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2 Solutions to Exercises

Problem Set 1.1, page 8

1 The combinations give (a) a line in R3 (b) a plane in R3 (c) all of R3.

2 v C w D .2; 3/ and v " w D .6; "1/ will be the diagonals of the parallelogram with v
and w as two sides going out from .0; 0/.

3 This problem gives the diagonals v C w and v " w of the parallelogram and asks for
the sides: The opposite of Problem 2. In this example v D .3; 3/ and w D .2; "2/.

4 3v C w D .7; 5/ and cv C dw D .2c C d; c C 2d/.

5 uCv D ."2; 3; 1/ and uCvCw D .0; 0; 0/ and 2uC2vCw D . add first answers/ D
."2; 3; 1/. The vectors u; v; w are in the same plane because a combination gives
.0; 0; 0/. Stated another way: u D "v " w is in the plane of v and w.

6 The components of every cv C dw add to zero. c D 3 and d D 9 give .3; 3; "6/.

7 The nine combinations c.2; 1/ C d.0; 1/ with c D 0; 1; 2 and d D .0; 1; 2/ will lie on
a lattice. If we took all whole numbers c and d , the lattice would lie over the whole
plane.

8 The other diagonal is v " w (or else w " v). Adding diagonals gives 2v (or 2w).

9 The fourth corner can be .4; 4/ or .4; 0/ or ."2; 2/. Three possible parallelograms!

10 i "j D .1; 1; 0/ is in the base (x-y plane). i Cj Ck D .1; 1; 1/ is the opposite corner
from .0; 0; 0/. Points in the cube have 0 # x # 1, 0 # y # 1, 0 # z # 1.

11 Four more corners .1; 1; 0/; .1; 0; 1/; .0; 1; 1/; .1; 1; 1/. The center point is .1
2
; 1

2
; 1

2
/.

Centers of faces are .1
2
; 1

2
; 0/; .1

2
; 1

2
; 1/ and .0; 1

2
; 1

2
/; .1; 1

2
; 1

2
/ and .1

2
; 0; 1

2
/; .1

2
; 1; 1

2
/.

12 A four-dimensional cube has 24 D 16 corners and 2 ! 4 D 8 three-dimensional faces
and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.

13 Sum D zero vector. Sum D "2:00 vector D 8:00 vector. 2:00 is 30ı from horizontal
D .cos !

6
; sin !

6
/ D .

p
3=2; 1=2/.

14 Moving the origin to 6:00 adds j D .0; 1/ to every vector. So the sum of twelve vectors
changes from 0 to 12j D .0; 12/.

15 The point
3

4
v C

1

4
w is three-fourths of the way to v starting from w. The vector

1

4
v C

1

4
w is halfway to u D

1

2
v C

1

2
w. The vector v C w is 2u (the far corner of the

parallelogram).

16 All combinations with c C d D 1 are on the line that passes through v and w.
The point V D "v C 2w is on that line but it is beyond w.

17 All vectors cv C cw are on the line passing through .0; 0/ and u D 1
2
v C 1

2
w. That

line continues out beyond v C w and back beyond .0; 0/. With c $ 0, half of this line
is removed, leaving a ray that starts at .0; 0/.

18 The combinations cv C dw with 0 # c # 1 and 0 # d # 1 fill the parallelogram with
sides v and w. For example, if v D .1; 0/ and w D .0; 1/ then cv C dw fills the unit
square.

19 With c $ 0 and d $ 0 we get the infinite “cone” or “wedge” between v and w. For
example, if v D .1; 0/ and w D .0; 1/, then the cone is the whole quadrant x $ 0,
y $ 0. Question: What if w D "v? The cone opens to a half-space.
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Solutions to Exercises 3

20 (a) 1
3
u C 1

3
v C 1

3
w is the center of the triangle between u; v and w; 1

2
u C 1

2
w lies

between u andw (b) To fill the triangle keep c $0, d $0, e $0, and cCd Ce D 1.

21 The sum is .v " u/ C .w " v/ C .u " w/ D zero vector. Those three sides of a triangle
are in the same plane!

22 The vector 1
2
.u C v C w/ is outside the pyramid because c C d C e D 1

2
C 1

2
C 1

2
> 1.

23 All vectors are combinations of u; v; w as drawn (not in the same plane). Start by seeing
that cu C dv fills a plane, then adding ew fills all of R3.

24 The combinations of u and v fill one plane. The combinations of v and w fill another
plane. Those planes meet in a line: only the vectors cv are in both planes.

25 (a) For a line, choose u D v D w D any nonzero vector (b) For a plane, choose
u and v in different directions. A combination like w D u C v is in the same plane.

26 Two equations come from the two components: c C 3d D 14 and 2c C d D 8. The
solution is c D 2 and d D 4. Then 2.1; 2/ C 4.3; 1/ D .14; 8/.

27 The combinations of i D .1; 0; 0/ and i C j D .1; 1; 0/ fill the xy plane in xyz space.

28 There are 6 unknown numbers v1; v2; v3; w1; w2; w3. The six equations come from the
components of v C w D .4; 5; 6/ and v " w D .2; 5; 8/. Add to find 2v D .6; 10; 14/
so v D .3; 5; 7/ and w D .1; 0; "1/.

29 Two combinations out of infinitely many that produce b D .0; 1/ are "2u C v and
1
2
w "

1
2
v. No, three vectors u; v; w in the x-y plane could fail to produce b if all

three lie on a line that does not contain b. Yes, if one combination produces b then
two (and infinitely many) combinations will produce b. This is true even if u D 0; the
combinations can have different cu.

30 The combinations of v and w fill the plane unless v and w lie on the same line through
.0; 0/. Four vectors whose combinations fill 4-dimensional space: one example is the
“standard basis” .1; 0; 0; 0/; .0; 1; 0; 0/; .0; 0; 1; 0/, and .0; 0; 0; 1/.

31 The equations cu C dv C ew D b are

2c "d D 1
"c C2d "e D 0

"d C2e D 0

So d D 2e
then c D 3e
then 4e D 1

c D 3=4
d D 2=4
e D 1=4

Problem Set 1.2, page 19

1 u ! v D "1:8 C 3:2 D 1:4, u ! w D "4:8 C 4:8 D 0, v ! w D 24 C 24 D 48 D w ! v.

2 kuk D 1 and kvk D 5 and kwk D 10. Then 1:4 < .1/.5/ and 48 < .5/.10/, confirming
the Schwarz inequality.

3 Unit vectors v=kvk D .3
5
; 4

5
/ D .:6; :8/ and w=kwk D .4

5
; 3

5
/ D .:8; :6/. The cosine

of ! is v
kvk !

w
kwk D 24

25
. The vectors w; u; "w make 0ı; 90ı; 180ı angles with w.

4 (a) v ! ."v/ D "1 (b) .v C w/ ! .v " w/ D v ! v C w ! v " v ! w " w ! w D
1C. /". /"1 D 0 so ! D 90ı (notice v !w D w!v) (c) .v"2w/!.vC2w/ D
v ! v " 4w ! w D 1 " 4 D "3.
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4 Solutions to Exercises

5 u1 D v=kvk D .3; 1/=
p

10 and u2 D w=kwk D .2; 1; 2/=3. U 1 D .1; "3/=
p

10 is

perpendicular to u1 (and so is ."1; 3/=
p

10). U 2 could be .1; "2; 0/=
p

5: There is a
whole plane of vectors perpendicular to u2, and a whole circle of unit vectors in that
plane.

6 All vectorsw D .c; 2c/ are perpendicular to v. All vectors .x; y; z/with xCy Cz D 0
lie on a plane. All vectors perpendicular to .1; 1; 1/ and .1; 2; 3/ lie on a line.

7 (a) cos ! D v ! w=kvkkwk D 1=.2/.1/ so ! D 60ı or "=3 radians (b) cos ! D 0
so ! D 90ı or "=2 radians (c) cos ! D 2=.2/.2/ D 1=2 so ! D 60ı or "=3

(d) cos ! D "1=
p

2 so ! D 135ı or 3"=4.

8 (a) False: v andw are any vectors in the plane perpendicular to u (b) True: u ! .v C
2w/ D u ! v C 2u ! w D 0 (c) True, ku " vk2 D .u " v/ ! .u " v/ splits into
u ! u C v ! v D 2 when u ! v D v ! u D 0.

9 If v2w2=v1w1 D "1 then v2w2 D "v1w1 or v1w1Cv2w2 D v!w D 0: perpendicular!

10 Slopes 2=1 and"1=2multiply to give"1: then v!w D 0 and the vectors (the directions)
are perpendicular.

11 v ! w < 0 means angle > 90ı; these w’s fill half of 3-dimensional space.

12 .1; 1/ perpendicular to .1; 5/ " c.1; 1/ if 6 " 2c D 0 or c D 3; v ! .w " cv/ D 0 if
c D v ! w=v ! v. Subtracting cv is the key to perpendicular vectors.

13 The plane perpendicular to .1; 0; 1/ contains all vectors .c; d; "c/. In that plane, v D
.1; 0; "1/ and w D .0; 1; 0/ are perpendicular.

14 One possibility among many: u D .1; "1; 0; 0/; v D .0; 0; 1; "1/; w D .1; 1; "1; "1/
and .1; 1; 1; 1/ are perpendicular to each other. “We can rotate those u; v; w in their 3D
hyperplane.”

15
1
2
.x C y/ D .2 C 8/=2 D 5; cos ! D 2

p
16=

p
10

p
10 D 8=10.

16 kvk2 D 1 C 1 C % % % C 1 D 9 so kvk D 3I u D v=3 D .1
3
; : : : ; 1

3
/ is a unit vector in 9D;

w D .1; "1; 0; : : : ; 0/=
p

2 is a unit vector in the 8D hyperplane perpendicular to v.

17 cos ˛ D 1=
p

2, cosˇ D 0, cos # D "1=
p

2. For any vector v, cos2 ˛Ccos2 ˇCcos2 #
D .v2

1 C v2
2 C v2

3/=kvk2 D 1.

18 kvk2 D 42 C 22 D 20 and kwk2 D ."1/2 C 22 D 5. Pythagoras is k.3; 4/k2 D 25 D
20 C 5.

19 Start from the rules .1/; .2/; .3/ for v!w D w!v and u!.vCw/ and .cv/!w. Use rule .2/
for .vCw/!.vCw/ D .vCw/!vC.vCw/!w. By rule .1/ this is v!.vCw/Cw!.vCw/.
Rule .2/ again gives v ! v C v ! w C w ! v C w ! w D v ! v C 2v ! w C w ! w. Notice
v ! w D w ! v! The main point is to be free to open up parentheses.

20 We know that .v " w/ ! .v " w/ D v ! v " 2v ! w C w ! w. The Law of Cosines writes
kvkkwk cos ! for v !w. When ! < 90ı this v !w is positive, so in this case v !v Cw !w
is larger than kv " wk2.

21 2v!w # 2kvkkwk leads to kvCwk2 D v!vC2v!wCw!w # kvk2C2kvkkwkCkwk2.
This is .kvk C kwk/2. Taking square roots gives kv C wk # kvk C kwk.

22 v2
1w2

1 C 2v1w1v2w2 C v2
2w2

2 # v2
1w2

1 C v2
1w2

2 C v2
2w2

1 C v2
2w2

2 is true (cancel 4 terms)

because the difference is v2
1w2

2 C v2
2w2

1 " 2v1w1v2w2 which is .v1w2 " v2w1/2
$ 0.
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Solutions to Exercises 5

23 cosˇ D w1=kwk and sinˇ D w2=kwk. Then cos.ˇ"a/ D cosˇ cos˛Csinˇ sin˛ D
v1w1=kvkkwk C v2w2=kvkkwk D v ! w=kvkkwk. This is cos ! because ˇ " ˛ D ! .

24 Example 6 gives ju1jjU1j #
1
2
.u2

1 C U 2
1 / and ju2jjU2j #

1
2
.u2

2 C U 2
2 /. The whole line

becomes :96 # .:6/.:8/ C .:8/.:6/ #
1
2
.:62 C :82/ C 1

2
.:82 C :62/ D 1. True: :96 < 1.

25 The cosine of ! is x=
p

x2 C y2, near side over hypotenuse. Then j cos ! j2 is not greater
than 1: x2=.x2 C y2/ # 1.

26 The vectors w D .x; y/ with .1; 2/ ! w D x C 2y D 5 lie on a line in the xy plane.

The shortest w on that line is .1; 2/. (The Schwarz inequality kwk $ v ! w=kvk D
p

5

is an equality when cos ! D 0 and w D .1; 2/ and kwk D
p

5.)

27 The length kv " wk is between 2 and 8 (triangle inequality when kvk D 5 and kwk D
3). The dot product v ! w is between "15 and 15 by the Schwarz inequality.

28 Three vectors in the plane could make angles greater than 90ı with each other: for
example .1; 0/; ."1; 4/; ."1; "4/. Four vectors could not do this (360ı total angle).
How many can do this in R3 or Rn? Ben Harris and Greg Marks showed me that the
answer is n C 1: The vectors from the center of a regular simplex in Rn to its n C 1
vertices all have negative dot products. If nC2 vectors inRn had negative dot products,
project them onto the plane orthogonal to the last one. Now you have n C 1 vectors in
Rn!1 with negative dot products. Keep going to 4 vectors in R2 : no way!

29 For a specific example, pick v D .1; 2; "3/ and then w D ."3; 1; 2/. In this example

cos ! D v ! w=kvkkwk D "7=
p

14
p

14 D "1=2 and ! D 120ı . This always
happens when x C y C z D 0:

v ! w D xz C xy C yz D
1

2
.x C y C z/2

"
1

2
.x2 C y2 C z2/

This is the same as v ! w D 0 "
1

2
kvkkwk: Then cos ! D

1

2
:

30 Wikipedia gives this proof of geometric mean G D 3
p

xyz # arithmetic mean
A D .x C y C z/=3. First there is equality in case x D y D z. Otherwise A is
somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality g # a for the two positive numbers x and y C z " A. Their
mean a D 1

2
.x C y C z " A/ is 1

2
.3A " A/ D same as A! So a $ g says that

A3
$ g2A D x.y C z " A/A. But .y C z " A/A D .y " A/.A " z/ C yz > yz.

Substitute to find A3 > xyz D G3 as we wanted to prove. Not easy!

There are many proofs of G D .x1x2 % % % xn/1=n
# A D .x1 C x2 C % % % C xn/=n. In

calculus you are maximizing G on the plane x1 C x2 C % % % C xn D n. The maximum
occurs when all x’s are equal.

31 The columns of the 4 by 4 “Hadamard matrix” (times 1
2
) are perpendicular unit

vectors:

1

2
H D

1

2

2
64

1 1 1 1
1 "1 1 "1
1 1 "1 "1
1 "1 "1 1

3
75 :

32 The commands V D randn .3; 30/I D D sqrt .diag .V 0
& V //I U D V \DI will give

30 random unit vectors in the columns of U . Then u 0
& U is a row matrix of 30 dot

products whose average absolute value may be close to 2=" .
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6 Solutions to Exercises

Problem Set 1.3, page 29

1 2s1 C 3s2 C 4s3 D .2; 5; 9/. The same vector b comes from S times x D .2; 3; 4/:

"
1 0 0
1 1 0
1 1 1

# "
2
3
4

#
D

"
.row 1/ ! x
.row 2/ ! x
.row 2/ ! x

#
D

"
2
5
9

#
:

2 The solutions are y1 D 1, y2 D 0, y3 D 0 (right sideD column 1) and y1 D 1, y2 D 3,
y3 D 5. That second example illustrates that the first n odd numbers add to n2.

3

y1 D B1

y1 C y2 D B2

y1 C y2 C y3 D B3

gives
y1 D B1

y2 D "B1 CB2

y3 D "B2 CB3

D

"
1 0 0

"1 1 0
0 "1 1

# "
B1

B2

B3

#

The inverse of S D

"
1 0 0
1 1 0
1 1 1

#
isAD

"
1 0 0

"1 1 0
0 "1 1

#
: independent columns inA and S !

4 The combination 0w1 C 0w2 C 0w3 always gives the zero vector, but this problem
looks for other zero combinations (then the vectors are dependent, they lie in a plane):
w2 D .w1 C w3/=2 so one combination that gives zero is 1

2
w1 " w2 C 1

2
w3:

5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: r2 D 1
2
.r1 C r3/.

The column and row combinations that produce 0 are the same: this is unusual.

6 c D 3

"
1 3 5
1 2 4
1 1 3

#
has column 3 D 2 .column 1/ C column 2

c D "1

"
1 0 "1
1 1 0
0 1 1

#
has column 3 D " column 1 C column 2

c D 0

"
0 0 0
2 1 5
3 3 6

#
has column 3 D 3 .column 1/ " column 2

7 All three rows are perpendicular to the solution x (the three equations r1 ! x D 0 and
r2 !x D 0 and r3 !x D 0 tell us this). Then the whole plane of the rows is perpendicular
to x (the plane is also perpendicular to all multiples cx).

8

x1 " 0 D b1

x2 " x1 D b2

x3 " x2 D b3

x4 " x3 D b4

x1 D b1

x2 D b1 C b2

x3 D b1 C b2 C b3

x4 D b1 C b2 C b3 C b4

D

2
64

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

3
75

2
64

b1

b2

b3

b4

3
75 D A!1b

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx D 0:

2
64

1 0 0 "1
"1 1 0 0

0 "1 1 0
0 0 "1 1

3
75

2
64

x1

x2

x3

x4

3
75 D

2
64

0
0
0
0

3
75 when x D

2
64

c
c
c
c

3
75 D any constant vector.
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Solutions to Exercises 7

10

z2 " z1 D b1

z3 " z2 D b2

0 " z3 D b3

z1 D "b1 " b2 " b3

z2 D "b2 " b3

z3 D "b3

D

"
"1 "1 "1

0 "1 "1
0 0 "1

# "
b1

b2

b3

#
D �!1b

11 The forward differences of the squares are .t C 1/2
" t2 D t2 C 2t C 1 " t2 D 2t C 1.

Differences of the nth power are .t C 1/n
" tn D tn

" tn C ntn!1 C % % % . The leading
term is the derivative ntn!1. The binomial theorem gives all the terms of .t C 1/n.

12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:

2
64

0 1 0 0
"1 0 1 0

0 "1 0 1
0 0 "1 0

3
75

2
64

x1

x2

x3

x4

3
75 D

2
64

b1

b2

b3

b4

3
75

First
solve
x2 D b1

"x3 D b4

2
64

x1

x2

x3

x4

3
75 D

2
64

"b2 " b4

b1

"b4

b1 C b3

3
75

13 Odd size: The five centered difference equations lead to b1 C b3 C b5 D 0.

x2 D b1

x3 " x1 D b2

x4 " x2 D b3

x5 " x3 D b4

" x4 D b5

Add equations 1; 3; 5
The left side of the sum is zero
The right side is b1 C b3 C b5

There cannot be a solution unless b1 C b3 C b5 D 0.

14 An example is .a; b/ D .3; 6/ and .c; d/ D .1; 2/. The ratios a=c and b=d are equal.
Then ad D bc. Then (when you divide by bd ) the ratios a=b and c=d are equal!

Problem Set 2.1, page 40

1 The columns are i D .1; 0; 0/ and j D .0; 1; 0/ and k D .0; 0; 1/ and b D .2; 3; 4/ D
2i C 3j C 4k.

2 The planes are the same: 2x D 4 is x D 2, 3y D 9 is y D 3, and 4z D 16 is z D 4. The
solution is the same pointX D x. The columns are changed; but same combination.

3 The solution is not changed! The second plane and row 2 of the matrix and all columns
of the matrix (vectors in the column picture) are changed.

4 If z D 2 then x C y D 0 and x " y D z give the point .1; "1; 2/. If z D 0 then
x C y D 6 and x " y D 4 produce .5; 1; 0/. Halfway between those is .3; 0; 1/.

5 If x; y; z satisfy the first two equations they also satisfy the third equation. The line
L of solutions contains v D .1; 1; 0/ and w D .1

2
; 1; 1

2
/ and u D 1

2
v C 1

2
w and all

combinations cv C dw with c C d D 1.

6 Equation 1 C equation 2 " equation 3 is now 0 D "4. Line misses plane; no solution.

7 Column 3 D Column 1 makes the matrix singular. Solutions .x; y; z/ D .1; 1; 0/ or
.0; 1; 1/ and you can add any multiple of ."1; 0; 1/; b D .4; 6; c/ needs c D 10 for
solvability (then b lies in the plane of the columns).

8 Four planes in 4-dimensional space normally meet at a point. The solution to Ax D
.3; 3; 3; 2/ is x D .0; 0; 1; 2/ if A has columns .1; 0; 0; 0/; .1; 1; 0; 0/; .1; 1; 1; 0/,
.1; 1; 1; 1/. The equations are x C y C z C t D 3; y C z C t D 3; z C t D 3; t D 2.

9 (a) Ax D .18; 5; 0/ and (b) Ax D .3; 4; 5; 5/.

!
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8 Solutions to Exercises

10 Multiplying as linear combinations of the columns gives the same Ax. By rows or by
columns: 9 separate multiplications for 3 by 3.

11 Ax equals .14; 22/ and .0; 0/ and (9; 7/.

12 Ax equals .z; y; x/ and .0; 0; 0/ and (3; 3; 6/.

13 (a) x has n components and Ax has m components (b) Planes from each equation
in Ax D b are in n-dimensional space, but the columns are in m-dimensional space.

14 2x C 3y C z C 5t D 8 is Ax D b with the 1 by 4 matrix A D Œ 2 3 1 5 �. The
solutions x fill a 3D “plane” in 4 dimensions. It could be called a hyperplane.

15 (a) I D
!

1 0
0 1

"

(b) P D
!

0 1
1 0

"

16 90ı rotation from R D
!

0 1
"1 0

"

, 180ı rotation from R2 D
!

"1 0
0 "1

"

D "I .

17 P D

"
0 1 0
0 0 1
1 0 0

#
produces .y; z; x/ andQ D

"
0 0 1
1 0 0
0 1 0

#
recovers .x; y; z/. Q is the

inverse of P .

18 E D
!

1 0
"1 1

"

and E D

"
1 0 0

"1 1 0
0 0 1

#
subtract the first component from the second.

19 E D

"
1 0 0
0 1 0
1 0 1

#
and E!1 D

"
1 0 0
0 1 0

"1 0 1

#
, Ev D .3; 4; 8/ and E!1Ev recovers

.3; 4; 5/.

20 P1 D
!

1 0
0 0

"

projects onto the x-axis and P2 D
!

0 0
0 1

"

projects onto the y-axis.

v D
!

5
7

"

has P1v D
!

5
0

"

and P2P1v D
!

0
0

"

.

21 R D
1

2

!p
2 "

p
2p

2
p

2

"

rotates all vectors by 45ı . The columns ofR are the results from

rotating .1; 0/ and .0; 1/!

22 The dot product Ax D Œ 1 4 5 �

"
x
y
z

#
D .1 by 3/.3 by 1/ is zero for points .x; y; z/

on a plane in three dimensions. The columns of A are one-dimensional vectors.

23 A D Œ 1 2 I 3 4 � and x D Œ 5 "2 � 0 and b D Œ 1 7 � 0. r D b"A&x prints as zero.

24 A & v D Œ 3 4 5 � 0 and v 0
& v D 50. But v & A gives an error message from 3 by 1

times 3 by 3.

25 ones.4; 4/ & ones.4; 1/ D Œ 4 4 4 4 � 0; B & w D Œ 10 10 10 10 � 0.

26 The row picture has two lines meeting at the solution (4; 2). The column picture will
have 4.1; 1/ C 2."2; 1/ D 4(column 1) C 2(column 2)D right side .0; 6/.

27 The row picture shows 2 planes in 3-dimensional space. The column picture is in
2-dimensional space. The solutions normally lie on a line.
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Solutions to Exercises 9

28 The row picture shows four lines in the 2D plane. The column picture is in four-
dimensional space. No solution unless the right side is a combination of the two columns.

29 u2 D
!

:7
:3

"

and u3 D
!

:65
:35

"

. The components add to 1. They are always positive.

u7; v7; w7 are all close to .:6; :4/. Their components still add to 1.

30

!

:8 :3
:2 :7

" !

:6
:4

"

D
!

:6
:4

"

D steady state s. No change when multiplied by

!

:8 :3
:2 :7

"

.

31 M D

"
8 3 4
1 5 9
6 7 2

#
D

"
5 C u 5 " u C v 5 " v

5 " u " v 5 5 C u C v
5 C v 5 C u " v 5 " u

#
;M3.1; 1; 1/ D .15; 15; 15/;

M4.1; 1; 1; 1/ D .34; 34; 34; 34/ because 1 C 2 C % % % C 16 D 136 which is 4.34/.

32 A is singular when its third column w is a combination cu C dv of the first columns.
A typical column picture has b outside the plane of u, v, w. A typical row picture has
the intersection line of two planes parallel to the third plane. Then no solution.

33 w D .5; 7/ is 5u C 7v. Then Aw equals 5 times Au plus 7 times Av.

34

2
64

2 "1 0 0
"1 2 "1 0

0 "1 2 "1
0 0 "1 2

3
75

2
64

x1

x2

x3

x4

3
75 D

2
64

1
2
3
4

3
75 has the solution

2
64

x1

x2

x3

x4

3
75 D

2
64

4
7
8
6

3
75.

35 x D .1; : : : ; 1/ gives Sx D sum of each row D 1C% % %C9 D 45 for Sudokumatrices.
6 row orders .1; 2; 3/, .1; 3; 2/, .2; 1; 3/, .2; 3; 1/, .3; 1; 2/, .3; 2; 1/ are in Section 2.7.
The same 6 permutations of blocks of rows produce Sudoku matrices, so 64 D 1296
orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 51

1 Multiply by `21 D 10
2

D 5 and subtract to find 2x C3y D 14 and "6y D 6. The pivots
to circle are 2 and "6.

2 "6y D 6 gives y D "1. Then 2x C 3y D 1 gives x D 2. Multiplying the right side
.1; 11/ by 4 will multiply the solution by 4 to give the new solution .x; y/ D .8; "4/.

3 Subtract "
1
2
(or add 1

2
) times equation 1. The new second equation is 3y D 3. Then

y D1 and x D5. If the right side changes sign, so does the solution: .x; y/D."5; "1/.

4 Subtract ` D c
a
times equation 1. The new second pivot multiplying y is d " .cb=a/

or .ad " bc/=a. Then y D .ag " cf /=.ad " bc/.

5 6x C 4y is 2 times 3x C 2y. There is no solution unless the right side is 2 ! 10 D 20.
Then all the points on the line 3x C2y D 10 are solutions, including .0; 5/ and .4; "1/.
(The two lines in the row picture are the same line, containing all solutions).

6 Singular system if b D 4, because 4x C 8y is 2 times 2x C 4y. Then g D 32 makes
the lines become the same: infinitely many solutions like .8; 0/ and .0; 4/.

7 If a D 2 elimination must fail (two parallel lines in the row picture). The equations
have no solution. With a D 0, elimination will stop for a row exchange. Then 3y D "3
gives y D "1 and 4x C 6y D 6 gives x D 3.
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10 Solutions to Exercises

8 If k D 3 elimination must fail: no solution. If k D "3, elimination gives 0 D 0 in
equation 2: infinitely many solutions. If k D 0 a row exchange is needed: one solution.

9 On the left side, 6x " 4y is 2 times .3x " 2y/. Therefore we need b2 D 2b1 on the
right side. Then there will be infinitely many solutions (two parallel lines become one
single line).

10 The equation y D 1 comes from elimination (subtract x C y D 5 from x C 2y D 6).
Then x D 4 and 5x " 4y D c D 16.

11 (a) Another solution is 1
2
.x CX; y CY; z CZ/. (b) If 25 planes meet at two points,

they meet along the whole line through those two points.

12 Elimination leads to an upper triangular system; then comes back substitution.
2x C 3y C z D 8

y C 3z D 4

8z D 8

gives

x D 2

y D 1 If a zero is at the start of row 2 or 3,

z D 1 that avoids a row operation.

13 2x " 3y D 3

4x " 5y C z D 7

2x " y " 3z D 5

gives

2x " 3y D 3

y C z D 1

2y C 3z D 2

and

2x " 3y D 3

y C z D 1

" 5z D 0

and

x D 3

y D 1

z D 0

Subtract 2 ' row 1 from row 2, subtract 1 ' row 1 from row 3, subtract 2 ' row 2 from
row 3

14 Subtract 2 times row 1 from row 2 to reach .d "10/y"z D 2. Equation (3) is y"z D 3.
If d D 10 exchange rows 2 and 3. If d D 11 the system becomes singular.

15 The second pivot position will contain "2 " b. If b D "2 we exchange with row 3. If
b D "1 (singular case) the second equation is "y " z D 0. A solution is .1; 1; "1/.

16 (a)

Example of

2 exchanges

0x C 0y C 2z D 4

x C 2y C 2z D 5

0x C 3y C 4z D 6

(exchange 1 and 2, then 2 and 3)

(b)

Exchange

but then

break down

0x C 3y C 4z D 4

x C 2y C 2z D 5

0x C 3y C 4z D 6

(rows 1 and 3 are not consistent)

17 If row 1 D row 2, then row 2 is zero after the first step; exchange the zero row with row
3 and there is no third pivot. If column 2 D column 1, then column 2 has no pivot.

18 Example x C 2y C 3z D 0, 4x C 8y C 12z D 0, 5x C 10y C 15z D 0 has 9 different
coefficients but rows 2 and 3 become 0 D 0: infinitely many solutions.

19 Row 2 becomes 3y " 4z D 5, then row 3 becomes .q C 4/z D t " 5. If q D "4 the
system is singular—no third pivot. Then if t D 5 the third equation is 0 D 0. Choosing
z D 1 the equation 3y " 4z D 5 gives y D 3 and equation 1 gives x D "9.

20 Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes
form a triangle. This happens if rows 1C2 D row 3 on the left side but not the right
side: xCyCz D0, x"2y"z D1, 2x"y D4. No parallel planes but still no solution.

21 (a) Pivots 2;
3
2

;
4
3

;
5
4
in the equations 2x C y D 0;

3
2

y C z D 0;
4
3

z C t D 0;
5
4

t D 5

after elimination. Back substitution gives t D 4; z D "3; y D 2; x D "1. (b) If
the off-diagonal entries change fromC1 to "1, the pivots are the same. The solution is
.1; 2; 3; 4/ instead of ."1; 2; "3; 4/.

22 The fifth pivot is
6
5
for both matrices (1’s or "1’s off the diagonal). The nth pivot is

nC1
n
.

""
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