$$
\begin{aligned}
& E_{1}-E_{2}=0.662 . \\
& E_{1}+E_{2}
\end{aligned}
$$

2.4. The Lorentz factor for $E_{\mu}=5 \mathrm{GeV}$ is $\gamma=E_{\mu} / m_{\mu}=47$. In its rest frame the distance of the Earth surface is $l_{0}=l / \gamma=630 \mathrm{~m}$. For $E_{\mu}=5 \mathrm{TeV}$, the distance of the Earth is $l_{0}=l / \gamma=0.63 \mathrm{~m}$. The first muon travels in a lifetime $\gamma \beta c \tau \simeq \gamma c \tau=28 \mathrm{~km}$, the second would travel 28000 km if it did not hit the surface first.
2.5. The Lorentz factor for $E_{\pi}=5 \mathrm{GeV}$ is $\gamma=E_{\pi} / m_{\pi}=36$. In its rest frame it sees the Earth's surface at the distance $l_{0}=l / \gamma=830 \mathrm{~m}$. In a lifetime it travels $\gamma c \tau=280 \mathrm{~m}$. We see that only a few such pions survive. To find them we must go to high altitude.
2.6. The momenta of the electrons are $p=0.3 B \rho=12 \mathrm{MeV}$. The gamma energy is $E_{i}=24 \mathrm{MeV}$.
2.8. Since the decay is isotropic, the probability of observing a photon is a constant $P\left(\cos \theta^{*}, \phi^{*}\right)=K$. We determine K by imposing that the probability of observing a photon at any angle is 2 , i. e. the number of photons.
We have $2=\int K \sin \theta^{*} d \theta^{*} d \phi=\int_{0}^{2 \pi} d \oint_{0}^{\pi} K d\left(\cos \theta^{*} \neq K 4 \pi\right.$. Hence $K=1 / 2 \pi \quad$ and $P\left(\cos \theta^{*}, \phi^{*}\right)=1 / 2 \pi$.
The distribution is isotropic in azimuth in L too. To have the dependence of θ, that is given by $P(\cos \theta) \equiv \frac{d N}{d \cos \theta}=\frac{d N}{d \cos \theta^{*}} \frac{d \cos \theta^{*}}{d \cos \theta}$, we must calculate the 'Jacobian' $J=\frac{d \cos \theta^{*}}{d \cos \theta}$.
Calling β and γ the Lorentz factors of the transformation and taking into account that $p^{*}=E^{*}$, we have

$$
\begin{aligned}
& p \cos \theta=\gamma\left(p^{*} \cos \theta^{*}+\beta E^{*}\right)=\gamma p^{*}\left(\cos \theta^{*}+\beta\right) \\
& E=p=\gamma\left(E^{*}+\beta p^{*} \cos \theta^{*}\right)=\gamma p^{*}\left(1+\beta \cos \theta^{*}\right)
\end{aligned}
$$

We differentiate the first and third members of these relationships, taking into account that p^{*} is a constant. We obtain
$d p \times \cos \theta+p \times d(\cos \theta)=\gamma p^{*} d\left(\cos \theta^{*}\right) \quad \Rightarrow \quad \frac{d p}{d \cos \theta^{*}} \cos \theta+p \frac{d \cos \theta}{d \cos \theta^{*}}=\gamma p^{*}$.
$d p=\gamma \beta p^{*} d\left(\cos \theta^{*}\right) \quad \Rightarrow \quad \frac{d p}{d \cos \theta^{*}}=\gamma \beta p^{*}$
and $J^{-1}=\frac{d \cos \theta}{d \cos \theta^{*}}=\gamma \frac{p^{*}}{p}(1-\beta \cos \theta)$.
The inverse transformation is $E^{*}=\gamma(E-\beta p \cos \theta)$, i. e. $p^{*}=\gamma p(1-\beta \cos \theta)$, giving $J^{-1}=\frac{d \cos \theta}{d \cos \theta^{*}}=\gamma^{2}(1-\beta \cos \theta)^{2}$.
Finally we obtain $P(\cos \theta) \equiv \frac{d N}{d \cos \theta}=\frac{1}{2 \pi} \gamma^{-2}(1-\beta \cos \theta)^{-2}$
2.10. $\mu_{e} / \mu_{\mu}=m_{\mu} / m_{e}=207 ; \quad \mu_{e} / \mu_{\tau}=m_{\tau} / m_{e}=3477$.
2.11. The energy needed to produce an antiproton is minimum when the Fermi motion is opposite to the beam direction. If E_{f} is the total energy of the target proton and p_{f} its momentum, the threshold condition is $\left(E_{p}+E_{f}\right)^{2}-\left(p_{p}-p_{f}\right)^{2}=\left(4 m_{p}\right)^{2}$. From this we have $E_{p} E_{f}+p_{p} p_{f}=7 m_{p}^{2}$. We simplify by setting $p_{p} \simeq E_{p}$ obtaining
$E_{p}=\frac{7 m_{p}^{2}}{E_{f}+p_{f}} \simeq \frac{7 m_{p}^{2}}{m_{p}+p_{f}} \simeq 7 m_{p}\left(1-\frac{p_{f}}{m_{p}}\right)=5.5 \mathrm{GeV}$.
This value should be compared to $E_{p}=6.6 \mathrm{GeV}$ on free protons.
2.12. By differentiating (1.79) we obtain $\Delta \theta=0.3 B L \Delta p / p^{2}$. The slit of opening d at the distance l defines the angle within $\Delta \theta=d / l$. The requested distance is then $l=\frac{d \times p}{0.3 B L \Delta p / p}=3.3 \mathrm{~m}$.
2.13. Considering the beam energy and the event topology, the event is probably an associate production of a K^{0} and a Λ. Consequently the V^{0} may be one of these two particles. The negative track is in both cases a π, while the positive track may be a π or a proton. We need to measure the mass of the V. With the given data we start by calculating the Cartesian components of the momenta
$p_{x}^{-}=121 \times \sin \left(-18.2^{\circ}\right) \cos 15^{\circ}=-36.5 \mathrm{MeV} ; p_{y}^{-}=121 \times \sin \left(-18.2^{\circ}\right) \sin 15^{\circ}=-9.8 \mathrm{MeV}$;
$p_{z}^{-}=121 \times \cos \left(-18.2^{\circ}\right)=115 \mathrm{MeV}$.
$p_{x}^{+}=1900 \times \sin \left(20.2^{\circ}\right) \cos \left(-15^{\circ}\right)=633.7 \mathrm{MeV} ; p_{y}^{-}=1900 \times \sin \left(20.2^{\circ}\right) \sin \left(-15^{\circ}\right)=-169.8 \mathrm{MeV}$; $p_{z}^{-}=1900 \times \cos \left(20.2^{\circ}\right)=1783.1 \mathrm{MeV}$.
Summing the components, we obtain the momentum of the V, i. e. $p=1998 \mathrm{MeV}$.
The energy of the negative pion is $E^{-}=\sqrt{\left(p^{-}\right)^{2}+m_{\pi}^{2}}=185 \mathrm{MeV}$. If the positive track is a π its energy is $E_{\pi}^{+}=\sqrt{\left(p^{+}\right)^{2}+m_{\pi}^{2}}=1905 \mathrm{MeV}$, while if it is a proton its energy is $E_{p}^{+}=2119 \mathrm{MeV}$. The energy of the V is $E_{\pi}^{V}=2090 \mathrm{MeV}$ in the first case, $E_{p}^{V}=2304 \mathrm{MeV}$ in the second case. The mass of the V is consequently $m_{\pi}^{\vee}=\sqrt{E_{\pi}^{V 2}-p^{2}}=620 \mathrm{MeV}$ in the first hypothesis, $m_{p}^{\mathrm{v}}=1150 \mathrm{MeV}$ in the second. Within the $\pm 4 \%$ uncertainty, the first hypothesis is incompatible with any known particle, while the second is compatible with the particle being a Λ.

2.14.

1. The CM energy squared is $s=\left(E_{v}+m_{n}\right)^{2}-p_{v}^{2}=m_{n}^{2}+2 m_{n} E_{v}$. The threshold condition is $s=\left(m_{e}+m_{p}\right)^{2}=m_{p}^{2}+m_{e}^{2}+2 m_{e} m_{p}$.
Hence, the threshold condition is $E_{v}=\frac{\left(m_{e}+m_{p}\right)^{2}-m_{n}^{2}}{2 m_{n}}<0$, meaning that there is no
threshold, the reaction proceeds also at zero neutrino energy.
2. The threshold condition is $s=\left(m_{\mu}+m_{p}\right)^{2}=m_{p}^{2}+m_{\mu}^{2}+2 m_{\mu} m_{p}$. The threshold energy is

$$
E_{v}=\frac{\left(m_{\mu}+m_{p}\right)^{2}-m_{n}^{2}}{2 m_{n}}=\frac{(105.7+938.3)^{2}-939.6^{2}}{2 \times 939.6}=110 \mathrm{MeV}
$$

3. The threshold energy is
$E_{v}=\frac{\left(m_{\tau}+m_{p}\right)^{2}-m_{n}^{2}}{2 m_{n}}=\frac{(1777+938.3)^{2}-939.6^{2}}{2 \times 939.6}=3.45 \mathrm{GeV}$.
2.15. We first find an expression valid in both cases. Call E_{71} and $p_{71}=E_{81}$ the energy and momentum of the initial photon and E_{12} and $p_{12}=E_{12}$ those of the final one. Similarly $E_{e 1}, p_{p 1}$ and $E_{e 2}, p_{p 2}$ for the electron.
The initial values of energies and momenta are given; hence the total energy and momentum and CM energy squared

$$
E_{T}=E_{e 1}+E_{\gamma 1} \quad p_{T}=p_{e 1}-E_{\gamma 1} \quad s=E_{T}^{2}-p_{T}^{2} .
$$

Energy conservation gives $E_{T}=E_{e 2}+E_{\gamma 2} \quad p_{T}=p_{e 2}-E_{\gamma 2}$.
We can eliminate the final energy and momentum of the electron by imposing $E_{e 2}^{2}-p_{e 2}^{2}=m_{e}^{2}$. $E_{e 2}=E_{T}-E_{\gamma 2} \quad p_{e 2}=p_{T}+E_{\gamma 2}$. Hence: $\left(E_{T}-E_{\gamma 2}\right)^{2}-\left(p_{T}+E_{\gamma 2}\right)^{2}=m_{e}^{2}$. Solving for E_{12} we have $E_{\gamma 2}=\frac{s-m_{e}^{2}}{2\left(E_{T}+p_{T}\right)}$.

1. We have, in MeV: $E_{\gamma 1}=0.511, E_{e 1}=0.511, p_{e 1}=0$.
$E_{T}=1.02, p_{T}=0.511, s=0.78$ and $E_{\gamma^{2}}=\frac{s-m_{e}^{2}}{2\left(E_{T}+p_{T}\right)}=\frac{0.78-0.511^{2}}{2(1.02+0.511)}=0.170 \mathrm{MeV}$.
2. We have $E_{\gamma 1}=0.511, E_{e 1}=1.02, p_{e 1}=\sqrt{1.02^{2}-0.511^{2}}=0.88$.
$E_{T}=1.53, p_{T}=0.511, s=2.08$ and $E_{\gamma 2}=\frac{s-m_{e}^{2}}{2\left(E_{T}+p_{T}\right)}=\frac{2.08-0.511^{2}}{2(1.53+0.511)}=0.446 \mathrm{MeV}$.
2.16. The LASER photon energy is $E_{\gamma i}=\frac{h}{\lambda}=\frac{1240 \mathrm{eV} \mathrm{nm}}{694 \mathrm{~nm}}=1.79 \mathrm{eV}$.

The electron initial momentum (we shall need its difference from energy) is

$$
p_{e i}=\sqrt{E_{e i}^{2}-m_{e}^{2}} \simeq E_{e i}-\frac{m_{e}^{2}}{2 E_{e i}}
$$

The total energy and momentum are $E_{T}=E_{e i}+E_{\gamma i} \quad p_{T}=p_{e i}-E_{\gamma i}$
Energy conservation gives $E_{T}=E_{e f}+E_{\gamma f} \quad p_{T}=E_{\gamma f}-p_{e f}$
We can eliminate the final energy and momentum of the electron by imposing $E_{e f}^{2}-p_{e f}^{2}=m_{e}^{2}$.
$E_{e f}=E_{T}-E_{\gamma f} \quad p_{e f}=E_{\gamma f}-p_{T}$. Hence: $\left(E_{T}-E_{\gamma f}\right)^{2}-\left(E_{\gamma f}-p_{T}\right)^{2}=m_{e}^{2}$. Solving for E_{f} we have $E_{\gamma f}=\frac{s-m_{e}^{2}}{2\left(E_{T}-p_{T}\right)}$.
$E_{T}-p_{T}=\left(E_{e i}+E_{\gamma i}\right)-\left(p_{e i}-E_{\gamma i}\right) \simeq \frac{m_{e}^{2}}{2 E_{e i}}+2 E_{\gamma i}=$
$=\frac{0.5^{2} \times 10^{-6}}{2 \times 20}+2 \times 1.79 \times 10^{-9}=(6.25+3.58) 10^{-9} \mathrm{GeV}=9.83 \mathrm{eV}$
$s=\left(E_{\gamma i}+E_{e i}\right)^{2}-\left(E_{\gamma i}-p_{e i}\right)^{2}=m_{e}^{2}+4 E_{\gamma i} E_{e i}$. Hence
$s-m_{e}^{2}=4 E_{\gamma i} E_{e i}=4 \times 1.79 \times 20 \times 10^{9} \mathrm{eV}^{2}=14.3 \times 10^{10} \mathrm{eV}^{2}$, and
$E_{\gamma f}=\frac{s-m_{e}^{2}}{2\left(E_{T}-p_{T}\right)}=\frac{14.3 \times 10^{10}}{2 \times 9.83}=7.3 \mathrm{GeV}$
2.17. The kinetic energy is $T=\sqrt{p^{2}+m^{2}}-m$

For a proton we have $T=\sqrt{23^{2}+938.3^{2}}-938.3=280 \mathrm{keV}$
For a positron we have $T=\sqrt{23^{2}+0.51^{2}}-0.51=22.5 \mathrm{MeV}$
2.18. $E \simeq p=0.3 B R=0.3 \times 0.3 \times 0.14=12.6 \mathrm{MeV}$.
2.19. In problem 2.1 we already calculated the CM momentum $p^{*}=\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}=29.8 \mathrm{MeV}$. The CM muon energy is $E_{\mu}^{*}=\sqrt{p^{* 2}+m_{\mu}^{2}}=110 \mathrm{MeV}$. For the Lorentz transformation to the L frame we have $\beta \simeq 1$ and $\gamma=\frac{E_{\pi}}{m_{\pi}}=\frac{200}{0.14}=1400$. The maximum and minimum muon

