INTRODUCTION TO LINEAR ALGEBRA Fourth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang Massachusetts Institute of Technology

math.mit.edu/linearalgebra
web.mit.edu/18.06
video lectures: ocw.mit.edu
math.mit.edu/~gs
www.wellesleycambridge.com
email: gs@math.mit.edu

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 1.1, page 8

- 1 The combinations give (a) a line in \mathbb{R}^3 (b) a plane in \mathbb{R}^3 (c) all of \mathbb{R}^3 .
- **2** v + w = (2, 3) and v w = (6, -1) will be the diagonals of the parallelogram with v and w as two sides going out from (0, 0).
- **3** This problem gives the diagonals v + w and v w of the parallelogram and asks for the sides: The opposite of Problem 2. In this example v = (3,3) and w = (2,-2).
- **4** 3v + w = (7, 5) and cv + dw = (2c + d, c + 2d).
- 5 u+v=(-2,3,1) and u+v+w=(0,0,0) and 2u+2v+w=(add first answers)=(-2,3,1). The vectors u,v,w are in the same plane because a combination gives (0,0,0). Stated another way: u=-v-w is in the plane of v and w.
- **6** The components of every $c\mathbf{v} + d\mathbf{w}$ add to zero. c = 3 and d = 9 give (3, 3, -6).
- 7 The nine combinations c(2,1) + d(0,1) with c = 0,1,2 and d = (0,1,2) will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
- **8** The other diagonal is v w (or else w v). Adding diagonals gives 2v (or 2w).
- **9** The fourth corner can be (4, 4) or (4, 0) or (-2, 2). Three possible parallelograms!
- **10** i j = (1, 1, 0) is in the base (x y plane). i + j + k = (1, 1, 1) is the opposite corner from (0, 0, 0). Points in the cube have $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$.
- **11** Four more corners (1,1,0),(1,0,1),(0,1,1),(1,1,1). The center point is $(\frac{1}{2},\frac{1}{2},\frac{1}{2})$. Centers of faces are $(\frac{1}{2},\frac{1}{2},0),(\frac{1}{2},\frac{1}{2},1)$ and $(0,\frac{1}{2},\frac{1}{2}),(1,\frac{1}{2},\frac{1}{2})$ and $(\frac{1}{2},0,\frac{1}{2}),(\frac{1}{2},1,\frac{1}{2})$.
- **12** A four-dimensional cube has $2^4 = 16$ corners and $2 \cdot 4 = 8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example **2.4** A.
- **13** Sum = zero vector. Sum = -2:00 vector = 8:00 vector. 2:00 is 30° from horizontal = $(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}) = (\sqrt{3}/2, 1/2)$.
- 14 Moving the origin to 6:00 adds j = (0, 1) to every vector. So the sum of twelve vectors changes from 0 to 12j = (0, 12).
- **15** The point $\frac{3}{4}v + \frac{1}{4}w$ is three-fourths of the way to v starting from w. The vector $\frac{1}{4}v + \frac{1}{4}w$ is halfway to $u = \frac{1}{2}v + \frac{1}{2}w$. The vector v + w is 2u (the far corner of the parallelogram).
- **16** All combinations with c + d = 1 are on the line that passes through v and w. The point V = -v + 2w is on that line but it is beyond w.
- 17 All vectors $c\mathbf{v} + c\mathbf{w}$ are on the line passing through (0,0) and $\mathbf{u} = \frac{1}{2}\mathbf{v} + \frac{1}{2}\mathbf{w}$. That line continues out beyond $\mathbf{v} + \mathbf{w}$ and back beyond (0,0). With $c \ge 0$, half of this line is removed, leaving a *ray* that starts at (0,0).
- **18** The combinations $c\mathbf{v} + d\mathbf{w}$ with $0 \le c \le 1$ and $0 \le d \le 1$ fill the parallelogram with sides \mathbf{v} and \mathbf{w} . For example, if $\mathbf{v} = (1,0)$ and $\mathbf{w} = (0,1)$ then $c\mathbf{v} + d\mathbf{w}$ fills the unit square.
- **19** With $c \ge 0$ and $d \ge 0$ we get the infinite "cone" or "wedge" between v and w. For example, if v = (1,0) and w = (0,1), then the cone is the whole quadrant $x \ge 0$, $y \ge 0$. Question: What if w = -v? The cone opens to a half-space.

20 (a) $\frac{1}{3}u + \frac{1}{3}v + \frac{1}{3}w$ is the center of the triangle between u, v and w; $\frac{1}{2}u + \frac{1}{2}w$ lies between u and w (b) To fill the triangle keep $c \ge 0$, $d \ge 0$, $e \ge 0$, and c + d + e = 1.

- 21 The sum is (v u) + (w v) + (u w) =zero vector. Those three sides of a triangle are in the same plane!
- **22** The vector $\frac{1}{2}(\mathbf{u} + \mathbf{v} + \mathbf{w})$ is *outside* the pyramid because $c + d + e = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} > 1$.
- **23** All vectors are combinations of u, v, w as drawn (not in the same plane). Start by seeing that cu + dv fills a plane, then adding ew fills all of \mathbb{R}^3 .
- **24** The combinations of u and v fill one plane. The combinations of v and w fill another plane. Those planes meet in a *line*: only the vectors cv are in both planes.
- **25** (a) For a line, choose u = v = w = any nonzero vector (b) For a plane, choose u and v in different directions. A combination like w = u + v is in the same plane.
- **26** Two equations come from the two components: c + 3d = 14 and 2c + d = 8. The solution is c = 2 and d = 4. Then 2(1,2) + 4(3,1) = (14,8).
- 27 The combinations of i = (1, 0, 0) and i + j = (1, 1, 0) fill the xy plane in xyz space.
- **28** There are **6** unknown numbers $v_1, v_2, v_3, w_1, w_2, w_3$. The six equations come from the components of v + w = (4, 5, 6) and v w = (2, 5, 8). Add to find 2v = (6, 10, 14) so v = (3, 5, 7) and w = (1, 0, -1).
- **29** Two combinations out of infinitely many that produce b = (0, 1) are -2u + v and $\frac{1}{2}w \frac{1}{2}v$. No, three vectors u, v, w in the x-y plane could fail to produce b if all three lie on a line that does not contain b. Yes, if one combination produces b then two (and infinitely many) combinations will produce b. This is true even if u = 0; the combinations can have different cu.
- **30** The combinations of v and w fill the plane unless v and w lie on the same line through (0,0). Four vectors whose combinations fill 4-dimensional space: one example is the "standard basis" (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).
- **31** The equations $c\mathbf{u} + d\mathbf{v} + e\mathbf{w} = \mathbf{b}$ are

Problem Set 1.2, page 19

- 1 $\mathbf{u} \cdot \mathbf{v} = -1.8 + 3.2 = 1.4, \mathbf{u} \cdot \mathbf{w} = -4.8 + 4.8 = 0, \mathbf{v} \cdot \mathbf{w} = 24 + 24 = 48 = \mathbf{w} \cdot \mathbf{v}$
- 2 $\|\mathbf{u}\| = 1$ and $\|\mathbf{v}\| = 5$ and $\|\mathbf{w}\| = 10$. Then 1.4 < (1)(5) and 48 < (5)(10), confirming the Schwarz inequality.
- **3** Unit vectors $v/\|v\| = (\frac{3}{5}, \frac{4}{5}) = (.6, .8)$ and $w/\|w\| = (\frac{4}{5}, \frac{3}{5}) = (.8, .6)$. The cosine of θ is $\frac{v}{\|v\|} \cdot \frac{w}{\|w\|} = \frac{24}{25}$. The vectors w, u, -w make $0^{\circ}, 90^{\circ}, 180^{\circ}$ angles with w.
- **4** (a) $\mathbf{v} \cdot (-\mathbf{v}) = -1$ (b) $(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{w} \mathbf{w} \cdot \mathbf{w} = 1 + (1) (1) 1 = 0$ so $\theta = 90^{\circ}$ (notice $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$) (c) $(\mathbf{v} 2\mathbf{w}) \cdot (\mathbf{v} + 2\mathbf{w}) = \mathbf{v} \cdot \mathbf{v} 4\mathbf{w} \cdot \mathbf{w} = 1 4 = -3$.

5 $u_1 = v/\|v\| = (3,1)/\sqrt{10}$ and $u_2 = w/\|w\| = (2,1,2)/3$. $U_1 = (1,-3)/\sqrt{10}$ is perpendicular to u_1 (and so is $(-1,3)/\sqrt{10}$). U_2 could be $(1,-2,0)/\sqrt{5}$: There is a whole plane of vectors perpendicular to u_2 , and a whole circle of unit vectors in that plane.

- **6** All vectors $\mathbf{w} = (c, 2c)$ are perpendicular to \mathbf{v} . All vectors (x, y, z) with x + y + z = 0 lie on a *plane*. All vectors perpendicular to (1, 1, 1) and (1, 2, 3) lie on a *line*.
- 7 (a) $\cos \theta = \mathbf{v} \cdot \mathbf{w} / \|\mathbf{v}\| \|\mathbf{w}\| = 1/(2)(1)$ so $\theta = 60^{\circ}$ or $\pi/3$ radians (b) $\cos \theta = 0$ so $\theta = 90^{\circ}$ or $\pi/2$ radians (c) $\cos \theta = 2/(2)(2) = 1/2$ so $\theta = 60^{\circ}$ or $\pi/3$ (d) $\cos \theta = -1/\sqrt{2}$ so $\theta = 135^{\circ}$ or $3\pi/4$.
- **8** (a) False: \mathbf{v} and \mathbf{w} are any vectors in the plane perpendicular to \mathbf{u} (b) True: $\mathbf{u} \cdot (\mathbf{v} + 2\mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + 2\mathbf{u} \cdot \mathbf{w} = 0$ (c) True, $\|\mathbf{u} \mathbf{v}\|^2 = (\mathbf{u} \mathbf{v}) \cdot (\mathbf{u} \mathbf{v})$ splits into $\mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} = \mathbf{2}$ when $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} = 0$.
- **9** If $v_2w_2/v_1w_1 = -1$ then $v_2w_2 = -v_1w_1$ or $v_1w_1 + v_2w_2 = \boldsymbol{v} \cdot \boldsymbol{w} = 0$: perpendicular!
- 10 Slopes 2/1 and -1/2 multiply to give -1: then $\mathbf{v} \cdot \mathbf{w} = 0$ and the vectors (the directions) are perpendicular.
- 11 $\mathbf{v} \cdot \mathbf{w} < 0$ means angle $> 90^{\circ}$; these \mathbf{w} 's fill half of 3-dimensional space.
- **12** (1, 1) perpendicular to (1, 5) -c(1, 1) if 6 2c = 0 or c = 3; $\mathbf{v} \cdot (\mathbf{w} c\mathbf{v}) = 0$ if $c = \mathbf{v} \cdot \mathbf{w}/\mathbf{v} \cdot \mathbf{v}$. Subtracting $c\mathbf{v}$ is the key to perpendicular vectors.
- **13** The plane perpendicular to (1,0,1) contains all vectors (c,d,-c). In that plane, $\mathbf{v}=(1,0,-1)$ and $\mathbf{w}=(0,1,0)$ are perpendicular.
- **14** One possibility among many: $\mathbf{u} = (1, -1, 0, 0), \mathbf{v} = (0, 0, 1, -1), \mathbf{w} = (1, 1, -1, -1)$ and (1, 1, 1, 1) are perpendicular to each other. "We can rotate those $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in their 3D hyperplane."
- **15** $\frac{1}{2}(x+y) = (2+8)/2 = 5$; $\cos \theta = 2\sqrt{16}/\sqrt{10}\sqrt{10} = 8/10$.
- **16** $\|v\|^2 = 1 + 1 + \dots + 1 = 9$ so $\|v\| = 3$; $u = v/3 = (\frac{1}{3}, \dots, \frac{1}{3})$ is a unit vector in 9D; $w = (1, -1, 0, \dots, 0)/\sqrt{2}$ is a unit vector in the 8D hyperplane perpendicular to v.
- **17** $\cos \alpha = 1/\sqrt{2}, \cos \beta = 0, \cos \gamma = -1/\sqrt{2}$. For any vector $\mathbf{v}, \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = (v_1^2 + v_2^2 + v_3^2)/\|\mathbf{v}\|^2 = 1$.
- **18** $\|\mathbf{v}\|^2 = 4^2 + 2^2 = 20$ and $\|\mathbf{w}\|^2 = (-1)^2 + 2^2 = 5$. Pythagoras is $\|(3,4)\|^2 = 25 = 20 + 5$.
- 19 Start from the rules (1), (2), (3) for $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$ and $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$ and $(c\mathbf{v}) \cdot \mathbf{w}$. Use rule (2) for $(\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) = (\mathbf{v} + \mathbf{w}) \cdot \mathbf{v} + (\mathbf{v} + \mathbf{w}) \cdot \mathbf{w}$. By rule (1) this is $\mathbf{v} \cdot (\mathbf{v} + \mathbf{w}) + \mathbf{w} \cdot (\mathbf{v} + \mathbf{w})$. Rule (2) again gives $\mathbf{v} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{v} + 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$. Notice $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$! The main point is to be free to open up parentheses.
- **20** We know that $(\mathbf{v} \mathbf{w}) \cdot (\mathbf{v} \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}$. The Law of Cosines writes $\|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$ for $\mathbf{v} \cdot \mathbf{w}$. When $\theta < 90^{\circ}$ this $\mathbf{v} \cdot \mathbf{w}$ is positive, so in this case $\mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w}$ is larger than $\|\mathbf{v} \mathbf{w}\|^2$.
- **21** $2v \cdot w \le 2||v|||w||$ leads to $||v+w||^2 = v \cdot v + 2v \cdot w + w \cdot w \le ||v||^2 + 2||v|||w|| + ||w||^2$. This is $(||v|| + ||w||)^2$. Taking square roots gives $||v+w|| \le ||v|| + ||w||$.
- **22** $v_1^2 w_1^2 + 2v_1 w_1 v_2 w_2 + v_2^2 w_2^2 \le v_1^2 w_1^2 + v_1^2 w_2^2 + v_2^2 w_1^2 + v_2^2 w_2^2$ is true (cancel 4 terms) because the difference is $v_1^2 w_2^2 + v_2^2 w_1^2 2v_1 w_1 v_2 w_2$ which is $(v_1 w_2 v_2 w_1)^2 \ge 0$.

23 $\cos \beta = w_1/\|\boldsymbol{w}\|$ and $\sin \beta = w_2/\|\boldsymbol{w}\|$. Then $\cos(\beta - a) = \cos \beta \cos \alpha + \sin \beta \sin \alpha = v_1w_1/\|\boldsymbol{v}\|\|\boldsymbol{w}\| + v_2w_2/\|\boldsymbol{v}\|\|\boldsymbol{w}\| = \boldsymbol{v} \cdot \boldsymbol{w}/\|\boldsymbol{v}\|\|\boldsymbol{w}\|$. This is $\cos \theta$ because $\beta - \alpha = \theta$.

- **24** Example 6 gives $|u_1||U_1| \le \frac{1}{2}(u_1^2 + U_1^2)$ and $|u_2||U_2| \le \frac{1}{2}(u_2^2 + U_2^2)$. The whole line becomes $.96 \le (.6)(.8) + (.8)(.6) \le \frac{1}{2}(.6^2 + .8^2) + \frac{1}{2}(.8^2 + .6^2) = 1$. True: .96 < 1.
- **25** The cosine of θ is $x/\sqrt{x^2+y^2}$, near side over hypotenuse. Then $|\cos\theta|^2$ is not greater than 1: $x^2/(x^2+y^2) \le 1$.
- **26** The vectors $\mathbf{w} = (x, y)$ with $(1, 2) \cdot \mathbf{w} = x + 2y = 5$ lie on a line in the xy plane. The shortest \mathbf{w} on that line is (1, 2). (The Schwarz inequality $\|\mathbf{w}\| \ge \mathbf{v} \cdot \mathbf{w} / \|\mathbf{v}\| = \sqrt{5}$ is an equality when $\cos \theta = 0$ and $\mathbf{w} = (1, 2)$ and $\|\mathbf{w}\| = \sqrt{5}$.)
- **27** The length $\|\mathbf{v} \mathbf{w}\|$ is between 2 and 8 (triangle inequality when $\|\mathbf{v}\| = 5$ and $\|\mathbf{w}\| = 3$). The dot product $\mathbf{v} \cdot \mathbf{w}$ is between -15 and 15 by the Schwarz inequality.
- 28 Three vectors in the plane could make angles greater than 90° with each other: for example (1,0), (-1,4), (-1,-4). Four vectors could *not* do this (360°) total angle). How many can do this in \mathbb{R}^3 or \mathbb{R}^n ? Ben Harris and Greg Marks showed me that the answer is n+1. The vectors from the center of a regular simplex in \mathbb{R}^n to its n+1 vertices all have negative dot products. If n+2 vectors in \mathbb{R}^n had negative dot products, project them onto the plane orthogonal to the last one. Now you have n+1 vectors in \mathbb{R}^{n-1} with negative dot products. Keep going to 4 vectors in \mathbb{R}^2 : no way!
- **29** For a specific example, pick v=(1,2,-3) and then w=(-3,1,2). In this example $\cos\theta=v\cdot w/\|v\|\|w\|=-7/\sqrt{14}\sqrt{14}=-1/2$ and $\theta=120^\circ$. This always happens when x+y+z=0:

$$\mathbf{v} \cdot \mathbf{w} = xz + xy + yz = \frac{1}{2}(x + y + z)^2 - \frac{1}{2}(x^2 + y^2 + z^2)$$
This is the same as $\mathbf{v} \cdot \mathbf{w} = 0 - \frac{1}{2} \|\mathbf{v}\| \|\mathbf{w}\|$. Then $\cos \theta = \frac{1}{2}$.

30 Wikipedia gives this proof of geometric mean $G = \sqrt[3]{xyz} \le \text{arithmetic mean } A = (x + y + z)/3$. First there is equality in case x = y = z. Otherwise A is somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality $g \le a$ for the *two* positive numbers x and y+z-A. Their mean $a=\frac{1}{2}(x+y+z-A)$ is $\frac{1}{2}(3A-A)=$ same as A! So $a\ge g$ says that $A^3\ge g^2A=x(y+z-A)A$. But (y+z-A)A=(y-A)(A-z)+yz>yz. Substitute to find $A^3>xyz=G^3$ as we wanted to prove. Not easy!

There are many proofs of $G = (x_1x_2 \cdots x_n)^{1/n} \le A = (x_1 + x_2 + \cdots + x_n)/n$. In calculus you are maximizing G on the plane $x_1 + x_2 + \cdots + x_n = n$. The maximum occurs when all x's are equal.

31 The columns of the 4 by 4 "Hadamard matrix" (times $\frac{1}{2}$) are perpendicular unit vectors:

32 The commands V = randn(3, 30); D = sqrt(diag(V' * V)); $U = V \setminus D$; will give 30 random unit vectors in the columns of U. Then u' * U is a row matrix of 30 dot products whose average absolute value may be close to $2/\pi$.

Problem Set 1.3, page 29

6

1 $2s_1 + 3s_2 + 4s_3 = (2, 5, 9)$. The same vector **b** comes from S times x = (2, 3, 4):

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} (\operatorname{row} 1) \cdot x \\ (\operatorname{row} 2) \cdot x \\ (\operatorname{row} 2) \cdot x \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}.$$

2 The solutions are $y_1 = 1$, $y_2 = 0$, $y_3 = 0$ (right side = column 1) and $y_1 = 1$, $y_2 = 3$, $y_3 = 5$. That second example illustrates that the first n odd numbers add to n^2 .

The inverse of $S = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ is $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$: independent columns in A and S!

- 4 The combination $0w_1 + 0w_2 + 0w_3$ always gives the zero vector, but this problem looks for other zero combinations (then the vectors are dependent, they lie in a plane): $w_2 = (w_1 + w_3)/2$ so one combination that gives zero is $\frac{1}{2}w_1 w_2 + \frac{1}{2}w_3$.
- **5** The rows of the 3 by 3 matrix in Problem 4 must also be *dependent*: $r_2 = \frac{1}{2}(r_1 + r_3)$. The column and row combinations that produce **0** are the same: this is unusual.

6
$$c = 3$$

$$\begin{bmatrix} 1 & 3 & 5 \\ 1 & 2 & 4 \\ 1 & 1 & 3 \end{bmatrix} \text{ has column } 3 = 2 \text{ (column 1)} + \text{column 2}$$

$$c = -1$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ has column } 3 = - \text{ column 1} + \text{column 2}$$

$$c = 0$$

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix} \text{ has column } 3 = 3 \text{ (column 1)} - \text{column 2}$$

7 All three rows are perpendicular to the solution x (the three equations $r_1 \cdot x = 0$ and $r_2 \cdot x = 0$ and $r_3 \cdot x = 0$ tell us this). Then the whole plane of the rows is perpendicular to x (the plane is also perpendicular to all multiples cx).

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ when } \mathbf{x} = \begin{bmatrix} c \\ c \\ c \\ c \end{bmatrix} = \text{ any constant vector.}$$

- 11 The forward differences of the squares are $(t+1)^2 t^2 = t^2 + 2t + 1 t^2 = 2t + 1$. Differences of the *n*th power are $(t+1)^n t^n = t^n t^n + nt^{n-1} + \cdots$. The leading term is the derivative nt^{n-1} . The binomial theorem gives all the terms of $(t+1)^n$.
- 12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix} \text{ First solve } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ -x_3 = b_4 \end{bmatrix} = \begin{bmatrix} -b_2 - b_4 \\ b_1 \\ -b_4 \\ b_1 + b_3 \end{bmatrix}$$

13 Odd size: The five centered difference equations lead to $b_1 + b_3 + b_5 = 0$.

$$x_2 = b_1$$

 $x_3 - x_1 = b_2$
 $x_4 - x_2 = b_3$
 $x_5 - x_3 = b_4$
 $-x_4 = b_5$

Add equations 1, 3, 5
The left side of the sum is zero
The right side is $b_1 + b_3 + b_5$
There cannot be a solution unless $b_1 + b_3 + b_5 = 0$.

14 An example is (a,b) = (3,6) and (c,d) = (1,2). The ratios a/c and b/d are equal. Then ad = bc. Then (when you divide by bd) the ratios a/b and c/d are equal!

Problem Set 2.1, page 40

- **1** The columns are i = (1, 0, 0) and j = (0, 1, 0) and k = (0, 0, 1) and b = (2, 3, 4) = 2i + 3j + 4k.
- **2** The planes are the same: 2x = 4 is x = 2, 3y = 9 is y = 3, and 4z = 16 is z = 4. The solution is the same point X = x. The columns are changed; but same combination.
- **3** The solution is not changed! The second plane and row 2 of the matrix and all columns of the matrix (vectors in the column picture) are changed.
- 4 If z = 2 then x + y = 0 and x y = z give the point (1, -1, 2). If z = 0 then x + y = 6 and x y = 4 produce (5, 1, 0). Halfway between those is (3, 0, 1).
- **5** If x, y, z satisfy the first two equations they also satisfy the third equation. The line **L** of solutions contains $\mathbf{v} = (1, 1, 0)$ and $\mathbf{w} = (\frac{1}{2}, 1, \frac{1}{2})$ and $\mathbf{u} = \frac{1}{2}\mathbf{v} + \frac{1}{2}\mathbf{w}$ and all combinations $c\mathbf{v} + d\mathbf{w}$ with c + d = 1.
- **6** Equation 1 + equation 2 equation 3 is now 0 = -4. Line misses plane; no solution.
- **7** Column 3 = Column 1 makes the matrix singular. Solutions (x, y, z) = (1, 1, 0) or (0, 1, 1) and you can add any multiple of (-1, 0, 1); $\mathbf{b} = (4, 6, c)$ needs c = 10 for solvability (then \mathbf{b} lies in the plane of the columns).
- **8** Four planes in 4-dimensional space normally meet at a *point*. The solution to Ax = (3, 3, 3, 2) is x = (0, 0, 1, 2) if A has columns (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1). The equations are x + y + z + t = 3, y + z + t = 3, z + t = 3, t = 2.
- **9** (a) Ax = (18, 5, 0) and (b) Ax = (3, 4, 5, 5).

10 Multiplying as linear combinations of the columns gives the same Ax. By rows or by columns: 9 separate multiplications for 3 by 3.

11 Ax equals (14, 22) and (0, 0) and (9, 7).

8

- **12** Ax equals (z, y, x) and (0, 0, 0) and (3, 3, 6).
- 13 (a) x has n components and Ax has m components (b) Planes from each equation in Ax = b are in n-dimensional space, but the columns are in m-dimensional space.
- **14** 2x + 3y + z + 5t = 8 is Ax = b with the 1 by 4 matrix $A = \begin{bmatrix} 2 & 3 & 1 & 5 \end{bmatrix}$. The solutions x fill a 3D "plane" in 4 dimensions. It could be called a *hyperplane*.

15 (a)
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (b) $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

- **16** 90° rotation from $R = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, 180° rotation from $R^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$.
- **17** $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ produces (y, z, x) and $Q = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ recovers (x, y, z). Q is the inverse of P.
- **18** $E = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ and $E = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ subtract the first component from the second.
- **19** $E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ and $E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$, $E\mathbf{v} = (3, 4, 8)$ and $E^{-1}E\mathbf{v}$ recovers (3, 4, 5).
- **20** $P_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ projects onto the x-axis and $P_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ projects onto the y-axis. $\mathbf{v} = \begin{bmatrix} 5 \\ 7 \end{bmatrix}$ has $P_1 \mathbf{v} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$ and $P_2 P_1 \mathbf{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
- **21** $R = \frac{1}{2} \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$ rotates all vectors by 45°. The columns of R are the results from rotating (1,0) and (0,1)!
- **22** The dot product $Ax = \begin{bmatrix} 1 & 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = (1 \text{ by } 3)(3 \text{ by } 1)$ is zero for points (x, y, z) on a plane in three dimensions. The columns of A are one-dimensional vectors.
- **23** $A = \begin{bmatrix} 1 & 2 \\ \end{bmatrix}$; 3 4 and $x = \begin{bmatrix} 5 & -2 \end{bmatrix}'$ and $b = \begin{bmatrix} 1 & 7 \end{bmatrix}'$. r = b A * x prints as zero.
- **24** $A * \mathbf{v} = \begin{bmatrix} 3 & 4 & 5 \end{bmatrix}'$ and $\mathbf{v}' * \mathbf{v} = 50$. But $\mathbf{v} * A$ gives an error message from 3 by 1 times 3 by 3.
- **25** ones(4,4) * ones $(4,1) = [4 \ 4 \ 4 \ 4]'; <math>B * w = [10 \ 10 \ 10 \ 10]'.$
- **26** The row picture has two lines meeting at the solution (4, 2). The column picture will have 4(1, 1) + 2(-2, 1) = 4(column 1) + 2(column 2) = right side (0, 6).
- **27** The row picture shows **2 planes** in **3-dimensional space**. The column picture is in **2-dimensional space**. The solutions normally lie on a *line*.

28 The row picture shows four *lines* in the 2D plane. The column picture is in *four*-dimensional space. No solution unless the right side is a combination of *the two columns*.

29
$$u_2 = \begin{bmatrix} .7 \\ .3 \end{bmatrix}$$
 and $u_3 = \begin{bmatrix} .65 \\ .35 \end{bmatrix}$. The components add to 1. They are always positive. u_7, v_7, w_7 are all close to $(.6, .4)$. Their components still add to 1.

30
$$\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix} \begin{bmatrix} .6 \\ .4 \end{bmatrix} = \begin{bmatrix} .6 \\ .4 \end{bmatrix} = steady state s$$
. No change when multiplied by $\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}$.

31
$$M = \begin{bmatrix} 8 & 3 & 4 \\ 1 & 5 & 9 \\ 6 & 7 & 2 \end{bmatrix} = \begin{bmatrix} 5+u & 5-u+v & 5-v \\ 5-u-v & 5 & 5+u+v \\ 5+v & 5+u-v & 5-u \end{bmatrix}; M_3(1,1,1) = (15,15,15);$$

 $M_4(1,1,1,1) = (34,34,34,34)$ because $1+2+\cdots+16=136$ which is 4(34).

- **32** A is singular when its third column w is a combination cu + dv of the first columns. A typical column picture has b outside the plane of u, v, w. A typical row picture has the intersection line of two planes parallel to the third plane. *Then no solution*.
- **33** w = (5,7) is 5u + 7v. Then Aw equals 5 times Au plus 7 times Av.

34
$$\begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 has the solution
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 8 \\ 6 \end{bmatrix}.$$

35 x = (1, ..., 1) gives $Sx = \text{sum of each row} = 1 + \cdots + 9 = 45$ for Sudoku matrices. 6 row orders (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) are in Section 2.7. The same 6 permutations of *blocks* of rows produce Sudoku matrices, so $6^4 = 1296$ orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 51

- 1 Multiply by $\ell_{21} = \frac{10}{2} = 5$ and subtract to find 2x + 3y = 14 and -6y = 6. The pivots to circle are 2 and -6.
- **2** -6y = 6 gives y = -1. Then 2x + 3y = 1 gives x = 2. Multiplying the right side (1, 11) by 4 will multiply the solution by 4 to give the new solution (x, y) = (8, -4).
- **3** Subtract $-\frac{1}{2}$ (or add $\frac{1}{2}$) times equation 1. The new second equation is 3y = 3. Then y = 1 and x = 5. If the right side changes sign, so does the solution: (x, y) = (-5, -1).
- **4** Subtract $\ell = \frac{c}{a}$ times equation 1. The new second pivot multiplying y is d (cb/a) or (ad bc)/a. Then y = (ag cf)/(ad bc).
- **5** 6x + 4y is 2 times 3x + 2y. There is no solution unless the right side is $2 \cdot 10 = 20$. Then all the points on the line 3x + 2y = 10 are solutions, including (0, 5) and (4, -1). (The two lines in the row picture are the same line, containing all solutions).
- 6 Singular system if b = 4, because 4x + 8y is 2 times 2x + 4y. Then g = 32 makes the lines become the *same*: infinitely many solutions like (8,0) and (0,4).
- 7 If a=2 elimination must fail (two parallel lines in the row picture). The equations have no solution. With a=0, elimination will stop for a row exchange. Then 3y=-3 gives y=-1 and 4x+6y=6 gives x=3.

8 If k=3 elimination must fail: no solution. If k=-3, elimination gives 0=0 in equation 2: infinitely many solutions. If k=0 a row exchange is needed: one solution.

- **9** On the left side, 6x 4y is 2 times (3x 2y). Therefore we need $b_2 = 2b_1$ on the right side. Then there will be infinitely many solutions (two parallel lines become one single line).
- **10** The equation y = 1 comes from elimination (subtract x + y = 5 from x + 2y = 6). Then x = 4 and 5x 4y = c = 16.
- 11 (a) Another solution is $\frac{1}{2}(x+X, y+Y, z+Z)$. (b) If 25 planes meet at two points, they meet along the whole line through those two points.
- 12 Elimination leads to an upper triangular system; then comes back substitution. 2x + 3y + z = 8 x = 2 y + 3z = 4 gives y = 1 If a zero is at the start of row 2 or 3, 8z = 8 z = 1 that avoids a row operation.
- 13 2x 3y = 3 2x 3y = 3 2x 3y = 3 x = 3 4x - 5y + z = 7 gives y + z = 1 and y + z = 1 and y = 1 2x - y - 3z = 5 2y + 3z = 2 -5z = 0 z = 0Subtract $2 \times \text{row } 1$ from row 2, subtract $1 \times \text{row } 1$ from row 3, subtract $2 \times \text{row } 2$ from row 3
- **14** Subtract 2 times row 1 from row 2 to reach (d-10)y-z=2. Equation (3) is y-z=3. If d=10 exchange rows 2 and 3. If d=11 the system becomes singular.
- **15** The second pivot position will contain -2 b. If b = -2 we exchange with row 3. If b = -1 (singular case) the second equation is -y z = 0. A solution is (1, 1, -1).

Example of
$$0x + 0y + 2z = 4$$
 $x + 2y + 2z = 5$ (b) Exchange $0x + 3y + 4z = 4$ but then $0x + 2y + 2z = 5$ break down $0x + 3y + 4z = 6$ (cexchange 1 and 2, then 2 and 3) (rows 1 and 3 are not consistent)

- 17 If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with row 3 and there is no *third* pivot. If column 2 = column 1, then column 2 has no pivot.
- **18** Example x + 2y + 3z = 0, 4x + 8y + 12z = 0, 5x + 10y + 15z = 0 has 9 different coefficients but rows 2 and 3 become 0 = 0: infinitely many solutions.
- **19** Row 2 becomes 3y 4z = 5, then row 3 becomes (q + 4)z = t 5. If q = -4 the system is singular—no third pivot. Then if t = 5 the third equation is 0 = 0. Choosing z = 1 the equation 3y 4z = 5 gives y = 3 and equation 1 gives x = -9.
- **20** Singular if row 3 is a combination of rows 1 and 2. From the end view, the three planes form a triangle. This happens if rows 1+2 = row 3 on the left side but not the right side: x+y+z=0, x-2y-z=1, 2x-y=4. No parallel planes but still no solution.
- 21 (a) Pivots $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}$ in the equations $2x + y = 0, \frac{3}{2}y + z = 0, \frac{4}{3}z + t = 0, \frac{5}{4}t = 5$ after elimination. Back substitution gives t = 4, z = -3, y = 2, x = -1. (b) If the off-diagonal entries change from +1 to -1, the pivots are the same. The solution is (1, 2, 3, 4) instead of (-1, 2, -3, 4).
- 22 The fifth pivot is $\frac{6}{5}$ for both matrices (1's or -1's off the diagonal). The *n*th pivot is $\frac{n+1}{n}$.