
1 Solutions to Odd Numbered
Problems
Random Processes for Engineers

1.1 Simple events (a) Ω = {0, 1}8, or Ω = {x1x2x3x4x5x6x7x8 : xi ∈ {0, 1}
for each i}. It is natural to let F be the set of all subsets of Ω. Finally, let

P (A) = |A|
256 , where |A| denotes the cardinality of a set |A|.

(b) E1 = {01010101, 10101010} and P (E1) = 2
256 = 1

128 .

E2 = {00110011, 01100110, 11001100, 10011001} and P (E2) = 4/256 = 1/64.

E3 = {x ∈ Ω : x1 + · · ·+ x8 = 4} and P (E2) =
(

8
4

)
/256 = 70/256 = 35/128.

E4 = {11111111, 11111110, 11111101, 10111111, 01111111, 00111111, 01111110,

11111100} and P (E4) = 8/256 = 1/32.

(c) E1 ⊂ E3, so P (E1|E3) = |E1|/|E3| = 2/70 = 1/35.

E2 ⊂ E3, so P (E2|E3) = |E2|/|E3| = 4/70 = 2/35.

1.3 Ordering of three random variables P{X < u < Y } = P{X < u}P{u <
Y } = (1− e−λu)e−λu = e−λu − e−2λu. Averaging over the choices of u using the

pdf of U yields,

P{X < U < Y } =

∫ 1

0

e−λu − e−2λudu =
0.5− e−λ + 0.5e−2λ

λ
.

1.5 Congestion at output ports (a) One possibility is Ω = {1, 2, . . . , 8}4 =

{(d1, d2, d3, d4) : 1 ≤ di ≤ 8 for 1 ≤ i ≤ 4}, where the packets are assumed to be

numbered one through four, and di is the output port of packet i. Let F be all

the subsets of Ω, and for any event A, let P (A) = |A|
84 .

(b)

P{X1 = k1, . . . , X8 = k8} =
1

84

(
4

k1k2 · · · k8

)

where
(

4
k1k2···k8

)
= 4!

k1!k2!···k8! is the multinomial coefficient.

(c) One way to do this problem is to note that Xj =
∑4
i=1Xij , where Xij = 1 if

packet i is routed to output port j, and Xij = 0 otherwise. Suppose j 6= j′. Then

XijXij′ ≡ 0, and so also, E[XijXij′ ] = 0. Thus, Cov(Xij , Xij′) = 0− 1
8

2
= − 1

64 .
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Also, Cov(Xij , Xi′j′) = 0 if i 6= i′. Thus,

Cov(Xj , Xj′) = Cov(
4∑

i=1

Xij ,
4∑

i′=1

Xi′j′)

=
4∑

i=1

4∑

i′=1

Cov(Xij , Xi′j′)

=
4∑

i=1

Cov(Xij , Xij′) = 4(− 1

64
) = − 1

16
.

(d) Consider the packets one at a time in order. The first packet is routed to

a random output port. The second is routed to a different output port with

probability 7
8 . Given the first two packets are routed to different output ports, the

third packet is routed to yet another output port with probability 6
8 . Similarly,

given the first three packets are routed to distinct output ports, the fourth packet

is routed to yet another output port with probability 5
8 . The answer is thus

8·7·6·5
84 = 105

256 ≈ 0.410.

(e) The event is not true if and only if there are either exactly 3 packets assigned

to one output port or all four packets assigned to one output port. There are

4 · 8 · 7 possibilities for exactly three packets to be assigned to one output port,

since there are four choices for which packet is not with the other three, eight

choices of output port for the group of three, and given that, seven choices of

output port for the fourth packet. There are 8 possibilities for all four packets to

be routed to the same output port. Thus, some output port has three or more

packets assigned to it with probability 4·8·7+8
84 = 4·7+1

83 = 29
512 ≈ 0.0566. Thus,

P{Xi ≤ 2 for all i} = 1− 29
512 ≈ 0.9434.

1.7 Conditional probability of failed device given failed attempts (a) P (first

attempt fails)=0.2+(0.8)(0.1)=0.28

(b) P (server is working | first attempt fails ) =

P (server working, first attempt fails)/P (first attempt fails) =(0.8)(0.1)/0.28≈
0.286

(c) P (second attempt fails | first attempt fails ) =P (first two attempts fail)/P (first

attempt fails) = [0.2 + (0.8)(0.1)2]/0.28 ≈0.783

(d) P (server is working | first and second attempts fail ) =P (server is work-

ing and first two attempts fail)/P (first two attempts fail) = (0.8)(0.1)2/[0.2 +

(0.8)(0.1)2] ≈0.0385

1.9 Conditional lifetimes; memoryless property of the geometric distribution

(a) P{X > 3} = 1 − p(3) = 0.8, P (X > 8|X > 5) = P ({X>8}∩{X>5})
P{X>5} =

P{X>8}
P{X>5} = 0

0.40 = 0.

(So a five year old working battery is not equivalent to a new one!)

(b) P{Y > 3} = P (miss first three shots) = (1− p)3. On the other hand,

P (Y > 8|Y > 5) =
P ({Y > 8} ∩ {Y > 5})

P{Y > 5} =
P{Y > 8}
P{Y > 5} =

(1− p)8

(1− p)5
= (1− p)3.
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(A player that has missed five shots is equivalent to a player just starting to take

shots.)

(c) Y has a geometric distribution. (Part (b) illustrates the fact that the geomet-

ric distribution is the memoryless lifetime distribution on the positive integers.

The exponential distribution is the continuous type distribution with the same

property.)

1.11 Distribution of the flow capacity of a network One way to solve this prob-

lem is to compute X for each of the 32 outcomes for the links. Another is to use

divide and conquer by conditioning on the state of a key link, such as link 4.

P{X = 0} = P (((F1F3) ∪ (F2F5))F c4 ) + P ((F1 ∪ F2)(F3 ∪ F5)F4)

= ((0.2)2 + (0.2)2 − (0.2)4)(0.8) + (0.2 + 0.2− (0.2)2)2(0.2) = 0.08864.

P{X = 10} = P (F c1F
c
3 (F2F5)cF c4 ) + P (F c1F

c
2F

c
3F

c
5F4)

= (0.8)3(1− (0.2)2) + (0.8)4(0.2) = 0.57344.

P{X = 5} = 1− P{X = 0} − P{X = 10} = 0.33792.

1.13 A CDF of mixed type (a) FX(0.8) = 0.5.

(b) There is a half unit of probability mass at zero and a density of value 0.5

between 1 and 2. Thus, E[X] = 0× 0.5 +
∫ 2

1
x(0.5)dx = 3/4 and,

(c) E[X2] = 02 × 0.5 +
∫ 2

1
x2(0.5)dx = 7/6. So Var(X) = 7/6 − (3/4)2 = 29/48

.

1.15 Poisson and geometric random variables with conditioning

(a) P{Y < Z} =
∑∞
i=0

∑∞
j=i+1

e−µµi

i! p(1− p)j−1 =
∑∞
i=0

e−µ[µ(1−p)]i
i! = e−µp

(b) P (Y < Z|Z = i) = P (Y < i|Z = i) = P{Y < i} =
∑i−1
j=0

e−µµj

j!

(c) P (Y = i|Y < Z) = P{Y = i < Z}/P{Y < Z} =
(
e−µµi

i! (1− p)i
)
/e−µp =

e−µ(1−p)[µ(1−p)]i
i! , which is the Poisson distribution with mean µ(1− p)

(d) µ(1− p)
1.17 Transformation of a random variable (a) Observe that Y takes values in

the interval [1,+∞).

FY (c) = P{exp(X) ≤ c} =

{
P{X ≤ ln c} = 1− exp(−λ ln c) = 1− c−λ c ≥ 1

0 c < 1

Differentiate to obtain

fY (c) =

{
λc−(1+λ) c ≥ 1

0 c < 1

(b) Observe that Z takes values in the interval [0, 3].

FZ(c) = P{min{X, 3} ≤ c} =





0 c < 0

P{X ≤ c} = 1− exp(−λc) 0 ≤ c < 3

1 c ≥ 3

The random variable Z is neither discrete nor continuous type. Rather it is a



4 Solutions to Odd Numbered Problems Random Processes for Engineers

mixture, having a density over the interval [0, 3) and a discrete mass at the point

3.

1.19 Moments and densities of functions of a random variable

E[C] = 2E[L] + 2E[W ] = 2 Var(C) = 4Var(L) + 4Var(W ) = 2
3 The pdf

of C is the convolution of the pdf of 2L with the pdf of 2W . But 2L and 2W

are each uniformly distributed over the interval [0, 2], so their pdfs are rectangu-

lar pulse functions. The convolution of such a function with itself is a triangular

pulse function. The base of the triangle, equal to the support of fC , is the interval

[0, 4]. The peak of the triangle is at the midpoint, and must have height 1/2 in or-

der that the area of the triangle be one. Therefore, fC(x) =





x/4 0 ≤ x ≤ 2
4−x

4 2 ≤ x ≤ 4

0 else

E[A] = E[L]E[W ] = ( 1
2 )2 = 1

4 E[A2] = E[L2]E[W 2] = ( 1
3 )2 = 1

9 so

Var(A) = 1
9 − ( 1

4 )2 = 7
144 .

For 0 ≤ c ≤ 1, P{A ≤ c} =area of {(x, y) ∈ [0, 1]2 : xy ≤ c} = c +
∫ 1

c
c
xdx =

c(1− ln c), so fA(c) =

{ − ln(c) 0 ≤ c ≤ 1

0 else

1.21 Using the Gaussian Q function (a) P{X ≥ 16} = P{X−10
3 > 16−10

3 } =

Q( 16−10
3 ) = Q(2).

(b) P{X2 ≥ 16} = P{X ≥ 4} + P{X ≤ −4} = Q( 4−10
3 ) + 1 − Q(−4−10

3 ) =

Q(−2) + 1−Q(− 14
3 ) = 1−Q(2) +Q( 14

3 ).

(c) Z is N(0, 5) so P{|Z| > 1} = P{Z > 1} + P{Z < −1} = Q( 1√
5
) + 1 −

Q(− 1√
5
) = 2Q( 1√

5
).

1.23 Correlation of histogram values (a) X1 is Bernoulli( 1
6 ), so E[X1] = 1

6

and Var(X1) = 1
6 (1− 1

6 ) = 5
36 .

(b) E[X] = nE[X1] = n
6 and Var(X) = nVar(X1) = 5n

36 .

(c) We begin by computing Cov(X1, Y1). Since X1Y1 = 0 with probability one,

E[X1Y1] = 0. Therefore Cov(X1, Y1) = E[X1Y1]− E[X1]E[Y1] = 0− 1
6

1
6 = −1

36 .

So Cov(Xi, Yi) = −1
36 for any i. On the other hand, if i 6= j thenXi is independent

of Xj . So

Cov(Xi, Yj) =

{ −1
36 if i = j

0 if i 6= j

(d)

Cov(X,Y ) =
∑

i

∑

j

Cov(Xi, Yj) =
∑

i

Cov(Xi, Yi) = nCov(X1, Y1) =
−n
36

.

and

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=
−1

5
.

(e) Given that x of the dice show a 1, each of the remaining dice is equally likely
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to show 2,3,4,5, or 6. Thus, each of the remaining n − x dice shows a 2 with

conditional probability 1
5 . Therefore E[Y |X = x] = n−x

5 .

1.25 A function of jointly distributed random variables The square has unit

area so that the joint density is unit valued within the square. The range of

X is the interval [0, 1], so fix c in [0, 1] and consider the event {UV ≤ c}. The

probability of this event is the area of the square minus the upper right region

above the curve v = c/u. This area is one minus the area of the region inside the

square above the curve v = c/u. Therefore,

FX(c) =





0 c ≤ 0

1−
∫ 1

c
(1− c

u )du = c− c ln c 0 ≤ c ≤ 1

1 c ≥ 1

Differentiating yields

fX(c) =

{ − ln c 0 < c ≤ 1

0 else

1.27 Working with a two dimensional density (a) The parallelogram has base

and height one, and thus area one, so that the density is one on the region.

(b) By inspection, fX(x) =





0.5x 0 ≤ x ≤ 1

0.5 1 ≤ x ≤ 2

0.5(3− x) 2 ≤ x ≤ 3

0 else
(c) Since the density of X is symmetric about 1.5 and the mean exists, E[X] =

1.5. E[X2] = 0.5[
∫ 1

0
x3dx+

∫ 2

1
x2dx+

∫ 3

2
x2(3− x)dx] = 0.5[ 1

4 + 7
3 + 11

4 ] = 8
3 , so

Var(X) = 8
3 − ( 3

2 )2 = 5
12 . A slicker way to find the variance is to observe the X

has the same distribution as U1 + 2U2, where U1 and U2 are independent and

uniformly distributed over [0, 1], so Var(X) = Var(U1) + 4Var(U2) = 5
12 .

(d) If 0 ≤ x ≤ 1, the conditional density of Y given X = x is the uniform density

over the interval [0, x2 ]. That is, for 0 < x ≤ 1: fY |X(y|x) =

{
2
x 0 ≤ y ≤ x

2

0 else
(e) By inspection, if 1 ≤ x ≤ 2, the conditional density of Y given X = x is the

uniform density over the interval [x−1
2 , x2 ]. That is, for 1 < x ≤ 2: fY |X(y|x) ={

2 x−1
2 ≤ y ≤ x

2

0 else
(f) E[Y |X = x] is well defined over the support of fX , namely, over the interval

[0, 3]. For each X in this interval, the conditional density of Y give X = x

is a uniform density, so the conditional mean is the midpoint of the interval.

Therefore. E[Y |X = x] =





x/4 0 ≤ x ≤ 1

(x− 0.5)/2 1 ≤ x ≤ 2

(x+ 1)/4 2 ≤ x ≤ 3

undefined x 6∈ [0, 3]

1.29 Uniform density over a union of two square regions (a) Region has area

2 so the density function is 1/2 in the region and zero outside.
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(b) fX(x) =

{
0.5 if |x| ≤ 1

0 else

(c) If 0 < a ≤ 1, fY |X(y|a) =

{
1 if 0 ≤ y ≤ 1

0 else

(d) If −1 ≤ a < 0, fY |X(y|a) =

{
1 if − 1 ≤ y ≤ 0

0 else

(e) E[Y |X = a] =

{ −0.5 if − 1 ≤ a < 0

0.5 if 0 < a < 1

(f) E[X] = E[Y ] = 0, Var(X) = E[X2] = 1/3, Var(Y ) = 1/3,

E[XY ] = 1
2

∫ 1

0

∫ 1

0
xydxdy + 1

2

∫ 0

−1

∫ 0

−1
xydxdy =

∫ 1

0

∫ 1

0
xydxdy = 1/4. So ρXY =

1/4√
1/3×1/3

= 3
4 .

(g) No, because fXY (x, y) doesn’t factor into the product of a function of x and

a function of y.

(h) The range of Z is [−2, 2]. fZ(z) =





|z|/2 if − 0 ≤ |z| ≤ 1

1− |z|/2 if 1 ≤ |z| ≤ 2

0 else

(Shape is

two triangles.)

1.31 Transformation of densities (a)
∫ 1

0

∫ 1

0
(u − v)2dudv =

∫ 1

0

∫ 1

0
(u2 − 2uv +

v2)dudv = 1
6 , so c = 6.

(b) The map from the u, v plane to the x, y plane given by x = u2 and y = u2v2

maps the unit square [0, 1] × [0, 1] into the triangular region 0 ≤ y ≤ x ≤ 1 in

one-to-one fashion. The inverse mapping is given by u = v1/2 and v = (y/x)1/2.

Also,
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ =

∣∣∣∣
2u 0

2uv2 2u2v

∣∣∣∣ = 4u3v = 4xy1/2. Therefore,

fXY (x, y) = fUV (u, v)

∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣
−1

=

{
6(x1/2 − (y/x)1/2)2 1

4xy1/2
if 0 ≤ y ≤ x ≤ 1

0 else

1.33 Transformation of joint densities To be definite, assume
(
X
Y

)
takes val-

ues in the positive quadrant of the u − v plane and
(
W
Z

)
takes values in the

α − β plane. We have
(
W
Z

)
= g

(
X
Y

)
where the transformation g is given by

α = u− v and β = u2 + u− v. The transformation is invertible. In fact, we see

that u =
√
β − α and v =

√
β − α− α, for (α, β) in the range of g, which is the

set {(α, β) : β > α+(max{0, α})2}. (To understand the geometry of the function

better, note as u varies over u > 0 with v = 0 the function g(u, v) traces out the

curve β = α2 +α for α > 0. Then for any u fixed with u > 0, the function g(u, v)

traces out a half line of slope one as v ranges over v > 0.) The determinant of

the Jacobian of g is given by

det(J) = det

(
1 −1

2u −1

)
= u =

√
β − α.
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Therefore,

fW,Z(α, β) =
fX,Y (u.v)

det J
=

{
exp(−λ(2

√
β−α−α))√

β−α β > α+ (max{0, α})2

0 else

1.35 Conditional densities and expectations

(a)

E[XY ] =

∫ 1

0

∫ u

0

uv(4u2)dvdu

=

∫ 1

0

4u3

(∫ u

0

vdv

)
du

=

∫ 1

0

2u5du =
1

3
.

(b)

fY (v) =

∫ 1

v

4u2 du =

{
4
3 (1− v3), 0 ≤ v ≤ 1

0, elsewhere

(c)

fX|Y (u|v) =





0, 0 < v < 1, 0 < u < v

4u2

4
3 (1−v3)

= 3u2

1−v3 , 0 < v < 1, v < u < 1

undefined, v < 0 or v > 1

(d) For 0 < v < 1, E[X2|Y = v] =
∫ 1

v
u2 3u2

1−v3 du = 3
5

1−v5
1−v3

2.1 Limits and infinite sums for deterministic sequences (a) Before beginning

the proof we observe that | cos(θ)| ≤ 1, so |θ(1 + cos(θ))| ≤ 2|θ|. Now, for the

proof. Given an arbitrary ε with ε > 0, let δ = ε/2. For any θ with |θ − 0| ≤ δ,

the following holds: |θ(1 + cos(θ))− 0| ≤ 2|θ| ≤ 2δ = ε. Since ε was arbitrary the

convergence is proved.

(b) Before beginning the proof we observe that if 0 < θ < π/2, then cos(θ) ≥ 0

and 1+cos(θ)
θ ≥ 1/θ. Now, for the proof. Given an arbitrary positive number K,

let δ = min{π2 , 1
K }. For any θ with 0 < θ < δ, the following holds: 1+cos(θ)

θ ≥
1/θ ≥ 1/δ ≥ K. Since K was arbitrary the convergence is proved.

(c) The sum is by definition equal to limN→∞ sN where sN =
∑N
n=1

1+
√
n

1+n2 . The

sequence SN is increasing in N . Note that the n = 1 term of the sum is 1 and

for any n ≥ 1 the nth term of the sum can be bounded as follows:

1 +
√
n

1 + n2
≤ 2
√
n

n2
= 2n−3/2.

Therefore, comparing the partial sum with an integral, yields

sN ≤ 1 +
N∑

n=2

2n−3/2 ≤ 1 +

∫ N

1

2x−3/2dx = 5− 4N−1/2 ≤ 5.



8 Solutions to Odd Numbered Problems Random Processes for Engineers

In summary, the sequence (SN : N ≥ 1) is an increasing, bounded sequence, and

it thus has a finite limit.

2.3 The reciprocal of the limit is the limit of the reciprocal Let ε > 0. Let

ε′ = min{ |x∞|2 ,
εx2
∞

2 }. By the hypothesis, there exists a value of no so large that

for all n ≥ no, |xn−x∞| ≤ ε′. This condition implies that |xn| ≥ |x∞|/2, because

of the choice of ε′. Therefore, for all n ≥ no,

∣∣∣∣
1

xn
− 1

x∞

∣∣∣∣ =
|xn − x∞|
|xn||x∞|

≤ 2ε′

x2∞
≤ ε,

which, by definition, shows that (1/xn) converges to 1/x∞.

2.5 On convergence of deterministic sequences and functions (a) Note that

xn − 8
3 = 1

3n . Thus, given any ε > 0, let nε = d 1
3εe. Then for any n ≥ nε,

|Xn − 8
3 | ≤ 1

3n ≤ 1
3nε
≤ ε. Thus, by definition, limn→∞ xn = 8

3 .

(b) Let ε = 1/3 and let xn = (2/3)1/n for n ≥ 1. Note that xn ∈ [0, 1) and

fn(xn) = 2
3 . Thus, there is no positive integer n such that |fn(x)− 0| ≤ ε for all

x ∈ [0, 1). So it is impossible to select nε with the property required for uniform

convergence. Therefore fn does not converge uniformly to zero.

(c) Let c < supD f . Then there is an x ∈ D so that c ≤ f(x). Therefore,

c ≤ f(x) − g(x) + g(x) ≤ supD |f − g| + supD g. Thus, c < supD f implies

c < supD |f − g| + supD g. Equivalently, supD f ≤ supD |f − g| + supD g, or

supD f − supD g ≤ supD |f − g|. Exchanging the roles of f and g yields supD g−
supD f ≤ supD |f − g|. Combining yields the desired inequality, | supD f −
supD g| ≤ supD |f−g|. As an application, suppose fn → f uniformly on D. Then

given any ε > 0, there exists an nε so large, that supD |fn−f | ≤ ε, whenever n ≥
nε. But then by the inequality proved, | supD fn − supD f | ≤ supD |fn − f | ≤ ε,

whenever n ≥ nε. Thus, by definition, supD fn → supD f as n→∞.

2.7 On the Dirichlet criterion for convergence of a series

(a) Let Rn =
∑n
k=0 ak. By assumption, the sequence (Rn) has a finite limit, so

it is a Cauchy sequence, i.e. limm,n→∞ |Rm −Rn| = 0. Now for n < m,

|Sm − Sn| = |
∑m
k=n+1 dk| ≤

∑m
k=n+1 |dk| ≤

∑m
k=n+1 Lak = L|Rm −Rn|. There-

fore,

limm,n→∞ |Sm − Sn| = 0. That is, (Sn) is also a Cauchy sequence, and hence

also has a finite limit.
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(b)

Sn =
n∑

k=0

AkBk −
n∑

k=1

AkBk−1 since B−1 = 0

=
n∑

k=0

AkBk −
n−1∑

k=0

Ak+1Bk

=

(
n∑

k=0

(Ak −Ak+1)Bk

)
−An+1Bn

=

(
n∑

k=0

akBk

)
−An+1Bn.

(c) Since |akBk| ≤ Lak for all k, the sequence of sums
∑n
k=0 akBk is convergent

by the result of part (a). Also, |An+1Bn| ≤ LAn+1 → 0 as n → ∞. Thus, by

part (b), Sn has a finite limit.

2.9 Convergence of a random sequence (a) The sequence Xn(ω) is monotone

nondecreasing in n for each ω. Also, by induction on n, Xn(ω) ≤ 1 for all n and

ω. Since bounded monotone sequences have finite limits, limn→∞Xn exists in

the a.s. sense and the limit is less than or equal to one with probability one.

(b) Since a.s. convergence of bounded sequences implies m..s. convergence,

limn→∞Xn also exists in the m.s. sense.

(c) Since (Xn) converges a.s., it also converges in probability to the same ran-

dom variable, so Z = limn→∞Xn a.s. It can be shown that P{Z = 1} = 1.

Here is one of several proofs. Let 0 < ε < 1. Let a0 = 0 and ak = ak−1+1−ε
2 for

k ≥ 1. By induction, ak = (1 − ε)(1 − 2−k). Consider the sequence of events:

{Ui ≥ 1− ε} for i ≥ 1. These events are independent and each has probability ε.

So with probability one, for any k ≥ 1, the probability that at least k of these

events happens is one. If at least k of these events happen, then Z ≥ ak. So,

P{(1− ε)(1− 2−k) ≤ Z ≤ 1} = 1. Since ε can be arbitrarily close to zero and k

can be arbitrarily large, it follows that P{Z = 1} = 1.

ANOTHER APPROACH is to calculate that E[Xn|Xn−1 = v] = v + (1−v)2

2 .

Thus, E[Xn] = E[Xn−1]+E[(1−Xn−1)2]
2 ≥ E[Xn−1]+ (1−E[Xn−1])2

2 . Since E[Xn]→
E[Z], it follows that E[Z] ≥ E[Z] + (1−E[Z])2

2 . So E[Z] = 1. In view of the fact

P{Z ≤ 1} = 1, it follows that P{Z = 1} = 1.

2.11 Convergence of some sequences of random variables (a)For each fixed

ω., V (ω)
n → 0 so Xn(ω) → 1. Thus, Xn → 1 in the a.s sense, and hence also

in the p. and d. senses. Since the random variables Xn are uniformly bounded

(specifically, |Xn| ≤ 1 for all n), the convergence in p. sense implies convergence

in m.s. sense as well. So Xn → 1 in all four senses.

(b)To begin we note that P{V ≥ 0} = 1 with P{V > 1} = e−3 > 0. For

any ω such that V (ω) < 1, Yn(ω) → 0, and for any ω such that V (ω) > 1,

Yn(ω) → +∞, so (Yn) does not converge in the a.s. sense to a finite random

variable.
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Let us show Yn does not converge in d. sense. For any c > 0 limn→∞ Fn(c) =

limn→∞ P{Yn ≤ c} = P{V < 1} = 1 − e−3. The limit exists but the limit

function F satisfies F (c) = e−1 for all c > 0, so the limit is not a valid CDF.

Thus, (Yn) does not converge in the d. sense (to a finite limit random variable),

and hence does not converge in any of the four senses to a finite limit random

variable.

(c)For each ω fixed, Zn(ω)→ eV (ω). So Zn → eV in the a.s. sense, and hence also

in the p. and d. senses. Using the inequality 1+u ≤ eu shows that Zn ≤ eV for all

n so that |Zn| ≤ eV for all n. Note that E[(eV )2] = E[e2V ] =
∫∞

0
e2u3e−3udu =

3 < ∞. Therefore, the sequence (Zn) is dominated by a single random variable

with finite second moment (namely, eV ), so the convergence of (Zn) in the p.

sense to eV implies that (Zn) converges to eV in the m.s. sense as well. So

Zn → eV in all four senses.

2.13 On the maximum of a random walk with negative drift (a) By the

strong law of large numbers, P{Sn/n → −1} = 1. Therefore, with probability

one, Sn/n ≤ 0 for all sufficiently large n. That is, with probability one, Sn > 0

only finitely many times. The random variable Z, with probability one, is thus

the maximum of only finitely many nonnegative numbers. So Z is finite with

probability one.

(b) Suppose P{X1 = c − 1} = P{X1 = −c − 1} = 0.5 for a constant c > 0.

Then X1 has mean -1 as required. Following the hint, for c ≥ 1, we have E[Z] ≥
E[max{0, X1}] = (c− 1)/2. Observe that E[Z] can be made arbitrarily large by

taking c arbitrarily large. So the answer to the question is no. (Note: More can

be said about E[Z] if the variance of X1 is known. A celebrated bound of J.F.C.

Kingman is that E[Z] ≤ Var(X1)
−2E[X1] .)

2.15 Convergence in distribution to a nonrandom limit Suppose P{X = c} =

1 and limn→∞Xn = X d. Let ε > 0. It suffices to prove that

P{Xn − X| ≤ ε} → 1 as n → ∞. Note that P{|Xn − X| ≤ ε} ≥ P{c − ε <
Xn ≤ c + ε} = Fn(c + ε) − Fn(c − ε). Since c − ε is a continuity point of FX
and FX(c− ε) = 0, it follows that Fn(c− ε)→ 0. Similarly, Fn(c+ ε)→ 1. Thus

Fn(c+ ε)−Fn(c− ε)→ 1, so that P{|Xn−X| ≤ ε} → 1. Therefore convergence

in probability holds.

Note: A slightly different approach would be to prove that for any ε > 0, there

is an nε so large that P{|Xn − c| ≤ ε} ≥ 1− ε.
2.17 Convergence of a product (a) Examine Sn = lnXn. The sequence Sn, n ≥
1 is the sequence of partial sums of the independent and identically distributed

random variables lnUk. Observe that E[lnUk] =
∫ 2

0
ln(u) 1

2du = 1
2 (x lnx−x)|20 =

ln 2− 1 ≈ −0.306. Therefore, by the strong law of large numbers, limn→∞
Sn
n =

ln 2 − 1 a.s. This means that, given an ε > 0, there is an a.s. finite random

variable Nε so large that |Snn − (ln 2− 1)| ≤ ε for all n ≥ Nε. Equivalently,
(

2(1− ε)
e

)n
≤ Xn ≤

(
2(1 + ε)

e

)n
for n ≥ Nε.

Conclude that limn→∞Xn = 0 a.s., which implies that also limn→∞Xn = 0 p.


