;n”, where &, = (M°/2M)(n/L)® and n is a
positive integer. The single-particle partition function
is
0
Z =Zexp(-—s nz/t) ﬁfexp(-s n2/t)dn
1 1 - 1
n
0
%
= (nr/4£1) = anL ,
where
- 2% _ 1/3
an = (Mt/2nff™) % = (nQ)

is the one-dimensional gquantum concentration analogous to
the three-dimensional quantum concentration nQ defined in
(62) and (63).
. _ N
For N particles: ZN = Z1 /N!,

F

- 1 log ZN = 1 log N! - 1IN log Zl

T(N log N - N) - 1IN log(anL)

R

= 1]1

tN[log(n/an)
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where n = N/L. With the help of 3log an/ar = 1/2t:
g = -(aF/ar)n = N[log(n/nQ) - 3/2],

which should be compared with (76).
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SUPPLEMENTARY MATERIAL TO CHAPTER 3

NUMERICAL EXPRESSIONS FOR THE QUANTUM CONCENTRATION

The quantum concentration of nQ of Eg. (63) occurs so
frequently in numerical calculations that it is worthwhile

to list the following numerical expressions:

n. = 2.41466X1015cm-3x[(M/me)X(T/lK)]3/2

= 1.25469x1019cm‘3x[(M/me)x('r/3oox)]3/2

= 1.87930x102%m™3x [ (M/1amu)x (T/1K)]3/?

= 9.76513x10%3cm™3x [ (M/1amu)x (T/300K)]3/2

SUMS AS INTEGRALS: THE EULER-McLAURIN SUMMING FORMULA

The uncritical replacement of partition function sums by
integrals can lead to errors that, while seemingly negli-
gible relative to the partition function itself, may be
quite noticeable in the temperature dependence of quanti-
ties that are obtained from the derivatives of the parti-
tion function, especially heat capacities. Problem 3.6
gave an example. In such cases the replacement of a sum by
an integral must be done more carefully, as follows. Let
f(x) be an analytic function such that £(j) = fj, with
f(x) itself and all its derivatives vanishing as x > ®.

The Euler-McLaurin summing formula then states that

PP - [smiax + T oa ™) (1)
3=0 0 n=0

where f(n)(O) is the n-th derivative of f(x) at x = 0, and
where the first six coefficients An have the values
AO =+ 1/2 , Al = - 1/12 , A2 =0 ,

A3 + 1/720 , A4 =0 , A5 = - 1/30,240
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All even-numbered coefficients with n > 0 vanish.

To derive (1) we expand f(x) in the interval j < x < j+1
into a Taylor Series:

£(x) = It—,

m=0

£ () (x-5)"

We integrate from j to j+1 and sum over all j > O:

~ o 0 1 o (m), .
f(x)dx = f. + — 2, £ (1) . (2)
{ j§o J m§1 (m+1)! j=0

Similarly, for the derivatives of f(x),

oo
0o oo

ff(n+1)(x)dx =- ™M)= L p> £(M™ (5.
§=0

o men+1 (WD)

We multiply each of these equations by an as yet unspeci-
fied coefficient An and sum over all n:

o o [« A [
(n) _ n (m) .
- A_f (0) = — f (3)
ngo n n=0 m;n+1 (m-n)! jgo

o m-1 An © (m), .
= Z [ Z (m_n)l _Z f (J)] . (3)
! 5=0

m=1 n=0

In the last line we have interchanged the two sums accord-

ing to
© ™ 0
z X =X
n=0 m=n+1

We now choose the An such that

m-1 An 1
z% (m=n) = )T for allm > 1 . (4)
n:
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In this case the right-hand side of (3) equals the double
sum in (2). If we subtract (3) from (2), the two double
sums cancel, and the result is the Euler-McLaurin summing

formula (1).

The relation (4) may be written in the form

1 m=-2 A

— . .—n
Aol T D)t & Tmenyr OT AL m 2L

This is a recursion relation that permits the calculation
of each An from the preceding values. These are the
values given earlier. In the mathematical literature the
coefficients are usually expressed in terms of the so-
called Bernoulli numbers, a relationship not of interest

to us.

ANISOTROPIC VOLUME CHANGES:

THE IRRELEVANCE OF THE SHAPE OF A VOLUME

At several places in Chapter 3 -- pp. 65/66 and
72/73 -- as well as in later Chapters, we make the simpli-
fying assumption that the system has the shape of a cube
of wvolume V = L3 and that any volume changes are iso-
tropic, so that a cube remains a cube. None of this
matters. We show this here without relying on intuition
for the particularly simple case of free particles con-
, and

y

LZ, with the volume V = LxLyLz' A more general proof is

found in C. Kittel, Quantum Theory of Solids, Wiley, New
York, 1963, pp. 339-341.

fined to a parallelopided with the dimensions Lx’ L

For a parallelopiped the orbitals of the free particle
wave equation are

$(x,y,2) = A sin(nxnx/LX) sin(nyny/Ly) sin(nznz/Lz) ,
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instead of (58), and the corresponding energies are

“2n2 nX 2 EX 2 nz 2
n T 2M (i."') * (L ) * (F) '
b4 y z

instead of (59). If the remainder of the argument on
pp. 72/73 is carried out for the parallelopiped one finds,
instead of (61),

[+-] ] [e]
_ 2 2 22 22
z; —fdnxfdnyfdnz exp [ (crxnX +otyny +a,"n, )l
0 0 0
2 _ 2.2 2 .
where o, = Hn /(2MLx 1), etc. Executing the integrals
as on p. 73 leads to
L L L
3/2 _ Xyz
Z, =1 /(8 _oa_a_) =
1 X'y 2z (2nh2/M1)3/2

But LxLyLz is of course V, hence the final result is the
same as in (62), depending only on the magnitude of the

volume but not its shape.

But if this is true for the partition function, it must be
true for all properties derivable from it, including --
from (55) -- the Helmholtz free energy and therefore --
from (49) -- the entropy. In particular, if the pressure
p is the volume derivative of the energy at constant
entropy for an isotropic volume change, the same must be
true for an anisotropic volume change: An anisotropic
volume change may be viewed as an isotropic volume change
followed by a change in shape at constant volume. Our
discussion shows that the change of shape does not have
any effect.

In terms of the discussion of Appendix D, the following
comments are in order. Consider the ensemble of states

whose energy falls into the energy interval (e,e+de), with
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de << T. During a change of shape some of the states
initially in that emsemble leave the ensemble, while other
states move into the ensemble. But the total number of
states in the ensemble remains the same, which is the only
thing that matters, because the entropy is the logarithm
of that number.
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