INTRODUCTION

TO

LINEAR
ALGEBRA
Fourth Edition

MANUAL FOR INSTRUCTORS

Gilbert Strang Massachusetts Institute of Technology
math.mit.edu/linearalgebra web.mit.edu/18.06 video lectures: ocw.mit.edu math.mit.edu/ $\sim g s$ www.wellesleycambridge.com email: gs@math.mit.edu

Wellesley - Cambridge Press
Box 812060
Wellesley, Massachusetts 02482

Problem Set 1.1, page 8

1 The combinations give (a) a line in $\mathbf{R}^{3} \quad$ (b) a plane in $\mathbf{R}^{3} \quad$ (c) all of \mathbf{R}^{3}.
$2 \boldsymbol{v}+\boldsymbol{w}=(2,3)$ and $\boldsymbol{v}-\boldsymbol{w}=(6,-1)$ will be the diagonals of the parallelogram with \boldsymbol{v} and \boldsymbol{w} as two sides going out from $(0,0)$.
3 This problem gives the diagonals $\boldsymbol{v}+\boldsymbol{w}$ and $\boldsymbol{v}-\boldsymbol{w}$ of the parallelogram and asks for the sides: The opposite of Problem 2. In this example $\boldsymbol{v}=(3,3)$ and $\boldsymbol{w}=(2,-2)$.
$43 \boldsymbol{v}+\boldsymbol{w}=(7,5)$ and $c \boldsymbol{v}+d \boldsymbol{w}=(2 c+d, c+2 d)$.
$5 \boldsymbol{u}+\boldsymbol{v}=(-2,3,1)$ and $\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w}=(0,0,0)$ and $2 \boldsymbol{u}+2 \boldsymbol{v}+\boldsymbol{w}=($ add first answers $)=$ $(-2,3,1)$. The vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ are in the same plane because a combination gives $(0,0,0)$. Stated another way: $\boldsymbol{u}=-\boldsymbol{v}-\boldsymbol{w}$ is in the plane of \boldsymbol{v} and \boldsymbol{w}.
6 The components of every $c \boldsymbol{v}+d \boldsymbol{w}$ add to zero. $c=3$ and $d=9$ give $(3,3,-6)$.
7 The nine combinations $c(2,1)+d(0,1)$ with $c=0,1,2$ and $d=(0,1,2)$ will lie on a lattice. If we took all whole numbers c and d, the lattice would lie over the whole plane.
8 The other diagonal is $\boldsymbol{v}-\boldsymbol{w}$ (or else $\boldsymbol{w}-\boldsymbol{v}$). Adding diagonals gives $2 \boldsymbol{v}$ (or $2 \boldsymbol{w}$).
9 The fourth corner can be $(4,4)$ or $(4,0)$ or $(-2,2)$. Three possible parallelograms!
$10 \boldsymbol{i}-\boldsymbol{j}=(1,1,0)$ is in the base ($x-y$ plane). $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}=(1,1,1)$ is the opposite corner from $(0,0,0)$. Points in the cube have $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
11 Four more corners $(1,1,0),(1,0,1),(0,1,1),(1,1,1)$. The center point is $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. Centers of faces are $\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ and $\left(0, \frac{1}{2}, \frac{1}{2}\right),\left(1, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(\frac{1}{2}, 1, \frac{1}{2}\right)$.
12 A four-dimensional cube has $2^{4}=16$ corners and $2 \cdot 4=8$ three-dimensional faces and 24 two-dimensional faces and 32 edges in Worked Example 2.4 A.
13 Sum $=$ zero vector. Sum $=-2: 00$ vector $=8: 00$ vector. 2:00 is 30° from horizontal $=\left(\cos \frac{\pi}{6}, \sin \frac{\pi}{6}\right)=(\sqrt{3} / 2,1 / 2)$.
14 Moving the origin to 6:00 adds $\boldsymbol{j}=(0,1)$ to every vector. So the sum of twelve vectors changes from 0 to $12 \boldsymbol{j}=(0,12)$.
15 The point $\frac{3}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is three-fourths of the way to \boldsymbol{v} starting from \boldsymbol{w}. The vector $\frac{1}{4} \boldsymbol{v}+\frac{1}{4} \boldsymbol{w}$ is halfway to $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. The vector $\boldsymbol{v}+\boldsymbol{w}$ is $2 \boldsymbol{u}$ (the far corner of the parallelogram).
16 All combinations with $c+d=1$ are on the line that passes through \boldsymbol{v} and \boldsymbol{w}. The point $\boldsymbol{V}=-\boldsymbol{v}+2 \boldsymbol{w}$ is on that line but it is beyond \boldsymbol{w}.
17 All vectors $c \boldsymbol{v}+c \boldsymbol{w}$ are on the line passing through $(0,0)$ and $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$. That line continues out beyond $\boldsymbol{v}+\boldsymbol{w}$ and back beyond $(0,0)$. With $c \geq 0$, half of this line is removed, leaving a ray that starts at $(0,0)$.
18 The combinations $c \boldsymbol{v}+d \boldsymbol{w}$ with $0 \leq c \leq 1$ and $0 \leq d \leq 1$ fill the parallelogram with sides \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$ then $c \boldsymbol{v}+d \boldsymbol{w}$ fills the unit square.
19 With $c \geq 0$ and $d \geq 0$ we get the infinite "cone" or "wedge" between \boldsymbol{v} and \boldsymbol{w}. For example, if $\boldsymbol{v}=(1,0)$ and $\boldsymbol{w}=(0,1)$, then the cone is the whole quadrant $x \geq 0$, $y \geq 0$. Question: What if $\boldsymbol{w}=-\boldsymbol{v}$? The cone opens to a half-space.

20 (a) $\frac{1}{3} \boldsymbol{u}+\frac{1}{3} \boldsymbol{v}+\frac{1}{3} \boldsymbol{w}$ is the center of the triangle between $\boldsymbol{u}, \boldsymbol{v}$ and $\boldsymbol{w} ; \frac{1}{2} \boldsymbol{u}+\frac{1}{2} \boldsymbol{w}$ lies between \boldsymbol{u} and \boldsymbol{w}
(b) To fill the triangle keep $c \geq 0, d \geq 0, e \geq 0$, and $c+d+e=\mathbf{1}$.

21 The sum is $(\boldsymbol{v}-\boldsymbol{u})+(\boldsymbol{w}-\boldsymbol{v})+(\boldsymbol{u}-\boldsymbol{w})=$ zero vector. Those three sides of a triangle are in the same plane!
22 The vector $\frac{1}{2}(\boldsymbol{u}+\boldsymbol{v}+\boldsymbol{w})$ is outside the pyramid because $c+d+e=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}>1$.
23 All vectors are combinations of $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ as drawn (not in the same plane). Start by seeing that $c \boldsymbol{u}+d \boldsymbol{v}$ fills a plane, then adding $e \boldsymbol{w}$ fills all of \mathbf{R}^{3}.
24 The combinations of \boldsymbol{u} and \boldsymbol{v} fill one plane. The combinations of \boldsymbol{v} and \boldsymbol{w} fill another plane. Those planes meet in a line: only the vectors $c \boldsymbol{v}$ are in both planes.
25 (a) For a line, choose $\boldsymbol{u}=\boldsymbol{v}=\boldsymbol{w}=$ any nonzero vector (b) For a plane, choose \boldsymbol{u} and \boldsymbol{v} in different directions. A combination like $\boldsymbol{w}=\boldsymbol{u}+\boldsymbol{v}$ is in the same plane.

26 Two equations come from the two components: $c+3 d=14$ and $2 c+d=8$. The solution is $c=2$ and $d=4$. Then $2(1,2)+4(3,1)=(14,8)$.
27 The combinations of $\boldsymbol{i}=(1,0,0)$ and $\boldsymbol{i}+\boldsymbol{j}=(1,1,0)$ fill the $x y$ plane in $x y z$ space.
28 There are $\mathbf{6}$ unknown numbers $v_{1}, v_{2}, v_{3}, w_{1}, w_{2}, w_{3}$. The six equations come from the components of $v+w=(4,5,6)$ and $v-w=(2,5,8)$. Add to find $2 v=(6,10,14)$ so $\boldsymbol{v}=(3,5,7)$ and $\boldsymbol{w}=(1,0,-1)$.
29 Two combinations out of infinitely many that produce $\boldsymbol{b}=(0,1)$ are $-2 \boldsymbol{u}+\boldsymbol{v}$ and $\frac{1}{2} \boldsymbol{w}-\frac{1}{2} \boldsymbol{v}$. No, three vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in the $x-y$ plane could fail to produce \boldsymbol{b} if all three lie on a line that does not contain \boldsymbol{b}. Yes, if one combination produces \boldsymbol{b} then two (and infinitely many) combinations will produce \boldsymbol{b}. This is true even if $\boldsymbol{u}=\mathbf{0}$; the combinations can have different $c \boldsymbol{u}$.

30 The combinations of \boldsymbol{v} and \boldsymbol{w} fill the plane unless \boldsymbol{v} and \boldsymbol{w} lie on the same line through $(0,0)$. Four vectors whose combinations fill 4 -dimensional space: one example is the "standard basis" $(1,0,0,0),(0,1,0,0),(0,0,1,0)$, and $(0,0,0,1)$.
31 The equations $c \boldsymbol{u}+d \boldsymbol{v}+e \boldsymbol{w}=\boldsymbol{b}$ are

$$
\begin{array}{rlr}
2 c-d=1 & \text { So } d=2 e & c=3 / 4 \\
-c+2 d-e=0 & \text { then } c=3 e & d=2 / 4 \\
-d+2 e=0 & \text { then } 4 e=1 & e=1 / 4
\end{array}
$$

Problem Set 1.2, page 19

$\mathbf{1} \boldsymbol{u} \cdot \boldsymbol{v}=-1.8+3.2=1.4, \boldsymbol{u} \cdot \boldsymbol{w}=-4.8+4.8=0, \boldsymbol{v} \cdot \boldsymbol{w}=24+24=48=\boldsymbol{w} \cdot \boldsymbol{v}$.
$2\|\boldsymbol{u}\|=1$ and $\|\boldsymbol{v}\|=5$ and $\|\boldsymbol{w}\|=10$. Then $1.4<$ (1)(5) and $48<$ (5)(10), confirming the Schwarz inequality.
3 Unit vectors $\boldsymbol{v} /\|\boldsymbol{v}\|=\left(\frac{3}{5}, \frac{4}{5}\right)=(.6, .8)$ and $\boldsymbol{w} /\|\boldsymbol{w}\|=\left(\frac{4}{5}, \frac{3}{5}\right)=(.8, .6)$. The cosine of θ is $\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|} \cdot \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|}=\frac{24}{25}$. The vectors $\boldsymbol{w}, \boldsymbol{u},-\boldsymbol{w}$ make $0^{\circ}, 90^{\circ}, 180^{\circ}$ angles with \boldsymbol{w}.
4 (a) $\boldsymbol{v} \cdot(-\boldsymbol{v})=-1$
(b) $(v+w) \cdot(v-w)=v \cdot v+w \cdot v-v \cdot w-w \cdot w=$ $1+(\quad)-(\quad)-1=0$ so $\theta=90^{\circ}($ notice $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v})$
(c) $(\boldsymbol{v}-2 \boldsymbol{w}) \cdot(\boldsymbol{v}+2 \boldsymbol{w})=$ $\boldsymbol{v} \cdot \boldsymbol{v}-4 \boldsymbol{w} \cdot \boldsymbol{w}=1-4=-3$.
$5 \boldsymbol{u}_{1}=\boldsymbol{v} /\|\boldsymbol{v}\|=(3,1) / \sqrt{10}$ and $\boldsymbol{u}_{2}=\boldsymbol{w} /\|\boldsymbol{w}\|=(2,1,2) / 3 . \boldsymbol{U}_{1}=(1,-3) / \sqrt{10}$ is perpendicular to \boldsymbol{u}_{1} (and so is $\left.(-1,3) / \sqrt{10}\right) . \boldsymbol{U}_{2}$ could be $(1,-2,0) / \sqrt{5}$: There is a whole plane of vectors perpendicular to \boldsymbol{u}_{2}, and a whole circle of unit vectors in that plane.
6 All vectors $\boldsymbol{w}=(c, 2 c)$ are perpendicular to \boldsymbol{v}. All vectors (x, y, z) with $x+y+z=0$ lie on a plane. All vectors perpendicular to $(1,1,1)$ and $(1,2,3)$ lie on a line.
7 (a) $\cos \theta=\boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|=1 /(2)(1)$ so $\theta=60^{\circ}$ or $\pi / 3$ radians \quad (b) $\cos \theta=0$ so $\theta=90^{\circ}$ or $\pi / 2$ radians (c) $\cos \theta=2 /(2)(2)=1 / 2$ so $\theta=60^{\circ}$ or $\pi / 3$ (d) $\cos \theta=-1 / \sqrt{2}$ so $\theta=135^{\circ}$ or $3 \pi / 4$.

8 (a) False: \boldsymbol{v} and \boldsymbol{w} are any vectors in the plane perpendicular to \boldsymbol{u} (b) True: $\boldsymbol{u} \cdot(\boldsymbol{v}+$ $2 \boldsymbol{w})=\boldsymbol{u} \cdot \boldsymbol{v}+2 \boldsymbol{u} \cdot \boldsymbol{w}=0 \quad$ (c) True, $\|\boldsymbol{u}-\boldsymbol{v}\|^{2}=(\boldsymbol{u}-\boldsymbol{v}) \cdot(\boldsymbol{u}-\boldsymbol{v})$ splits into $\boldsymbol{u} \cdot \boldsymbol{u}+\boldsymbol{v} \cdot \boldsymbol{v}=\mathbf{2}$ when $\boldsymbol{u} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \boldsymbol{u}=0$.

9 If $v_{2} w_{2} / v_{1} w_{1}=-1$ then $v_{2} w_{2}=-v_{1} w_{1}$ or $v_{1} w_{1}+v_{2} w_{2}=\boldsymbol{v} \cdot \boldsymbol{w}=0$: perpendicular!
10 Slopes $2 / 1$ and $-1 / 2$ multiply to give -1 : then $\boldsymbol{v} \cdot \boldsymbol{w}=0$ and the vectors (the directions) are perpendicular.
$11 v \cdot w<0$ means angle $>90^{\circ}$; these w 's fill half of 3-dimensional space.
$12(1,1)$ perpendicular to $(1,5)-c(1,1)$ if $6-2 c=0$ or $c=3 ; \boldsymbol{v} \cdot(\boldsymbol{w}-c \boldsymbol{v})=0$ if $c=\boldsymbol{v} \cdot \boldsymbol{w} / \boldsymbol{v} \cdot \boldsymbol{v}$. Subtracting $c \boldsymbol{v}$ is the key to perpendicular vectors.
13 The plane perpendicular to $(1,0,1)$ contains all vectors $(c, d,-c)$. In that plane, $\boldsymbol{v}=$ $(1,0,-1)$ and $\boldsymbol{w}=(0,1,0)$ are perpendicular.
14 One possibility among many: $\boldsymbol{u}=(1,-1,0,0), \boldsymbol{v}=(0,0,1,-1), \boldsymbol{w}=(1,1,-1,-1)$ and $(1,1,1,1)$ are perpendicular to each other. "We can rotate those $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ in their 3D hyperplane."
$15 \frac{1}{2}(x+y)=(2+8) / 2=5 ; \cos \theta=2 \sqrt{16} / \sqrt{10} \sqrt{10}=8 / 10$.
$16\|\boldsymbol{v}\|^{2}=1+1+\cdots+1=9$ so $\|\boldsymbol{v}\|=3 ; \boldsymbol{u}=\boldsymbol{v} / 3=\left(\frac{1}{3}, \ldots, \frac{1}{3}\right)$ is a unit vector in 9D; $\boldsymbol{w}=(1,-1,0, \ldots, 0) / \sqrt{2}$ is a unit vector in the 8D hyperplane perpendicular to \boldsymbol{v}.
$17 \cos \alpha=1 / \sqrt{2}, \cos \beta=0, \cos \gamma=-1 / \sqrt{2}$. For any vector $\boldsymbol{v}, \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$ $=\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right) /\|\boldsymbol{v}\|^{2}=1$.
$18\|\boldsymbol{v}\|^{2}=4^{2}+2^{2}=20$ and $\|\boldsymbol{w}\|^{2}=(-1)^{2}+2^{2}=5$. Pythagoras is $\|(3,4)\|^{2}=25=$ $20+5$.
19 Start from the rules (1), (2), (3) for $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$ and $\boldsymbol{u} \cdot(\boldsymbol{v}+\boldsymbol{w})$ and ($c \boldsymbol{v}) \cdot \boldsymbol{w}$. Use rule (2) for $(\boldsymbol{v}+\boldsymbol{w}) \cdot(\boldsymbol{v}+\boldsymbol{w})=(\boldsymbol{v}+\boldsymbol{w}) \cdot \boldsymbol{v}+(\boldsymbol{v}+\boldsymbol{w}) \cdot \boldsymbol{w}$. By rule (1) this is $\boldsymbol{v} \cdot(\boldsymbol{v}+\boldsymbol{w})+\boldsymbol{w} \cdot(\boldsymbol{v}+\boldsymbol{w})$. Rule (2) again gives $\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}=\boldsymbol{v} \cdot \boldsymbol{v}+2 \boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{w}$. Notice $v \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$! The main point is to be free to open up parentheses.
20 We know that $(v-w) \cdot(v-w)=\boldsymbol{v} \cdot \boldsymbol{v}-2 \boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{w}$. The Law of Cosines writes $\|\boldsymbol{v}\|\|\boldsymbol{w}\| \cos \theta$ for $\boldsymbol{v} \cdot \boldsymbol{w}$. When $\theta<90^{\circ}$ this $\boldsymbol{v} \cdot \boldsymbol{w}$ is positive, so in this case $\boldsymbol{v} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}$ is larger than $\|v-w\|^{2}$.
$212 \boldsymbol{v} \cdot \boldsymbol{w} \leq 2\|\boldsymbol{v}\|\|\boldsymbol{w}\|$ leads to $\|v+w\|^{2}=\boldsymbol{v} \cdot \boldsymbol{v}+2 \boldsymbol{v} \cdot \boldsymbol{w}+\boldsymbol{w} \cdot \boldsymbol{w} \leq\|\boldsymbol{v}\|^{2}+2\|\boldsymbol{v}\|\|\boldsymbol{w}\|+\|\boldsymbol{w}\|^{2}$. This is $(\|\boldsymbol{v}\|+\|\boldsymbol{w}\|)^{2}$. Taking square roots gives $\|\boldsymbol{v}+\boldsymbol{w}\| \leq\|\boldsymbol{v}\|+\|\boldsymbol{w}\|$.
$22 v_{1}^{2} w_{1}^{2}+2 v_{1} w_{1} v_{2} w_{2}+v_{2}^{2} w_{2}^{2} \leq v_{1}^{2} w_{1}^{2}+v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}+v_{2}^{2} w_{2}^{2}$ is true (cancel 4 terms) because the difference is $v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}-2 v_{1} w_{1} v_{2} w_{2}$ which is $\left(v_{1} w_{2}-v_{2} w_{1}\right)^{2} \geq 0$.
$23 \cos \beta=w_{1} /\|\boldsymbol{w}\|$ and $\sin \beta=w_{2} /\|\boldsymbol{w}\|$. Then $\cos (\beta-a)=\cos \beta \cos \alpha+\sin \beta \sin \alpha=$ $v_{1} w_{1} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|+v_{2} w_{2} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|=\boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|$. This is $\cos \theta$ because $\beta-\alpha=\theta$.
24 Example 6 gives $\left|u_{1}\right|\left|U_{1}\right| \leq \frac{1}{2}\left(u_{1}^{2}+U_{1}^{2}\right)$ and $\left|u_{2}\right|\left|U_{2}\right| \leq \frac{1}{2}\left(u_{2}^{2}+U_{2}^{2}\right)$. The whole line becomes $.96 \leq(.6)(.8)+(.8)(.6) \leq \frac{1}{2}\left(.6^{2}+.8^{2}\right)+\frac{1}{2}\left(.8^{2}+.6^{2}\right)=1$. True: $.96<1$.
25 The cosine of θ is $x / \sqrt{x^{2}+y^{2}}$, near side over hypotenuse. Then $|\cos \theta|^{2}$ is not greater than 1: $x^{2} /\left(x^{2}+y^{2}\right) \leq 1$.
26 The vectors $\boldsymbol{w}=(x, y)$ with $(1,2) \cdot \boldsymbol{w}=x+2 y=5$ lie on a line in the $x y$ plane. The shortest \boldsymbol{w} on that line is (1,2). (The Schwarz inequality $\|\boldsymbol{w}\| \geq \boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|=\sqrt{5}$ is an equality when $\cos \theta=0$ and $\boldsymbol{w}=(1,2)$ and $\|\boldsymbol{w}\|=\sqrt{5}$.)
27 The length $\|\boldsymbol{v}-\boldsymbol{w}\|$ is between 2 and 8 (triangle inequality when $\|\boldsymbol{v}\|=5$ and $\|\boldsymbol{w}\|=$ 3). The dot product $v \cdot w$ is between -15 and 15 by the Schwarz inequality.
28 Three vectors in the plane could make angles greater than 90° with each other: for example (1,0), $(-1,4),(-1,-4)$. Four vectors could not do this (360° total angle). How many can do this in \mathbf{R}^{3} or \mathbf{R}^{n} ? Ben Harris and Greg Marks showed me that the answer is $n+1$. The vectors from the center of a regular simplex in \mathbf{R}^{n} to its $n+1$ vertices all have negative dot products. If $n+2$ vectors in \mathbf{R}^{n} had negative dot products, project them onto the plane orthogonal to the last one. Now you have $n+1$ vectors in \mathbf{R}^{n-1} with negative dot products. Keep going to 4 vectors in \mathbf{R}^{2} : no way!
29 For a specific example, pick $\boldsymbol{v}=(1,2,-3)$ and then $\boldsymbol{w}=(-3,1,2)$. In this example $\cos \theta=\boldsymbol{v} \cdot \boldsymbol{w} /\|\boldsymbol{v}\|\|\boldsymbol{w}\|=-7 / \sqrt{14} \sqrt{14}=-1 / 2$ and $\theta=120^{\circ}$. This always happens when $x+y+z=0$:

$$
\begin{aligned}
& v \cdot \boldsymbol{w}=x z+x y+y z=\frac{1}{2}(x+y+z)^{2}-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right) \\
& \text { This is the same as } \boldsymbol{v} \cdot \boldsymbol{w}=0-\frac{1}{2}\|\boldsymbol{v}\|\|\boldsymbol{w}\| \text {. Then } \cos \theta=\frac{1}{2} .
\end{aligned}
$$

30 Wikipedia gives this proof of geometric mean $G=\sqrt[3]{x y z} \leq$ arithmetic mean $A=(x+y+z) / 3$. First there is equality in case $x=y=z$. Otherwise A is somewhere between the three positive numbers, say for example $z<A<y$.
Use the known inequality $g \leq a$ for the two positive numbers x and $y+z-A$. Their mean $a=\frac{1}{2}(x+y+z-A)$ is $\frac{1}{2}(3 A-A)=$ same as $A!$ So $a \geq g$ says that $A^{3} \geq g^{2} A=x(y+z-A) A$. But $(y+z-A) A=(y-A)(A-z)+y z>y z$. Substitute to find $A^{3}>x y z=G^{3}$ as we wanted to prove. Not easy!
There are many proofs of $G=\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq A=\left(x_{1}+x_{2}+\cdots+x_{n}\right) / n$. In calculus you are maximizing G on the plane $x_{1}+x_{2}+\cdots+x_{n}=n$. The maximum occurs when all x 's are equal.
31 The columns of the 4 by 4 "Hadamard matrix" (times $\frac{1}{2}$) are perpendicular unit vectors:

$$
\frac{1}{2} H=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

32 The commands $V=\mathbf{r a n d n}(3,30) ; D=\mathbf{s q r t}\left(\boldsymbol{\operatorname { d i a g }}\left(V^{\prime} * V\right)\right) ; U=V \backslash D$; will give 30 random unit vectors in the columns of U. Then $u^{\prime} * U$ is a row matrix of 30 dot products whose average absolute value may be close to $2 / \pi$.

Problem Set 1.3, page 29

$12 s_{1}+3 \boldsymbol{s}_{2}+4 \boldsymbol{s}_{3}=(2,5,9)$. The same vector \boldsymbol{b} comes from S times $\boldsymbol{x}=(2,3,4)$:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
(\text { row 1) } \cdot \boldsymbol{x} \\
(\text { row 2) } \cdot \boldsymbol{x} \\
(\text { row 2) } \boldsymbol{x}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right] .
$$

2 The solutions are $y_{1}=1, y_{2}=0, y_{3}=0$ (right side $=$ column 1) and $y_{1}=1, y_{2}=3$, $y_{3}=5$. That second example illustrates that the first n odd numbers add to n^{2}.

The inverse of $S=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]$ is $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$: independent columns in A and S !
4 The combination $0 w_{1}+0 w_{2}+0 w_{3}$ always gives the zero vector, but this problem looks for other zero combinations (then the vectors are dependent, they lie in a plane): $w_{2}=\left(w_{1}+w_{3}\right) / 2$ so one combination that gives zero is $\frac{1}{2} w_{1}-w_{2}+\frac{1}{2} w_{3}$.
5 The rows of the 3 by 3 matrix in Problem 4 must also be dependent: $\boldsymbol{r}_{2}=\frac{1}{2}\left(\boldsymbol{r}_{1}+\boldsymbol{r}_{3}\right)$. The column and row combinations that produce $\mathbf{0}$ are the same: this is unusual.
$6 c=3 \quad\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 2 & 4 \\ 1 & 1 & 3\end{array}\right]$ has column $3=2($ column 1$)+$ column 2 $c=-1\left[\begin{array}{rrr}1 & 0 & -\mathbf{1} \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$ has column $3=-$ column $1+$ column 2
$c=0 \quad\left[\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{0} \\ 2 & 1 & 5 \\ 3 & 3 & 6\end{array}\right]$ has column $3=3($ column 1$)-$ column 2
7 All three rows are perpendicular to the solution \boldsymbol{x} (the three equations $\boldsymbol{r}_{1} \cdot \boldsymbol{x}=0$ and $\boldsymbol{r}_{2} \cdot \boldsymbol{x}=0$ and $\boldsymbol{r}_{3} \cdot \boldsymbol{x}=0$ tell us this). Then the whole plane of the rows is perpendicular to \boldsymbol{x} (the plane is also perpendicular to all multiples $c \boldsymbol{x}$).
$\begin{array}{lll} & x_{1}-0=b_{1} & x_{1}=b_{1} \\ x_{2}-x_{1}=b_{2} & x_{2}=b_{1}+b_{2} \\ x_{3}-x_{2}=b_{3} & x_{3}=b_{1}+b_{2}+b_{3} \\ x_{4}-x_{3}=b_{4} & x_{4}=b_{1}+b_{2}+b_{3}+b_{4}\end{array}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]=A^{-1} \boldsymbol{b}$
9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to $C \boldsymbol{x}=\mathbf{0}$:

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \text { when } \boldsymbol{x}=\left[\begin{array}{l}
c \\
c \\
c \\
c
\end{array}\right]=\text { any constant vector. }
$$

$10 \begin{array}{lll}z_{2}-z_{1}=b_{1} & z_{1}= & -b_{1}-b_{2}-b_{3} \\ z_{3}-z_{2}=b_{2} & z_{2}= & -b_{2}-b_{3} \\ 0-z_{3}=b_{3} & z_{3}= & -b_{3}\end{array} \quad=\left[\begin{array}{rrr}-1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\Delta^{-1} \boldsymbol{b}$
11 The forward differences of the squares are $(t+1)^{2}-t^{2}=t^{2}+2 t+1-t^{2}=2 t+1$. Differences of the nth power are $(t+1)^{n}-t^{n}=t^{n}-t^{n}+n t^{n-1}+\cdots$. The leading term is the derivative $n t^{n-1}$. The binomial theorem gives all the terms of $(t+1)^{n}$.
12 Centered difference matrices of even size seem to be invertible. Look at eqns. 1 and 4:

$$
\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right] \begin{gathered}
\text { First } \\
\text { solve } \\
x_{2}=b_{1} \\
-x_{3}=b_{4}
\end{gathered}\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-b_{2}-b_{4} \\
b_{1} \\
-b_{4} \\
b_{1}+b_{3}
\end{array}\right]
$$

13 Odd size: The five centered difference equations lead to $b_{1}+b_{3}+b_{5}=0$.

$$
\begin{aligned}
x_{2} & =b_{1} \\
x_{3}-x_{1} & =b_{2} \\
x_{4}-x_{2} & =b_{3} \\
x_{5}-x_{3} & =b_{4} \\
-x_{4} & =b_{5}
\end{aligned}
$$

Add equations 1, 3, 5
The left side of the sum is zero
The right side is $b_{1}+b_{3}+b_{5}$
There cannot be a solution unless $b_{1}+b_{3}+b_{5}=0$.

14 An example is $(a, b)=(3,6)$ and $(c, d)=(1,2)$. The ratios a / c and b / d are equal. Then $a d=b c$. Then (when you divide by $b d$) the ratios a / b and c / d are equal!

Problem Set 2.1, page 40

1 The columns are $\boldsymbol{i}=(1,0,0)$ and $\boldsymbol{j}=(0,1,0)$ and $\boldsymbol{k}=(0,0,1)$ and $\boldsymbol{b}=(2,3,4)=$ $2 \boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}$.
2 The planes are the same: $2 x=4$ is $x=2,3 y=9$ is $y=3$, and $4 z=16$ is $z=4$. The solution is the same point $\boldsymbol{X}=\boldsymbol{x}$. The columns are changed; but same combination.
3 The solution is not changed! The second plane and row 2 of the matrix and all columns of the matrix (vectors in the column picture) are changed.
4 If $z=2$ then $x+y=0$ and $x-y=z$ give the point $(1,-1,2)$. If $z=0$ then $x+y=6$ and $x-y=4$ produce $(5,1,0)$. Halfway between those is $(3,0,1)$.
5 If x, y, z satisfy the first two equations they also satisfy the third equation. The line \mathbf{L} of solutions contains $\boldsymbol{v}=(1,1,0)$ and $\boldsymbol{w}=\left(\frac{1}{2}, 1, \frac{1}{2}\right)$ and $\boldsymbol{u}=\frac{1}{2} \boldsymbol{v}+\frac{1}{2} \boldsymbol{w}$ and all combinations $c \boldsymbol{v}+d \boldsymbol{w}$ with $c+d=1$.
6 Equation $1+$ equation $2-$ equation 3 is now $0=-4$. Line misses plane; no solution.
7 Column 3 = Column 1 makes the matrix singular. Solutions $(x, y, z)=(1,1,0)$ or $(0,1,1)$ and you can add any multiple of $(-1,0,1) ; \boldsymbol{b}=(4,6, c)$ needs $c=10$ for solvability (then \boldsymbol{b} lies in the plane of the columns).
8 Four planes in 4-dimensional space normally meet at a point. The solution to $A \boldsymbol{x}=$ $(3,3,3,2)$ is $\boldsymbol{x}=(0,0,1,2)$ if A has columns ($1,0,0,0$), ($1,1,0,0$), ($1,1,1,0$), $(1,1,1,1)$. The equations are $x+y+z+t=3, y+z+t=3, z+t=3, t=2$.
9 (a) $A \boldsymbol{x}=(18,5,0)$ and
(b) $A \boldsymbol{x}=(3,4,5,5)$.

10 Multiplying as linear combinations of the columns gives the same $A \boldsymbol{x}$. By rows or by columns: 9 separate multiplications for 3 by 3 .
$11 A \boldsymbol{x}$ equals $(14,22)$ and $(0,0)$ and $(9,7)$.
$12 A \boldsymbol{x}$ equals (z, y, x) and $(0,0,0)$ and $(3,3,6)$.
13 (a) \boldsymbol{x} has n components and $A \boldsymbol{x}$ has m components (b) Planes from each equation in $A \boldsymbol{x}=\boldsymbol{b}$ are in n-dimensional space, but the columns are in m-dimensional space.
$142 x+3 y+z+5 t=8$ is $A \boldsymbol{x}=\boldsymbol{b}$ with the 1 by 4 matrix $A=\left[\begin{array}{lll}2 & 3 & 1\end{array}\right]$ 5. The solutions \boldsymbol{x} fill a 3D "plane" in 4 dimensions. It could be called a hyperplane.
15 (a) $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(b) $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
1690° rotation from $R=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right], 180^{\circ}$ rotation from $R^{2}=\left[\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right]=-I$.
$17 P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ produces (y, z, x) and $Q=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ recovers $(x, y, z) . Q$ is the inverse of P.
$18 E=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$ and $E=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ subtract the first component from the second.
$19 E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$ and $E^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right], E \boldsymbol{v}=(3,4,8)$ and $E^{-1} E \boldsymbol{v}$ recovers $(3,4,5)$.
$20 P_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ projects onto the x-axis and $P_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ projects onto the y-axis. $\boldsymbol{v}=\left[\begin{array}{l}5 \\ 7\end{array}\right]$ has $P_{1} \boldsymbol{v}=\left[\begin{array}{l}5 \\ 0\end{array}\right]$ and $P_{2} P_{1} v=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
$21 R=\frac{1}{2}\left[\begin{array}{rr}\sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2}\end{array}\right]$ rotates all vectors by 45°. The columns of R are the results from rotating $(1,0)$ and $(0,1)$!
22 The dot product $A \boldsymbol{x}=\left[\begin{array}{lll}1 & 4 & 5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=(1$ by 3$)(3$ by 1$)$ is zero for points (x, y, z) on a plane in three dimensions. The columns of A are one-dimensional vectors.
$23 A=\left[\begin{array}{llll}1 & 2 & ; & 3\end{array}\right]$ and $\boldsymbol{x}=\left[\begin{array}{ll}5 & -2\end{array}\right]^{\prime}$ and $\boldsymbol{b}=\left[\begin{array}{ll}1 & 7\end{array}\right]^{\prime} . \boldsymbol{r}=\boldsymbol{b}-A * \boldsymbol{x}$ prints as zero.
$24 A * \boldsymbol{v}=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]^{\prime}$ and $\boldsymbol{v}^{\prime} * \boldsymbol{v}=50$. But $\boldsymbol{v} * A$ gives an error message from 3 by 1 times 3 by 3 .
25 ones $(4,4) *$ ones $(4,1)=\left[\begin{array}{cccc}4 & 4 & 4 & 4\end{array}\right]^{\prime} ; B * \boldsymbol{w}=\left[\begin{array}{cccc}10 & 10 & 10 & 10\end{array}\right]^{\prime}$.
26 The row picture has two lines meeting at the solution $(4,2)$. The column picture will have $4(1,1)+2(-2,1)=4($ column 1$)+2($ column 2$)=$ right side $(0,6)$.
27 The row picture shows 2 planes in 3-dimensional space. The column picture is in 2-dimensional space. The solutions normally lie on a line.

28 The row picture shows four lines in the 2D plane. The column picture is in fourdimensional space. No solution unless the right side is a combination of the two columns.
$29 \boldsymbol{u}_{2}=\left[\begin{array}{l}.7 \\ .3\end{array}\right]$ and $\boldsymbol{u}_{3}=\left[\begin{array}{l}.65 \\ .35\end{array}\right]$. The components add to 1 . They are always positive. $\boldsymbol{u}_{7}, \boldsymbol{v}_{7}, \boldsymbol{w}_{7}$ are all close to (.6, .4). Their components still add to 1 .
$30\left[\begin{array}{ll}.8 & .3 \\ .2 & .7\end{array}\right]\left[\begin{array}{l}.6 \\ .4\end{array}\right]=\left[\begin{array}{l}.6 \\ .4\end{array}\right]=$ steady state \boldsymbol{s}. No change when multiplied by $\left[\begin{array}{ll}.8 & .3 \\ .2 & .7\end{array}\right]$.
$31 \quad M=\left[\begin{array}{lll}8 & 3 & 4 \\ 1 & 5 & 9 \\ 6 & 7 & 2\end{array}\right]=\left[\begin{array}{ccc}5+u & 5-u+v & 5-v \\ 5-u-v & 5 & 5+u+v \\ 5+v & 5+u-v & 5-u\end{array}\right] ; M_{3}(1,1,1)=(15,15,15)$; $M_{4}(1,1,1,1)=(34,34,34,34)$ because $1+2+\cdots+16=136$ which is $4(34)$.
$32 A$ is singular when its third column \boldsymbol{w} is a combination $c \boldsymbol{u}+d \boldsymbol{v}$ of the first columns. A typical column picture has \boldsymbol{b} outside the plane of $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. A typical row picture has the intersection line of two planes parallel to the third plane. Then no solution.
$33 \boldsymbol{w}=(5,7)$ is $5 \boldsymbol{u}+7 \boldsymbol{v}$. Then $A \boldsymbol{w}$ equals 5 times $A \boldsymbol{u}$ plus 7 times $A \boldsymbol{v}$.
$34\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ has the solution $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}4 \\ 7 \\ 8 \\ 6\end{array}\right]$.
$35 \boldsymbol{x}=(1, \ldots, 1)$ gives $S \boldsymbol{x}=$ sum of each row $=1+\cdots+9=45$ for Sudoku matrices. 6 row orders $(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)$ are in Section 2.7. The same 6 permutations of blocks of rows produce Sudoku matrices, so $6^{4}=1296$ orders of the 9 rows all stay Sudoku. (And also 1296 permutations of the 9 columns.)

Problem Set 2.2, page 51

1 Multiply by $\ell_{21}=\frac{10}{2}=5$ and subtract to find $2 x+3 y=14$ and $-6 y=6$. The pivots to circle are 2 and -6.
$2-6 y=6$ gives $y=-1$. Then $2 x+3 y=1$ gives $x=2$. Multiplying the right side $(1,11)$ by 4 will multiply the solution by 4 to give the new solution $(x, y)=(8,-4)$.
3 Subtract $-\frac{1}{2}$ (or add $\frac{1}{2}$) times equation 1. The new second equation is $3 y=3$. Then $y=1$ and $x=5$. If the right side changes sign, so does the solution: $(x, y)=(-5,-1)$.
4 Subtract $\ell=\frac{c}{a}$ times equation 1. The new second pivot multiplying y is $d-(c b / a)$ or $(a d-b c) / a$. Then $y=(a g-c f) /(a d-b c)$.
$56 x+4 y$ is 2 times $3 x+2 y$. There is no solution unless the right side is $2 \cdot 10=20$. Then all the points on the line $3 x+2 y=10$ are solutions, including $(0,5)$ and $(4,-1)$. (The two lines in the row picture are the same line, containing all solutions).
6 Singular system if $b=4$, because $4 x+8 y$ is 2 times $2 x+4 y$. Then $g=32$ makes the lines become the same: infinitely many solutions like $(8,0)$ and $(0,4)$.
7 If $a=2$ elimination must fail (two parallel lines in the row picture). The equations have no solution. With $a=0$, elimination will stop for a row exchange. Then $3 y=-3$ gives $y=-1$ and $4 x+6 y=6$ gives $x=3$.

8 If $k=3$ elimination must fail: no solution. If $k=-3$, elimination gives $0=0$ in equation 2: infinitely many solutions. If $k=0$ a row exchange is needed: one solution.
9 On the left side, $6 x-4 y$ is 2 times $(3 x-2 y)$. Therefore we need $b_{2}=2 b_{1}$ on the right side. Then there will be infinitely many solutions (two parallel lines become one single line).
10 The equation $y=1$ comes from elimination (subtract $x+y=5$ from $x+2 y=6$). Then $x=4$ and $5 x-4 y=c=16$.
11 (a) Another solution is $\frac{1}{2}(x+X, y+Y, z+Z)$. (b) If 25 planes meet at two points, they meet along the whole line through those two points.
12 Elimination leads to an upper triangular system; then comes back substitution. $2 x+3 y+z=8$ $x=2$
$y+3 z=4$ gives $y=1$ If a zero is at the start of row 2 or 3 , $8 z=8 \quad z=1 \quad$ that avoids a row operation.
$132 x-3 y \quad 2 x-3 y=3 \quad 2 x-3 y=3 \quad x=3$ $4 x-5 y+z=7$ gives $y+z=1$ and $y+z=1$ and $y=1$ $2 x-y-3 z=5 \quad 2 y+3 z=2 \quad-5 z=0 \quad z=0$
Subtract $2 \times$ row 1 from row 2 , subtract $1 \times$ row 1 from row 3 , subtract $2 \times$ row 2 from row 3
14 Subtract 2 times row 1 from row 2 to reach $(d-10) y-z=2$. Equation (3) is $y-z=3$. If $d=10$ exchange rows 2 and 3 . If $d=11$ the system becomes singular.
15 The second pivot position will contain $-2-b$. If $b=-2$ we exchange with row 3. If $b=-1$ (singular case) the second equation is $-y-z=0$. A solution is $(1,1,-1)$.

Example of

$$
0 x+0 y+2 z=4
$$

16 (a) 2 exchanges

$$
x+2 y+2 z=5
$$

$0 x+3 y+4 z=6$
(exchange 1 and 2 , then 2 and 3)
(b)

Exchange $\quad 0 x+3 y+4 z=4$
but then $\quad x+2 y+2 z=5$
break down $0 x+3 y+4 z=6$ (rows 1 and 3 are not consistent)

17 If row $1=$ row 2 , then row 2 is zero after the first step; exchange the zero row with row 3 and there is no third pivot. If column $2=$ column 1 , then column 2 has no pivot.
18 Example $x+2 y+3 z=0,4 x+8 y+12 z=0,5 x+10 y+15 z=0$ has 9 different coefficients but rows 2 and 3 become $0=0$: infinitely many solutions.
19 Row 2 becomes $3 y-4 z=5$, then row 3 becomes $(q+4) z=t-5$. If $q=-4$ the system is singular-no third pivot. Then if $t=5$ the third equation is $0=0$. Choosing $z=1$ the equation $3 y-4 z=5$ gives $y=3$ and equation 1 gives $x=-9$.
20 Singular if row 3 is a combination of rows 1 and 2 . From the end view, the three planes form a triangle. This happens if rows $1+2$ = row 3 on the left side but not the right side: $x+y+z=0, x-2 y-z=1,2 x-y=4$. No parallel planes but still no solution.
21 (a) Pivots $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}$ in the equations $2 x+y=0, \frac{3}{2} y+z=0, \frac{4}{3} z+t=0, \frac{5}{4} t=5$ after elimination. Back substitution gives $t=4, z=-3, y=2, x=-1$.
(b) If the off-diagonal entries change from +1 to -1 , the pivots are the same. The solution is $(1,2,3,4)$ instead of $(-1,2,-3,4)$.
22 The fifth pivot is $\frac{6}{5}$ for both matrices (1's or -1 's off the diagonal). The nth pivot is $\frac{n+1}{n}$.

