$$\begin{array}{c} E_1 - E_2 \\ E_1 + E_2 \end{array} = 0.662 \, . \end{array}$$

2.4. The Lorentz factor for $E_{\mu}=5$ GeV is $\gamma = E_{\mu} / m_{\mu} = 47$. In its rest frame the distance of the Earth surface is $l_0 = l / \gamma = 630$ m. For $E_{\mu}=5$ TeV, the distance of the Earth is $l_0 = l / \gamma = 0.63$ m. The first muon travels in a lifetime $\gamma\beta c\tau \simeq \gamma c\tau = 28$ km, the second would travel 28 000 km if it did not hit the surface first.

2.5. The Lorentz factor for E_{π} =5 GeV is $\gamma = E_{\pi} / m_{\pi} = 36$. In its rest frame it sees the Earth's surface at the distance $l_0 = l / \gamma = 830$ m. In a lifetime it travels $\gamma c\tau = 280$ m. We see that only a few such pions survive. To find them we must go to high altitude.

2.6. The momenta of the electrons are $p = 0.3B\rho = 12$ MeV. The gamma energy is $E_r = 24$ MeV. **2.8.** Since the decay is isotropic, the probability of observing a photon is a constant $P(\cos\theta^*, \phi^*) = K$. We determine K by imposing that the probability of observing a photon at any angle is 2, i. e. the number of photons.

We have
$$2 = \int K \sin\theta^* d\theta^* d\phi = \int_0^{2\pi} d\phi_0^\pi K d(\cos\theta^*) = K 4\pi$$
. Hence $K = 1/2\pi$ and $P(\cos\theta^*, \phi^*) = 1/2\pi$.

The distribution is isotropic in azimuth in L too. To have the dependence of θ , that is given by $P(\cos\theta) = \frac{dN}{d\cos\theta} = \frac{dN}{d\cos\theta^*} \frac{d\cos\theta^*}{d\cos\theta}$, we must calculate the 'Jacobian' $J = \frac{d\cos\theta^*}{d\cos\theta}$. Calling θ and γ , the Lorentz factors of the transformation and taking into account that $p^* = F^*$.

Calling β and γ the Lorentz factors of the transformation and taking into account that $p^* = E^*$, we have

$$p\cos\theta = \gamma \left(p^* \cos\theta^* + \beta E^* \right) = \gamma p^* \left(\cos\theta^* + \beta \right)$$
$$E = p = \gamma \left(E^* + \beta p^* \cos\theta^* \right) = \gamma p^* \left(1 + \beta \cos\theta^* \right).$$

We differentiate the first and third members of these relationships, taking into account that p^* is a constant. We obtain

$$dp \times \cos\theta + p \times d(\cos\theta) = \gamma p^* d(\cos\theta^*) \implies \frac{dp}{d\cos\theta^*} \cos\theta + p \frac{d\cos\theta}{d\cos\theta^*} = \gamma p^*$$
$$dp = \gamma \beta p^* d(\cos\theta^*) \implies \frac{dp}{d\cos\theta^*} = \gamma \beta p^*$$
and $J^{-1} = \frac{d\cos\theta}{d\cos\theta^*} = \gamma \frac{p^*}{p} (1 - \beta \cos\theta).$

The inverse transformation is $E^* = \gamma (E - \beta p \cos \theta)$, i. e. $p^* = \gamma p (1 - \beta \cos \theta)$, giving $J^{-1} = \frac{d \cos \theta}{d \cos \theta^*} = \gamma^2 (1 - \beta \cos \theta)^2.$

Finally we obtain $P(\cos\theta) = \frac{dN}{d\cos\theta} = \frac{1}{2\pi}\gamma^{-2}(1-\beta\cos\theta)^{-2}$

2.10. $\mu_e / \mu_\mu = m_\mu / m_e = 207;$ $\mu_e / \mu_\tau = m_\tau / m_e = 3477.$

2.11. The energy needed to produce an antiproton is minimum when the Fermi motion is opposite to the beam direction. If E_f is the total energy of the target proton and p_f its momentum, the threshold condition is $(E_p+E_f)^2-(p_p-p_f)^2=(4m_p)^2$. From this we have $E_pE_f + p_pp_f = 7m_p^2$. We simplify by setting $p_p \simeq E_p$ obtaining

$$E_{p} = \frac{7m_{p}^{2}}{E_{f} + p_{f}} \simeq \frac{7m_{p}^{2}}{m_{p} + p_{f}} \simeq 7m_{p} \left(1 - \frac{p_{f}}{m_{p}}\right) = 5.5 \text{ GeV}.$$

This value should be compared to $E_p=6.6$ GeV on free protons.

2.12. By differentiating (1.79) we obtain $\Delta \theta = 0.3BL\Delta p / p^2$. The slit of opening *d* at the distance *l* defines the angle within $\Delta \theta = d/l$. The requested distance is then $l = \frac{d \times p}{0.3BL\Delta p / p} = 3.3 \text{ m}$.

2.13. Considering the beam energy and the event topology, the event is probably an associate production of a K^0 and a Λ . Consequently the V^0 may be one of these two particles. The negative track is in both cases a π , while the positive track may be a π or a proton. We need to measure the mass of the V. With the given data we start by calculating the Cartesian components of the momenta

$$p_x^- = 121 \times \sin(-18.2^\circ) \cos 15^\circ = -36.5 \text{ MeV}; p_y^- = 121 \times \sin(-18.2^\circ) \sin 15^\circ = -9.8 \text{ MeV};$$

 $p_z^- = 121 \times \cos(-18.2^\circ) = 115 \text{ MeV}.$
 $p_x^+ = 1900 \times \sin(20.2^\circ) \cos(-15^\circ) = 633.7 \text{ MeV}; p_y^- = 1900 \times \sin(20.2^\circ) \sin(-15^\circ) = -169.8 \text{ MeV};$
 $p_z^- = 1900 \times \cos(20.2^\circ) = 1783.1 \text{ MeV}.$

Summing the components, we obtain the momentum of the V, i. e. p = 1998 MeV.

The energy of the negative pion is $E^- = \sqrt{(p^-)^2 + m_\pi^2} = 185$ MeV. If the positive track is a π its energy is $E_\pi^+ = \sqrt{(p^+)^2 + m_\pi^2} = 1905$ MeV, while if it is a proton its energy is $E_p^+ = 2119$ MeV. The energy of the V is $E_\pi^V = 2090$ MeV in the first case, $E_p^V = 2304$ MeV in the second case. The mass of the V is consequently $m_\pi^V = \sqrt{E_\pi^{V2} - p^2} = 620$ MeV in the first hypothesis, $m_p^V = 1150$ MeV in the second. Within the $\pm 4\%$ uncertainty, the first hypothesis is incompatible with any known particle, while the second is compatible with the particle being a Λ . **2.14.**

1. The CM energy squared is
$$s = (E_v + m_n)^2 - p_v^2 = m_n^2 + 2m_n E_v$$
. The threshold condition is
 $s = (m_e + m_p)^2 = m_p^2 + m_e^2 + 2m_e m_p$.
 $(m_e + m_p)^2 = m_p^2$

Hence, the threshold condition is $E_v = \frac{(m_e + m_p) - m_n^2}{2m_n} < 0$, meaning that there is no

threshold, the reaction proceeds also at zero neutrino energy.

2. The threshold condition is $s = (m_{\mu} + m_{p})^{2} = m_{p}^{2} + m_{\mu}^{2} + 2m_{\mu}m_{p}$. The threshold energy is

$$E_{v} = \frac{\left(m_{\mu} + m_{p}\right)^{2} - m_{n}^{2}}{2m_{n}} = \frac{\left(105.7 + 938.3\right)^{2} - 939.6^{2}}{2 \times 939.6} = 110 \text{ MeV}$$

3. The threshold energy is

$$E_{v} = \frac{\left(m_{\tau} + m_{p}\right)^{2} - m_{n}^{2}}{2m_{n}} = \frac{\left(1777 + 938.3\right)^{2} - 939.6^{2}}{2 \times 939.6} = 3.45 \text{ GeV}.$$

2.15. We first find an expression valid in both cases. Call E_{r_1} and $p_{r_1} = E_{r_1}$ the energy and momentum of the initial photon and E_{r_2} and $p_{r_2} = E_{r_2}$ those of the final one. Similarly E_{e_1} , p_{p_1} and E_{e_2} , p_{p_2} for the electron.

The initial values of energies and momenta are given; hence the total energy and momentum and CM energy squared

$$E_{T} = E_{e1} + E_{\gamma 1} \qquad p_{T} = p_{e1} - E_{\gamma 1} \qquad s = E_{T}^{2} - p_{T}^{2} .$$

Energy conservation gives $E_{T} = E_{e2} + E_{\gamma 2} \qquad p_{T} = p_{e2} - E_{\gamma 2} .$

We can eliminate the final energy and momentum of the electron by imposing $E_{e2}^2 - p_{e2}^2 = m_e^2$.

$$E_{e2} = E_T - E_{\gamma 2} \qquad p_{e2} = p_T + E_{\gamma 2} \text{ . Hence: } \left(E_T - E_{\gamma 2}\right)^2 - \left(p_T + E_{\gamma 2}\right)^2 = m_e^2 \text{ . Solving for } E_{\gamma 2}$$

we have $E_{\gamma 2} = \frac{s - m_e^2}{2(E_T + p_T)}$.

1. We have, in MeV:
$$E_{\gamma 1} = 0.511$$
, $E_{e1} = 0.511$, $p_{e1} = 0$.
 $E_T = 1.02$, $p_T = 0.511$, $s = 0.78$ and $E_{\gamma 2} = \frac{s - m_e^2}{2(E_T + p_T)} = \frac{0.78 - 0.511^2}{2(1.02 + 0.511)} = 0.170$ MeV.
2. We have $E_{\gamma 1} = 0.511$, $E_{e1} = 1.02$, $p_{e1} = \sqrt{1.02^2 - 0.511^2} = 0.88$.
 $E_T = 1.53$, $p_T = 0.511$, $s = 2.08$ and $E_{\gamma 2} = \frac{s - m_e^2}{2(E_T + p_T)} = \frac{2.08 - 0.511^2}{2(1.53 + 0.511)} = 0.446$ MeV.
2.16. The LASER photon energy is $E_{\gamma i} = \frac{h}{\lambda} = \frac{1240 \text{ eV nm}}{694 \text{ nm}} = 1.79$ eV.

The electron initial momentum (we shall need its difference from energy) is

$$p_{ei} = \sqrt{E_{ei}^2 - m_e^2} \simeq E_{ei} - \frac{m_e^2}{2E_{ei}}$$

The total energy and momentum are $E_T = E_{ei} + E_{\gamma i}$ $p_T = p_{ei} - E_{\gamma i}$ Energy conservation gives $E_T = E_{ef} + E_{\gamma f}$ $p_T = E_{\gamma f} - p_{ef}$

We can eliminate the final energy and momentum of the electron by imposing $E_{ef}^2 - p_{ef}^2 = m_e^2$.

 $E_{ef} = E_T - E_{\gamma f} \qquad p_{ef} = E_{\gamma f} - p_T \text{ . Hence: } \left(E_T - E_{\gamma f}\right)^2 - \left(E_{\gamma f} - p_T\right)^2 = m_e^2 \text{ . Solving for } E_{f}$ we have $E_{\gamma f} = \frac{s - m_e^2}{2(E_T - p_T)}$.

$$E_{T} - p_{T} = \left(E_{ei} + E_{\gamma i}\right) - \left(p_{ei} - E_{\gamma i}\right) \approx \frac{m_{e}^{2}}{2E_{ei}} + 2E_{\gamma i} =$$

$$= \frac{0.5^{2} \times 10^{-6}}{2 \times 20} + 2 \times 1.79 \times 10^{-9} = (6.25 + 3.58)10^{-9} \text{ GeV} = 9.83 \text{ eV}$$

$$s = \left(E_{\gamma i} + E_{ei}\right)^{2} - \left(E_{\gamma i} - p_{ei}\right)^{2} = m_{e}^{2} + 4E_{\gamma i}E_{ei}. \text{ Hence}$$

$$s - m_{e}^{2} = 4E_{\gamma i}E_{ei} = 4 \times 1.79 \times 20 \times 10^{9} \text{ eV}^{2} = 14.3 \times 10^{10} \text{ eV}^{2}, \text{ and}$$

$$E_{\gamma f} = \frac{s - m_{e}^{2}}{2\left(E_{T} - p_{T}\right)} = \frac{14.3 \times 10^{10}}{2 \times 9.83} = 7.3 \text{ GeV}$$

2.17. The kinetic energy is $T = \sqrt{p^2 + m^2} - m$ For a proton we have $T = \sqrt{23^2 + 938.3^2} - 938.3 = 280$ keV For a positron we have $T = \sqrt{23^2 + 0.51^2} - 0.51 = 22.5$ MeV **2.18.** $E \simeq p = 0.3BR = 0.3 \times 0.3 \times 0.14 = 12.6$ MeV.

2.19. In problem 2.1 we already calculated the CM momentum $p^* = \frac{m_{\pi}^2 - m_{\mu}^2}{2m_{\pi}} = 29.8 \text{ MeV}$. The CM muon energy is $E_{\mu}^* = \sqrt{p^{*2} + m_{\mu}^2} = 110 \text{ MeV}$. For the Lorentz transformation to the L frame we have $\beta \approx 1$ and $\gamma = \frac{E_{\pi}}{m_{\pi}} = \frac{200}{0.14} = 1400$. The maximum and minimum muon