NR 340 Week 1 Medication Calculation Exam

Directions: The purpose of this packet is to prepare you for the medication calculation exam that is taken on the first day of class. Complete the medication calculation practice exam prior to the first day of class if needed. In critical care, amounts are specific. If the calculation is not a whole number, then answers are rounded off to the nearest $10^{\text {th }}$ decimal place. Pumps can be programmed to allow for a $10^{\text {th }}$ decimal place. If the calculation is for drops per minute then it is rounded off to the nearest whole number because drops cannot be divided. Good Luck!

1. Your patient is ordered a dopamine drip at $7 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$. He weighs 120 pounds. Your dopamine is supplied in a concentration of 400 mg per 250 ml D5W.

At how many ml/hr should the IV pump be set?

14.318181 (Round to the nearest $10^{\text {th }}$ decimal place) $=$ $14.3 \mathrm{ml} / \mathrm{hr}$
2. Your patient is on Nitroprusside (Nipride) to keep his systolic blood pressure less than 180 mmHg . The physician orders state to begin the infusion at $0.1 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ and to titrate up every 3 to 5 minutes to desired effect.

Maximum dose to be given is $5 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$. Your patient weighs 150 pounds.
The medication comes supplied as 50 mg in 250 ml D5W.

At how many ml/hr should the IV be started?

What is the maximum $\mathrm{ml} / \mathrm{hr}$ that the nipride can be run at?

110000
102.27272 (Round to the nearest 10th decimal place) $=102.3 \mathrm{ml} / \mathrm{hr}$
3. The physician orders Fentanyl $3 \mathrm{mcg} / \mathrm{kg}$ IVP at a rate of $2 \mathrm{mcg} / \mathrm{kg} / \mathrm{min}$ for analgesia prior to inserting an endotracheal tube. The patient weighs 50 kg . The Fentanyl is supplied as $100 \mathrm{mcg} / \mathrm{ml}$.

How many ml of Fentanyl will you give?

How long will it take you to push the medication?

4. Your patient is ordered heparin per heparin protocol. The patient has been receiving heparin at 1500 units/hour. The PTT result is 40 . Per the heparin
protocol you should increase the heparin drip by 2 units/kg/hr. Your patient weighs 110 pounds. The Heparin bag is labeled 25000 units in 500 ml D5W.

How many $\mathrm{ml} / \mathrm{hr}$ is your patient currently receiving?

1500 Units	500 mL	$=$
hr	25,000 Units	
750000	$=$	
25000		

$30 \mathrm{ml} / \mathrm{hr}$ There is no need to round to the nearest decimal place because it is already a whole number.

How many units/hour will the patient be receiving when you increase the rate?

2 Units	$1 \mathrm{~kg} /$	$110 \mathrm{lbs}=$
$\mathrm{Kg} / \mathrm{hr}$	2.2 lbs	1
220	$=$	
2.2		

